Hydro ## Toronto Unibersity Library. PRESENTED BY # The University of Cambridge through the Committee formed in $\alpha u c$ the Old Country to aid in replacing the loss caused by the Disastrous Fire of February the 14th, 1890. Digitized by the Internet Archive in 2007 with funding from Microsoft Corporation ## RESISTANCE OF THE AIR TO THE # MOTION OF PROJECTILES. Aondon: C. J. CLAY AND SONS, CAMBRIDGE UNIVERSITY PRESS WAREHOUSE, AVE MARIA LANE. Tambridge: DEIGHTON, BELL AND CO. Leipzig: F. A. BROCKHAUS. 1 Ago ## A REVISED ACCOUNT OF THE EXPERIMENTS MADE WITH ## THE BASHFORTH CHRONOGRAPH, TO FIND THE RESISTANCE OF THE AIR TO THE MOTION OF PROJECTILES, WITH THE APPLICATION OF THE RESULTS TO THE CALCULATION OF TRAJECTORIES ACCORDING TO J. BERNOULLI'S METHOD. $\mathbf{B}\mathbf{Y}$ ### FRANCIS BASHFORTH, B.D. LATE PROFESSOR OF APPLIED MATHEMATICS TO THE ADVANCED CLASS OF R.A. OFFICERS, WOOLWICH; AND FORMERLY FELLOW OF ST JOHN'S COLLEGE, CAMBRIDGE. CAMBRIDGE: AT THE UNIVERSITY PRESS. 1890 [All Rights reserved] ### Cambridge : PRINTED BY C. J. CLAY, M.A. AND SONS, AT THE UNIVERSITY PRESS. 41.6356 21(101au ### PREFACE. WHEN my previous work on the Motion of Projectiles was published in 1873 the correct law of resistance of the air had been determined only for velocities between 900 and 1700 feet per second. The extensive experiments made at Shoeburyness in 1878, 1879 and 1880 with ogival-headed projectiles completed the law of resistance for velocities between 100 and 2800 feet per second, but it was not found possible to assign any simple expression for the law of resistance in terms of the velocity. The Newtonian and cubic laws may however be used, excepting perhaps a brief interval just below the velocity of sound. The generous recognition of the practical value of my labours by the Marquis of Hartington, when Secretary of State for War in 1885, induced me to attempt to complete my labours by the calculation of tables of integrals for a resistance varying as the square of the velocity. So far as seemed necessary similar tables for the cubic law of resistance have been reprinted from my former work on the same subject. The results of my experiments have been extensively used in government treatises on Ballistics since 1877 (114). Also Captain Ingalls has given an extended and careful explanation of my results and method of experimenting in his Text-Book on Exterior Ballistics prepared for the use of officers under instruction at the United States Artillery School, 1886. And U vi PREFACE. Major Wuich, Professor der Artillerielehre am k. k. höheren Artilleriekurse, Wien, has abridged my tables and presented them in a new form in his Aeussere Ballistik, 1886. In order to furnish the reader with full information respecting the foundation on which my work rests, I have carefully revised all my original observations and given full particulars of the results finally adopted. This re-examination of every round has introduced trifling changes in the coefficients of resistance for both spherical and ogival-headed projectiles. I have therefore taken the trouble to recalculate my General Tables for both forms of projectile, in order to render my work consistent throughout. The whole has been adapted to the use of French as well as English measures. The close agreement between calculated and experimental ranges and times of flight for high muzzle velocities and low elevations shows that my coefficients are well adapted for the best guns of the present day. But when projectiles are fired with high muzzle velocities at high elevations, the calculated ranges and times of flight are both generally less than those given in the range tables. This discrepancy, I have no doubt, is caused in a great measure by the vertical drift of the elongated projectile, which causes an increase of range and time of flight. In fact the explanation of lateral drift given by Magnus and others also accounts for a vertical drift which is really the origin of all drift. Recently some rounds have been fired from a wire gun at high elevations with a very high muzzle velocity, commonly spoken of as the Jubilee Rounds. But it unfortunately happened that the wind was more or less favourable to a long range in these experiments. And a moderate steady wind at the surface of the earth would become a very violent wind at a height of two or three miles, which would produce a marked effect on the motion of an elongated projectile exposed to its action for 50 or 60 seconds. I have calculated a complete range table for the case where there is no wind to disturb the motion of the projectile. PREFACE. vii The statements and proceedings of some foreign writers on ballistics have rendered it incumbent on me to enter at some length into the history and progress of my work during the last twenty-six years. But I have confined these remarks chiefly to the conclusion of my work, so that the reader need not trouble himself unless he feels an interest in the matter. In calculating trajectories it has of late become a common practice to reduce my coefficients, either arbitrarily, or so as to bring them into accord with those of Krupp. But I have not been able to find any satisfactory experimental authority for Krupp's tables issued in 1881. Certainly in the following year an "Annexe" (177), consisting of 37 rounds, was put forward to support a foregone conclusion, but these experiments from their nature were not to be depended upon (177), and in no single case was the time of flight recorded. The specimen of the experiments made to determine the resistance of the air for velocities higher than 700 m.s. (181) ought to establish the character of Meppen for ballistic experiments. In all cases the Krupp party were careful to follow and not to lead. An inspection of diagram (178) will show how carefully they followed my law of resistance, merely reducing my coefficients, as is shown by line 3 compared with line 1 or 2. In 1872 Mayevski combined my results published in 1868 with a few of his own experiments, from which he professed to have obtained "résultats russes et anglais," which however coincided with my previously published results (169). Consequently, so far as Mayevski's experiments had any value, they entirely supported my previous conclusions. The method of calculating trajectories published by Siacci requires all the three tables previously used by Niven for that purpose. Ingalls (173) has pointed out a grave defect in that Siacci has not found an analytical expression for a most important quantity, α or $\sec \overline{\phi}$, but has merely given the empirical rule $\sec \overline{\phi} = (\sec \phi)^{\frac{n-2}{n-1}}$. Turning to Niven's paper it will be found that the two values of this quantity required for distance and for time have been carefully determined, and still more so in a paper viii PREFACE. On certain Approximate Formulae for calculating the Trajectories of Shot, by Professor Adams (Nature, Jan. 16, 1890). It must be plain that arbitrary coefficients of resistance, and empirical quantities are quite inadmissible in any calculations made to test the results of careful experiment. Krupp, Mayevski and Siacci use tables of the same kind as mine (108) and (110). The reader will find in the following work a very full account of every round from which coefficients of resistance have been obtained by me for both spherical and ogival-headed projectiles. In consequence of the Krupp scare, special experiments were made in 1887 to test my coefficients on a long range, when they were found to be quite satisfactory. Still no notice scems to have been taken of this fact, or of Captain May's remarks (151), by calculators of trajectories. My coefficients of resistance for low velocities have been tested (122) by calculating a Range Table for the 6·3-inch Howitzer for elevations 5° to 35° with satisfactory results. For high velocities I have used the Range Table for the 4-inch B.L. gun. The calculated ranges and times of flight for velocities 1900 to 960 f.s., and for elevations 1° to 4° (125), are quite satisfactory; and this conclusion is confirmed by the use of the General Tables (126) and (188). In the same manner the Range Table of Captain May, R.N., has been used (123), (124) and (189) to show the accuracy of my coefficients of resistance when the projectile moves nearly in the direction of its axis. I therefore claim to have accomplished in a satisfactory manner all I undertook to do, namely, to find by experiment the law of resistance to spherical projectiles and also to elongated projectiles when they move approximately in the direction of their axes. The tables and coefficients already given are sufficient for the calculation of trajectories of spherical projectiles and of clongated projectiles where there is no sensible drift. But in attempting to calculate the trajectories of elongated projectiles fired from rifled guns with high muzzle velocities and at considerable elevations, it will be well to recognise the truth of the statement of St-Robert—that the problem taken in all its generality presents great difficulties. I have endeavoured to explain the nature of the movement of such an elongated projectile, which is supposed to be projected with perfect steadiness from a rifled gun, according to the conclusions of St-Robert. Referring to (141) it is evident that shortly after the elongated projectile leaves the gun it must be raised up bodily by the resistance of the air, so as to cause it to move as if it had been fired at a somewhat higher elevation than it really was. I have given the calculated ranges and times of flight for elevations of 1° to 15° for the 4-inch B.L. gun (148). As the elevation increases above 4° it appears that the calculated ranges and times of flight fall short more and more of those quantities respectively given by experiment. Suppose we reduced the coefficients of resistance so as to obtain a calculated range equal to the
experimental range for an elevation of 10°, we should find, as Captain May did (151), that these coefficients would not give a correct time of flight-and they would destroy the agreement actually obtained for low elevations. The reduction of the coefficients of resistance therefore cannot be the solution of the difficulty, as is commonly supposed. Some correction is required which will increase both the calculated range and time of flight. In (149) the calculated ranges of (148) are arranged in a different manner. I have found from the Range Table the elevation and time of flight corresponding to each calculated range. It is evident that the corrections for elevation at once give the correct ranges and very approximate corrections for the times of flight. These latter corrections would have been still more satisfactory if the decrease in density of the air corresponding to the height of the shot had been taken into account in the calculation of the trajectories (148). For the reason stated (146) this mode of correction will be only an approxima- X PREFACE. tion to the truth—but it will perhaps be found to be satisfactory. The law of the correction can only be obtained by the calculation of numerous trustworthy Range Tables, or by theoretical considerations. I fear that the reader will meet with some repetitions in the following work, but it was impossible to avoid them entirely on account of the complicated nature of the various questions to be dealt with. Although it will not surprise me to find that what has been said produces little immediate effect, it will always be a satisfaction to me to have stated my case carefully and supported it by reference to, and specimens of, my early results and tables, in none of which have I found it necessary to introduce any important change. The English Range Tables I have made use of appear to me surprising from their minute accuracy. I have derived much assistance from Captain Ingalls's excellent work on Exterior Ballistics, and the numerous references to that work will explain in what respect I am indebted to his labours. MINTING VICARAGE, March, 1890. ## CONTENTS. | | PAGE | |---|------| | Chapter I. (1) to (18). Introduction | 1 | | CHAPTER II. (19) to (38). Description of the Chronograph, with an | | | account of Experiments and their reduction | 14 | | Chapter III. (39) to (81). Experiments with the Chronograph . | 27 | | Chapter IV. (82) to (115). Description of the General Tables S_* | | | and T_v | 68 | | Chapter V. (116) to (135). Calculation of Trajectories of Pro- | | | jectiles | 87 | | Chapter VI. (136) to (153). The Movement of Elongated Projectiles | 124 | | Chapter VII. (154) to (165). Proposed Laws of the Resistance of the | | | Air to Elongated Projectiles | 135 | | Chapter VIII. (166) to (192). Concluding Remarks | 140 | | | | | | | | | | | TABLE I. Coefficients for the Newtonian Law of the Resistance of the | 7.50 | | Air to Spherical Projectiles | 157 | | TABLE II. Approximate Law of the Resistance of the Air to the | | | Motion of Spherical Projectiles | 158 | | Table III. Coefficients for the Newtonian Law of Resistance of the | | | Air to Ogival-headed Projectiles | ib. | | TABLE IV. Approximate Law of the Resistance of the Air to the | | | Motion of Ogival-headed Projectiles | 159 | | Table V. Coefficients for the Newtonian Law of Resistance of the | | | Air to Hemispherical-headed Projectiles | 160 | | TABLE VI. Coefficients for the Newtonian Law of Resistance of the | | | Air to Flat-headed Projectiles | ib. | | Table VII. Values of $Q_{\phi} = \sec \phi \tan \phi + \log_e \tan \left(\frac{\pi}{4} + \frac{\phi}{2}\right)$. | 161 | | Table VIII. Values of Log Q_{ϕ} | 163 | | Table IX. Values of (x) , (y) , (t) , and (v) for Newtonian Law | 164 | | Table X. Values of $\{1000 \div v\}^2$. | 228 | | The state of s | PAGE | |--|------| | Table XI. Coefficients for the Cubic Law of the Resistance of the Air | 20.5 | | to Spherical Projectiles | 235 | | Air to Ogival-headed Projectiles | 236 | | TABLE XIII. Coefficients for the Cubic Law of the Resistance of the | 2.50 | | Air to Hemispherical-headed Projectiles | 238 | | TABLE XIV. Coefficients for the Cubic Law of the Resistance of the | | | Air to Flat-headed Projectiles | ib. | | Table XV. Values of $P_{\phi} = 3 \tan \phi + \tan^3 \phi$, and of log P_{ϕ} | 239 | | Table XVI. Values of (x), (y), (t), and (v) for the Cubic Law of | | | Resistance | 240 | | Table XVII. Values of $(1000 \div v)^3$ | 280 | | Table XVIII. Values of W_{ϕ} and $\log W_{\phi}$ | 283 | | Table XIX. Values of $(1000 \div v)^6$ | 284 | | Table XX. Log τ corresponding to temperatures and pressures of the | | | Air, when the Air is 3rds saturated with moisture | 286 | | Table XXI. Log τ for various heights, gravity and temperature being | | | considered constant | 288 | | Table XXII. Resistance of the Air to Spherical and to Ogival-headed Projectiles | 289 | | Table XXIII. S, for Spherical Projectiles | 290 | | Table XXIV. T_v for Spherical Projectiles | 294 | | Table XXV. S, for Ogival-headed Projectiles | 298 | | Table XXVI. T_* for Ogival-headed Projectiles | 304 | | | | | French Measures. | | | TABLE XXVII. Coefficients of the Resistance of the Air for the | | | Newtonian and Cubic Laws of Resistance to Spherical and Ogival-headed Projectiles | 910 | | TABLE XXVIII. Approximate Laws of the Resistance of the Air to | 310 | | the Motion of Spherical Projectiles | 311 | | TABLE XXIX. Approximate Laws of the Resistance of the Air to the | | | Motion of Ogival-headed Projectiles | ib. | | TABLE XXX. Sh for Spherical Projectiles | 312 | | Table XXXI. $\sigma_{\mathfrak{b}}$ for Spherical Projectiles | 313 | | Table XXXII. St for Ogival-headed Projectiles | 314 | | Table XXXIII. To for Ogival-headed Projectiles | 316 | #### CHAPTER I. #### INTRODUCTION. 1. The leading mathematicians of the last two centuries gave much attention to the subject of Ballistics. They seem to have accomplished all that was possible in such a case, in the absence of reliable experiments by which they could test their theories. Galileo made the first attempt to determine the theoretical path of a projectile acted on by gravity, but unresisted by the air, in his Scienze Nuove, 1638, and found it to be a Newton investigated the theoretical path of a projectile, supposing the air to offer a resistance varying as the velocity. In 1718 Keill proposed his famous challenge to Continental mathematicians, "Invenire curvam, quam projectile de-"scribit in aëre, pro simplicissima suppositione gravitatis, atque "medii densitatis uniformis, resistentiæ vero in duplicata ratione "velocitatis 1." J. Bernoulli soon solved the problem, supposing the resistance to vary as any power of the velocity, but before publishing his solution, he called upon Keill to produce his own, telling him that if he did not do as he was requested, he should accept his silence "pro tacita confessione suæ imbecilitatis." As the required solution was not produced Bernoulli triumphed not over Keill only, but also over all his English friends, who might have been expected to help him if they had known how to do so. Bernoulli refers2 to a solution received from Brook Taylor on the 6th of November, "styli veteris," under the form $(r^4-1+4nrr+4ur^2)$. Hermann had also given a construction in his Phoronomia, p. 354, similar to his own. ¹ J. Bernoulli, Opera, 11. 396. ² Ib. p. 399. - 2. Le Seur and Jacquier remark in their edition of Newton's Principia (Book II., Prop. X., Prob. III.), that although Newton had omitted to consider the case of a medium resisting as the square of the velocity, they were unwilling that the solution of such an elegant problem should be absent from their commentaries. Having given Bernoulli's solution for any
power of the velocity, they remark "ex quibus manifestum sit veræ trajectoriæ "descriptionem adeò perplexam esse, ut ex illa vix quidquam ad "usus philosophicos aut mechanicos accommodatum possit deduci." That is, it was impossible to integrate the expressions arrived at. But this solution is the one employed in this as well as in my former work. Euler also adopted Bernoulli's solution, and applied it to the case where the resistance varied as the square of the velocity. In this particular case the length of the arc of the trajectory can be found by integration. Euler divided the trajectory into small arcs, and, supposing the chord to be equal to the arc in length, by summation he found the coordinates of the path. method of calculation was pursued by Grævenitz 1 (1764), Hugh Brown² (1777), and Otto³. But Legendre introduced a muchneeded correction by treating the arc of the trajectory as the arc of a circle, and projecting its chord upon the axes of x and y. Another method of correction proposed by Didion was to use the arc of a parabola instead of the arc of a circle. Didion has given comparative examples of the use of these methods. Lambert, Tempelhof, Francois, Otto and others have made use of long series too complicated for practical use, although Otto has provided numerous auxiliary tables 5. His other ballistic tables were only adapted for calculating the trajectories of shot fired at high elevations. - 3. But there were no trustworthy means of comparing the results of theory and experiment until Robins, by the use of his ballistic pendulum and his whirling machine, made valuable attempts to discover the law of resistance of the air to the motion of small-arm bullets. He describes his ballistic pendulum as follows:—" A B C D represents the body of the machine "composed of the three poles B, C, D, spreading at bottom, and ¹ Translated by Rieffel, 1845. ² Translation of Euler. ³ Tafeln für den Bombenwurf. Translated by Rieffel, as Tables de Balistiques Générales pour le tir élevé, 1845. ⁴ Balistique, pp. 215, 216. ^b Neue Bal. Tafeln, 1857. "joining together at the top A....On two of these poles towards "their tops are screwed on the sockets RS; and on these sockets "the pendulum EFGHIK is hung by means of its cross piece "EF, which becomes its axis of suspension and on which it must be made to vibrate with great freedom. The body of this pendulum is made of iron, having a broad part at bottom which cannot be seen in this scheme....The lower part of the pendulum is covered with a thick piece of wood GKIH, which is fastened to the iron by screws. Something lower than the bottom of the pendulum there is a brace OP, joining the two poles to "which the pendulum is suspended; and to this brace there is "fasten'd a contrivance MNU, made with two edges of steel "bearing on each other in the line UN, something in the manner "of a drawing-pen....There is fasten'd to the bottom of the "pendulum a narrow ribbon LN^1 " which is used to measure the recoil of the pendulum. Robins published his New Principles of Gunnery in 1742, in which he adopted a law of resistance varying approximately as the square of the velocity, but he insisted that there was a decided change in this law at or about the velocity of sound. This position was doubted till it was confirmed by recent experiments. In reply to some adverse criticisms on his work, several papers were read and illustrative experiments were exhibited by Robins before the Royal Society. He remarked, "But as I have, for some time past, made many experiments "myself on the ranges of bullets, and have collected all that I "could meet with made by other persons; it was necessary, in "order to examine the several hypotheses of resistance, which "some of these experiments suggested, that I should be enabled "to compute the motions of resisted bodies, not only when they "were resisted in the duplicate proportion of their velocity; but "likewise when the law of resistance was varied by other rules "not hitherto supposed by any writer. And, in these investi-"gations, I had the good fortune to discover some compendious "approximations, which were as accurate, as the nature of the "subject required, and were as easy in their application, as I "could well hope for in so perplexed and intricate a matter....But "first it is necessary to examine what is the real law of resistance "of bodies moving through the air. "I have already mentioned, that in very great changes of "velocity, the resistance does not accurately follow the duplicate "proportion of the velocity. But how much this variation "amounts to, and how it is adapted to the different velocities of "the resisted body; it is not easy nicely to ascertain. However, "by comparing together a great number of experiments; I am "of opinion, that till, a more accurate theory of these changes "is compleated, the two following positions may be assumed "without any remarkable error"." ¹ New Principles of Gunnery, p. 83. ² Robins's Gunnery, r. 180-183, and Hutton's ed., 180-183, 1805. 4. "First, that till the velocity of the projectile surpasses "that of 1100 feet in a second, the resistance may be esteemed "to be in the duplicate proportion of the velocity; and its mean "quantity may be taken to be nearly the same with that, I have "assigned in the former paper." "Second, That if the velocity be greater than that of 11 or "1200 feet in a second, then the absolute quantity of that resistance in these greater velocities will be near three times "as great, as it should be by a comparison with the smaller "velocities.—For instance, the resistance of a 12 pound shot, "moving with a velocity of 1700 feet in a second, instead of "144 lb. ½, which I have assigned it in a former paper, will be "now three times that quantity, or 433 lb. ½"." And in a note Robins remarks, that "the velocity, at which the moving body "shifts its resistance, is nearly the same, with which sound is "propagated through the air." 5. On presenting to Robins the Copley Medal in recognition of the value of his work, Mr Folkes, President of the Royal Society, observed that, "It is from these experiments, and from "those others which Mr Robins is still preparing to exhibit, that "we may expect to see compleated the whole, and the true theory " of projectiles. What Galileo and Torricelli, who first demon-"strated the motions of these bodies in vacuo, knew to be still "wanting in their theories, will hereby be supplied: and these "particulars will at last become known, which they wished that "future observers would make diligent and careful experiment Previously, "writers, even those of the first class" have been of opinion "that in large shot of metal, whose weight "many thousand times surpasses that of the air, and whose force "is very great, in proportion to the surface wherewith they press "thereon, this opposition is scarce discernable, and as such may, "in all computations, concerning the ranges of great and weighty "bombs be very safely neglected '." The choice of "two very considerable employments" having been offered to Robins, as a reward for his labours, he accepted the office of Engineer-General to the East-India Company "as "it was suitable to his genius, and where, he believed, he should ¹ Note by Hutton, "These suppositions are not nearly correct," 181. ² New Principles, r. 182, Hutton's ed., pp. 180-182. ³ New Principles, 1. p. xxx. ⁴ Ib. p. xxxi. "be able to do real service, as not being liable to be hindered "through the suggestions of design or ignorance, which by their "boasting and importunity, often insinuating themselves into the "direction of publick affairs, frequently render abortive the best "concerted schemes"." The Company settled upon him £500 a year during life, on condition that he continued in their service five years. He left England for India in 1749 and died at work 1751. - 6. Euler at once published a translation of Robins's New Principles, and illustrated the work with a lengthy commentary (1745). He also contributed a paper on the same subject to the Memoires de l'Acad. de Berlin, 1753, in which he showed how theoretical trajectories might be calculated according to the solution of the problem by J. Bernoulli, but only for a resistance varying as the square of the velocity. Both Euler's paper and his commentaries on Robins's New Principles were translated and published in 1777 by Hugh Brown, who also carried out the calculation of seventeen species of trajectories according to Euler's example and instructions. The like had been done previously by Grævenitz in 1764, as already stated, but the calculations appear to have been made independently. The weight of the ballistic pendulum used by Robins was only 56 lbs. 3 oz. - 7. At Woolwich, in the year 1775, in conjunction with some able officers of the Royal Regiment of Artillery and other ingenious gentlemen, was first instituted a course of experiments on fired gunpowder and cannon-balls, similar to the course carried on afterwards during the years 1783-5, 1787-9, 1791, &c. account of the earlier experiments was printed in the Philosophical Transactions for 1778, and was honoured with the annual medal of the Royal Society. Hutton2 remarks, "That part of Mr Robins's "book has always been much admired, which relates to the experi-"mental method of ascertaining the actual velocities of shot, and "in imitation of which, but on a large scale, those experiments "were made which were described in my paper. Experiments in "the manner of Mr Robins were generally repeated by his com-"mentators, and others, with universal satisfaction; the method "being so just in theory, so simple in practice, and altogether so "ingenious that it immediately gave the fullest conviction of its ¹ New Principles, p. xl. ² Tracts, Vol. 11, p. 307. "excellence, and the eminent abilities of the inventor. The use "which our author made of his invention, was to obtain the real "velocities of bullets experimentally, that he
might compare them "with those which he had computed a priori from a new theory "of gunnery, which he had invented, in order to verify the principles on which it was founded. The success was fully answerable "to his expectations, and left no doubt of the truth of his theory, "at least when applied to such pieces and bullets as he had used. "These however were but small, being only musket balls of about "an ounce weight." - 8. Hutton endeavoured to supply the want of results of experiments with larger balls by using shot from 1 lb. to near 3 lbs., and finally 6 lbs. in weight. He employed the ballistic pendulum of Robins, as that was at that time the only practical method of ascertaining the velocities of military projectiles, except that practised by Count Rumford, who suspended the gun and measured its recoil. Hutton commenced his experiments with a pendulum weighing between 500 and 600 lbs. in 1783; it was increased to 1014 lbs. in 1788; in the following year to 1655 lbs. and at last to 2099 lbs. Full particulars of the rounds fired have been carefully given. For the determination of resistances at low velocities Hutton used Robins's whirling machine. - 9. Hutton states that his experiments of 1787, 88, 89 and 91 "were chiefly instituted to obtain the effects of the air's resistance "to balls in their rapid flight through it. To determine the "resistance to the very high velocities, were employed balls of "three several sizes, viz. of 2 inches, 2.78 inches, and 3.55 inches "in diameter. These were discharged with various degrees of "velocity, from 300 feet to 2000 feet in a second of time; and they "were also made to strike the pendulum block at several different "distances from the guns, in order to obtain the quantity of velo-"city lost, in passing through those spaces of air; whence the "degrees of resistance were obtained, appropriate to the different "velocities. These series of resistances for the three sizes of "balls above-mentioned, have been obtained in a state remarkably "regular, not only each series in itself, but also in comparison "with each other; the terms in every one of them following a "certain uniform law, in respect of the velocity, being indeed "nearly as the $2\frac{1}{10}$ power of the velocity; and the terms of any "one series also, as compared with the corresponding terms of "another, with the same velocity, these being in a constant pro"portion to one another," viz. as the surfaces of the balls moved "nearly, or as the squares of their diameters, with about $\frac{1}{20}$ part "more in counting from the less ball to the greater, or $\frac{1}{20}$ part less "when comparing the greater ball to the less." Finally, Hutton expresses the resistance of the air in pounds to a spherical shot d inches in diameter, moving with a velocity $vf.s.^2$, by $$(000007565v^2 - 00175v) d^2$$. 10. The proposal to introduce some changes into the English Artillery in 1815 determined the director of the Royal Academy and Dr Gregory, professor in the same establishment, to cause å ballistic pendulum to be constructed three times greater than that of Hutton, with which to experiment with shot of 24 lbs. The weight of the pendulum was 7408 lbs. Shot of 6, 9, 12 and 24 lbs. were fired into the wooden block of this ballistic pendulum, from guns of different lengths with various charges. Other experiments were made in 1817, 18, at Woolwich to determine the influence of windage on the initial velocities of shot. The results obtained do not appear to have any permanent value. 11. General Piobert⁵ recalculated the experiments of Hutton and obtained a formula of resistance $$\rho = \pi R^{\rm 2} \times 0.030586 \ (1 + 0.0023 \ V) \ V^{\rm 2}.$$ 12. General Didion has remarked that the experiments made by Hutton in England on small projectiles "incomplétement "formulées par ce savant observateur" had for a long time formed the sole base of ballistic applications. Piobert had succeeded in representing Hutton's results by a formula of two terms. The experiments made at Metz in 1839 and 1840, on projectiles of service calibres, had enabled him to obtain coefficients of resistance applicable to guns in actual use. The coefficients deduced from the experiments of Hutton and from those obtained at Metz did not agree. But recalculating Hutton's experiments by a perfectly suitable method, and introducing the same corrections, he found there was no sensible difference between them. Shot of 8, 12, and 24, weighing respectively 8.86 lbs., 13.38 lbs., and 26.47 lbs., and also a shell of 8.66 inches, weighing 50.71 lbs. were used ¹ Tracts, 111, pp. 216, 217. ² Ib. p. 232. ³ Ann. de Ch. et de Ph., v. p. 380. ⁴ Ib. ix. ⁵ Mem. de l'Acad., 1836; and Didion, Lois, p. 22. at Metz. The ballistic pendulum when filled with sand weighed about 6000 kilogrammes, or 13,228 lbs. All particulars of the experiments will be found in "Lois de la Résistance de l'Air sur les Projectiles." Par Is. Didion, Paris, 1857. The consideration of all the experiments made with the ballistic pendulum led to the adoption of the formula $\rho = 0.027\pi R^2 V^2 (1 + 0.0023 V)^1$ in French measures, or to $r = 0.0000028 d^2 v^2 (1 + 0.0007 v)$ in English measures. Didion observes that the pendulum of Robins, formed of a simple plank of wood, suspended by a single bar, was the most susceptible of all to torsion and disturbances, and gave the highest result; that the pendulum of Hutton better constructed and suspended by two bars, gave results higher with the 3 lb. and 6 lb. balls than with the 1 lb. ball; and that these were higher than those of the experiments made at Metz with a very massive pendulum suspended by four bars, and very rigid. From these considerations Didion concludes that the divergences observed proceeded from the imperfection of the apparatus, and that the lower results obtained with the apparatus | Velo-
city | Hutton
1791 | | Didion
1840 | | Bashforth
1868 | |---|---------------------------------------|---|---------------------------------------|--------------------------------------|---------------------------------------| | f. s.
100
200
300
400
500
600
700
800 | lbs. 0.2 0.7 1.6 2.9 4.7 6.9 9.8 13.3 | g Correction required | lbs. 0°1 0°5 1°2 2°3 3°8 5°7 8°2 11°2 | ्रज् Correction required | lbs. | | 900 | 17.5 | -4.7
-5.0 | 14.8 | - 2.0
- 1.4 | 12.8 | | 1100
1200
1300
1400
1500 | 28.6
35.3
42.7
50.7
59.2 | - 3·I
- 1·9
- 2·1
- 2·2 | 24.0
29.7
36.2
43.5
51.7 | +1.5
+3.7
+4.4
+5.0
+5.0 | 25.5
33.4
40.6
48.5
56.7 | | 1600
1700
1800
1900
2000 | 67.9
76.8
85.5
94.1
102.4 | - 2.6
- 2.7
- 2.6
- 1.3
+ 1.9 | 60·8
70·9
82·0
94·2
107·5 | +4.5
+3.2
+0.9
-1.4
-3.2 | 65·3
74·1
82·9
92·8
104·3 | ¹ Lois, &c., p. 78. the most recent and most improved, and which are moreover the most numerous and obtained with *service* projectiles, ought to be regarded as the most exact. 13. The foregoing Table shows the resistance of the air to the motion of a spherical ball 2 inches in diameter, (1) as given by Hutton; (2) as calculated by Didion's formula; and (3) as calculated by the help of my own coefficients, 1868. From the above table it appears that Didion was quite right when he declared that Hutton's results were too high. But he over-corrected them, and gave a formula which produced results that were too low. In fact for velocities 1200 to 1700 feet per second, Hutton's results were nearer the truth than Didion's. 14. Hutton expressly denied that there was any "shifting of "the resistance of the air" at or about the velocity of sound, such as Robins had pointed out; while Didion gave a formula for the resistance of the air of the form $$A\,V^{\scriptscriptstyle 2}\,(1+B\,V) = A\,V^{\scriptscriptstyle 3}\left(\frac{1}{V}+B\right)$$, so that the coefficient of V^3 increases as V decreases; but my experiments show that there is a sudden decrease in the value of this coefficient in the neighbourhood of the velocity of sound. It gives me great pleasure to exhibit the valuable work done by these early experimenters, who worked together in the best possible spirit—each ready to recognise the value of his predecessor's work. Hutton brought out a new edition of Robins's New Principles, &c., while Didion recalculated Hutton's experiments. - 15. Finally a monster ballistic pendulum was constructed for the English Government in 1855 by Messrs Armstrong and Co. It was first set up at Shoeburyness, afterwards removed to Woolwich, and finally dismantled without ever having been used in any course of experiments. It therefore gave no results. But still an elaborate model of this useless instrument was made for the Great Exhibition of 1862, which was reported to have cost £800. I do not know what was the weight of the pendulumblock in this case. The figure represents this ballistic pendulum, which was about twenty feet in height. - 16. It was perhaps natural that each succeeding experimenter should be anxious to use shot of increased weight which involved ¹ Hutton's edition of Robins, p. 181. the employment of heavier pendulum blocks. But on reviewing the work that has been done, it appears probable that the ex- perimenters who followed Robins would have succeeded better if they had expended all their care and ingenuity upon experiments on a small scale. For Robins noticed a change in the law of resistance which was disputed or passed over in silence by succeeding experimenters with the ballistic pendulum. Now it is impossible to experiment satisfactorily with small-arm bullets by the help of galvanic chronographs, because they would generally pass between the strings of the screens without cutting them. or they would be rendered unsteady if they touched the threads of the screen. But with the
great precision of the small arms now made there would be no difficulty in carrying out experiments with a light ballistic pendulum. I find that care was taken by the old experimenters to screen the block of the ballistic pendulum from the blast of the gun, but I have not noticed that any attempt was made to prevent the blast of air, which accompanies a shot, from acting upon the pendulum. It would be well therefore to place a thin paper screen just in front of the block of the pendulum, the bull's eye being marked on the paper in front of the point to be hit. 17. When I commenced experimenting in 1864 with a view to determine the resistance of the air to the motion of projectiles, the best results previously obtained were those derived from the use of the ballistic pendulum. The electro-ballistic instruments of Vignotti, Navez, Leurs, and others of the same type, were liable to frequent errors, and so were not adapted for use in determining the resistance of the air to projectiles. The want of an instrument capable of measuring the times occupied by a shot in passing over a succession of equal spaces was felt long ago, for in 1843 Col. Konstantinoff employed M. Bréguet, of Paris, to construct for him a chronograph. "Le problème était celui-ci: Disposer "un instrument qui pùt indiquer et conserver trente ou quarante "observations successives, faites dans des espaces de temps tres "rapprochés, d'un phénomène se passant plus ou moins loin de "l'endroit où se trouve placé l'instrument d'observation 1." The construction of the instrument was commenced in June, 1843, and completed on the 29th of May, 1844°. This instrument is described and figured by Du Moncel³. Hence arose a warm discussion between Wheatstone and Bréguet of which Moigno 5 has given a long account. It is difficult to say what the dispute was all about, as it does not appear that results of any value were ever obtained by either party, for in 1856 Morin remarked that the problem had not even then been resolved in a way completely satisfactory. Du Moncel remarks, "Ce chronographe "fut, en 1845, l'object d'une discussion assez animée entre MM. "Wheatstone et Bréguet, de laquelle il est résulté que la première "idée des chronoscopes et chronographes électriques appartenait "bien à M. Wheatstone, mais que c'était au capitaine Konstanti-"noff que revenait l'idée d'enrigistrer la vitesse des projectiles aux -"différents points de leur trajectoire, et à M. Bréguet que devait "être attribuée la disposition de l'instrument pour résoudre le " problème posé par M. Konstantinoff⁶." 18. Another chronograph, the invention of Captain Schultz, was exhibited at Paris in 1867, which was intended to register several records for each round. We were informed that "Captain "Schultz, in fact, finds that he can observe and register time to ¹ Moigno, Télégraphie, 1849, p. 95. ³ Applications, 11. p. 337, 1856. ⁵ Télégraphie, pp. 88—113. ² lb. p. 96. ⁴ Comptes-Rendus, 1845. ⁸ Applications, u. p. 337. " 10000000 of a second'!" Either the Ordnance Select Committee or the Committee on Explosives were not slow in securing such a promising instrument. But when they had got it they could not make it work, for although I inquired frequently, I could not learn that they had obtained any results fit to produce. The most elementary knowledge of the subject ought to have warned them that there were three objections to the satisfactory working of this chronoscope, any one of which would prove fatal:—(1) the badly contrived system of screens, (2) the use of the tuning-fork to divide the second of time, and (3) the use of the spark as the recording agent. The Schultz chronoscope was early used in the United States, but from Lt.-Col. Benet's account, it appears to have only been applied to measure initial velocities. In this respect he speaks favourably of the instrument. But Captain Ingalls³ has explained how the case stands now. He remarks, "the only "chronograph which can successfully compete with Bashforth's as "a means for studying the resistance of the air was invented by "Captain Schultz of the French Artillery, in 1864, the year in "which Professor Bashforth constructed his first instrument. "Since that time it has been much improved by M. Marcel-Deprez, "Lt.-Colonel Sébert of the French Marine Artillery, and Lieu-"tenant A. H. Russell of the U. S. Ordnance; and all the objec-"tionable features mentioned by the Bashforth committee have "been obviated. As thus modified it is strikingly like Professor "Bashforth's chronograph, and the same screens, batteries, arrange-"ments of circuits, and methods of reduction of observations can "be used in both." Still we have no results obtained by the use of this "modified" instrument, which was brought forward at Woolwich in its crude state in opposition to mine 20 years ago with little credit to its patrons. ¹ Practical Mechanic's Journal, Oct. 1867, p. 195. ² Electro-Ballistic Machines, 1866. ³ Ballistic Machines, 1885, p. 29. #### CHAPTER II. DESCRIPTION OF THE CHRONOGRAPH, WITH AN ACCOUNT OF EXPERIMENTS AND THEIR REDUCTION. On the institution of the Advanced Class of Royal Artillery Officers at Woolwich in 1864 the Professorship of Applied Mathematics was offered to me by the Council of Military Education. I the more readily accepted that office because I saw my way to the satisfactory solution of the problem of the resistance of the air to the motion of projectiles. It was also a part of my duty to act as referee to the Ordnance Select Committee, at that time the scientific advisers of the Government. The Committee were possessors of the monster ballistic pendulum of 1855, which was useless, and electro-ballistic instruments of the type of Navez, which were unreliable, because they afforded no means of testing the accuracy of their results. I therefore submitted to the committee my plans for the construction of a chronograph adapted to record the times occupied by any shot in passing over a succession of equal spaces, for, if these records were found consistent with each other, or capable of being made so by allowable corrections, then the results must be trustworthy, supposing the law of resistance of the air not to be subject to any sudden change. This supposition has been found to be correct, except perhaps for velocities 1000-1100 f. s., where there is a rapid change in the law of resistance. But the Ordnance Select Committee did not require any new chronograph for their purposes, as they were at that time quite satisfied with the Navez chronoscope they possessed. It was perhaps fortunate that, for this reason, I was obliged to keep the construction of the new instrument in my own hands, for thus I was able to introduce improvements in any part which was found to be defective in the original design. - 20. After a due consideration of all circumstances of the case, it appeared that the following conditions must be satisfied by a chronograph to be worthy of perfect confidence:— - (1) The time to be measured by a clock going uniformly. - (2) The instrument to be capable of measuring the times occupied by a cannon-ball in passing over at least nine successive equal spaces. - (3) The instrument to be capable of measuring the longest known time of flight of a shot or shell. - (4) Every beat of the clock to be recorded by the *interruption* of the same galvanic current, and under precisely the same conditions. - (5) The time of passing each screen to be recorded by the momentary *interruption* of a second galvanic current, and under precisely the same conditions. - (6) Provision to be made for keeping the strings or wires of the screens in a uniform state of tension, notwithstanding the force of the wind and the blast accompanying the ball. - The following is a description of the chronograph as constructed, and of various useful appendages. Fig. 3 gives a general view of the chronograph. A is a fly-wheel capable of revolving about a vertical axis, and carrying with it the cylinder K, which is covered with prepared paper for the reception of the clock and screen records. The length of the cylinder is 12 or 14 inches, and the diameter 4 inches. B is a toothed-wheel which gears with the wheelwork M so as to allow the string CD to be slowly unwrapped from its drum. The other end of CD being attached to the platform S allows it to descend slowly along the slide L, about $\frac{1}{4}$ inch for each revolution of the cylinder. E, E' are electro-magnets; d, d' are frames supporting the keepers; and f, f' are the ends of the springs which act against the attraction of the electro-magnets. When the current is interrupted in one circuit, as E, the magnetism of the electro-magnet is destroyed, the spring f pulls back the keeper, which turns about a hinge at d, and by means of the arm a, gives a blow to the lever b. Thus the marker m is made to depart suddenly from the uniform spiral it was describing. When the current is restored the keeper is attracted, and thus the marker m is brought back, which con- tinues to trace its spiral as if nothing had happened. E' is connected with the clock, and its marker m' records the seconds. Fig. 3. E is connected with the screens, and records the passage of the shot through the screens. By measuring up the marks made by m, m' the exact velocity of the shot can be calculated at all points of its course. The slide L is fixed parallel to F and the cylinder K by the brackets G, H. Y is a screw for drawing back the wheelwork M, and J a stop to regulate the distance between M and B. The depression of the lever h raises the two springs s, which act as levers, and bring the diamond points m, m' down upon the paper. When an experiment is to be made, care is taken to see that the two currents are complete. The fly-wheel A is set in motion by hand, so as to make about three revolutions in two seconds. The markers m, m' are brought down upon the paper, and after one or two beats of the clock the signal to fire is given, so that
in about five seconds the experiment is completed, and the instrument is ready for another. 22. Fig. 4 gives a view of one of the markers, showing the way in which it is moved. The depression of the lever h (Fig. 3). raises p, and thus the lever s, which is formed of watch-spring wire, brings down m' to the paper, and keeps it gently in contact. This motion takes place within the circle k, about an axis CD. a' is an arm connected with the electro-magnet. When the magnetism in E' is destroyed, a' begins to move away, and when it has moved a short distance it strikes the lever b' a sudden blow which carries it as far as the hole in the stop c' will allow it to move. The lever b' is rigidly connected with the circle k, which is capable of moving about an axis AB. This motion is communicated to m', which describes a very short arc of a circle about a point in AB. The arrangement is so made that when either of the markers m, m' is making a record, it has a motion which may be resolved partly in direction of the motion of the paper under it, and partly in a direction perpendicular to this. When these adjustments are properly made the records to be read off will be nearly at right angles to the spirals. Fig. 4. The pendulum of a half-seconds clock strikes once each doublebeat a very light spring, and so interrupts the galvanic current in E' once a second. The following diagram, Fig. 5, shows four screen records in the upper line, and one second record in the lower line, when the markers are properly adjusted. #### Fig. 5. ^{23.} Figs. 6 and 7 give the details of the screens. Fig. 6 represents a piece of board 1 inch thick and 6 or 7 inches wide, and rather longer than the width of the screen to be formed. Transverse grooves are cut at equal distances, something less than the diameter of the shot, as shown in the diagram. Staples Fig. 6. of hard brass spring-wire (No. 14 or 15), are fixed with their prongs in the continuation of the grooves. Pieces of sheet copper A are provided, having two elliptical holes, the distance of whose centres equals the distance of the grooves. The pieces of copper A are used to connect each wire staple, as C, with its neighbour on each side. Thus, Fig. 7 a, c, e, g, &c., represent these copper connections put in their places and holding down the wire springs, which, when free, are in contact with the tops of the holes; but, when properly weighted, they rest on the lower edge of the holes. Thus the copper c forms a connexion between the staples b and d; the copper e joins d and f, and so on. A galvanic current will therefore take the following course, whether the springs be weighted or unweighted: copper a, brass b, copper c, brass d, copper e, brass f, copper g, &c. The current will only be interrupted when one or more threads have been cut and the corresponding spring is flying from the bottom to the top of its hole. About $\frac{1}{50}$ th of a second is required for the complete registration of such an interruption, the spring traversing about half an inch. The shelf B is placed for the weights to rest against, partly to prevent them from being carried forward by the shot, but chiefly to prevent the untwisting of the threads which support the weights. The weights used were about 2 lbs. each, and the strength of the sewing cotton for supporting them was equal to a stress of about 3 lbs., which was sufficient to withstand a tolerably strong wind. As the weights were equal the threads were kept equally stretched. 24. The arrangement of the screens for an experiment is shown in Fig. 8. The wires for conveying the galvanic current are, like the common telegraph wire, carried on posts. abc is a continuous piece of wire; but there are interruptions between e and h, between i and l, between m and p, &c., in order to make the galvanic current circulate through the screens. The course of the galvanic current is a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t. The ends a, t, are connected with the instrument and battery. The shot, being fired through the screens, in passing cuts one or more threads at each screen, so that corresponding to the instant at which the shot passes each screen there is an interruption of the galvanic current, and a simultaneous record on the paper cylinder. 25. When the cylinder is filled with spirals, that is after five or six rounds, it is transferred to the instrument, Fig. 9, where a is a circle divided into 300 equal parts, and the division is carried to 3000 by the help of a vernier. A small T-square, having a fine edge at b, moves along a brass straight-edge L, adjusted so as to be parallel to the axis of the cylinder. The mark b is carefully placed opposite each record on the paper by means of a tangent screw (not shown in the figure), and the vernier is read. It would have been more convenient if the circle had been divided into 500 rather than 300 equal parts. Fig. 9. The clock goes on breaking the galvanic circuit every swing of the pendulum, whether the marker m' be in contact with the paper or not—consequently, whatever be the loss of time in the action of the marker, we may fairly suppose it to be constant. But if the current had been circulating through the screens for several minutes, or even seconds, without interruption before the shot was fired, the records at the first and the following screens would not have been made under the *same* conditions. - 26. To guard against any error from this source, an ordinary self-acting spring contact breaker was introduced into the screen circuit. The raising of a spring lever interrupts the main current of galvanism through the screens. The insertion of a pin to keep up the lever, re-opens a passage for the screen galvanic current through the contact breaker; this may be made also to ring a bell in the instrument room, to give notice that all things are ready for the experiment. The fly-wheel is then put in motion, the signal to fire is given; the pulling of the lanyard withdraws the pin and so restores the main current, and then fires the gun. - 27. The construction of the chronograph was commenced in August, 1864; it was ready for trial in June, 1865. It received its first partial trial before the Committee on Gun Cotton in July 1865, in conjunction with Major Navez's Electro Ballistic Pendulum. The instruments gave a nearly constant difference of 20 f.s. in velocities of about 1500 f.s. The chronograph remained at the proof butts from July to November, 1865, when it was taken down to Plumstead Marshes and placed in a splinter- proof, where it remained about a fortnight. Its powers to withstand damp and dust were well tested in this manner. - 28. In carrying out a series of experiments it is advisable to provide convenient means for interrupting the clock galvanic current when the markers are raised. It is also desirable to have the means of diverting the screen galvanic current from its electromagnet to another adapted to ring a small bell in the instrument room, for then it is known what is going on on the range, if the circuit be not broken. These three operations of raising the markers, breaking the clock current and diverting the screen current might be effected by one motion, if the stage e'd'de (Fig. 3) between the fixed electro-magnets E, E' was made to rotate about its back edge dd'. Then, when preparing to fire a round it would only be necessary to press down the platform d'e to make everything ready for a new experiment. - 29. As it is quite impossible to drive the cylinder which receives the records with a sufficiently uniform and known angular velocity, it was decided to place the axis in a vertical position in the manner shown in Fig. 3, and spin the instrument by hand. When the records of a successful experiment are read off, they show slight irregularities, which must be corrected so as to make the readings yield regular differences. The scale of time found in this way is a decreasing scale. By interpolation the places are found where the records for every tenth of a second would fall. On comparing the screen records, it is now possible to read off the time each screen was passed to the tenth of a second by the scale of time, and any remaining fraction of one-tenth of a second is found by proportional parts, on the supposition that the angular velocity of the cylinder is uniform for each tenth of a second. At first the time of passing each screen was expressed to four places of decimals of a second, which seemed quite sufficient for all practical purposes, but to secure satisfactory results it was found necessary to go to five places of decimals of a second. When this had been done, further extremely small corrections were required to make the calculated times of passing the screens difference properly. I will give round 148; hollow ogival headed shot, d = 4.92 in.; w = 23.84 lbs. as it was printed in the Report, Feb. 18691; carried to four places of decimals, and also in the form in which it appears after the recent revision. The following ¹ Reports, &c. 1865-1870, p. 56. Clock statement gives the original readings and the corrections applied to them. Screens Readings corn, cord, readings Δ^1 Δ^2 Readings corn, cord, readings Δ^1 Δ^2 30. By interpolation the clock readings were found for every tenth of a second. By the help of proportional parts the screen readings were converted into seconds, as follows I. $$(1868)^1$$ II. (1889) Screen t Δt $\Delta^2 t$ Screen t Δt $\Delta^2 t$ $\Delta^3 t$ I $4''.4492 + 1088$ 2 $4.5580 + 1113 + 25$ 3 $4.6693 + 11136 + 23$ 4 $4.7829 + 1160 + 24$ 5 $4.8989 + 1160 + 25$ 6 $5.0174 + 1208 + 23$ 7 $5.1382 + 1233 + 25$ 8 $5.2615 + 1233 + 25$ 9 $5.3873 + 1282 + 24$ 10 5.5155 31. We must now show how the velocity v and the retarding force f of the air upon the shot may be deduced from the results of experiments so expressed. By Finite differences we have or $$\begin{split} \Delta t_s &= t_{s+l} -
t_s\,,\\ t_{s+l} &= t_s + \Delta t_s\,,\\ t_{s+2l} &= t_{s+l} + \Delta t_{s+l} = t_s + 2\Delta t_s + \Delta^2 t_s\,,\\ t_{s+3l} &= t_s + 3\Delta t_s + 3\Delta^2 t_s + \Delta^3 t_s\,,\\ &\& \text{c.} &\& \text{c.} \end{split}$$ ¹ Ib. p. 30. And generally $$\begin{split} t_{s+nl} &= t_s + n\Delta t_s + \frac{n \cdot \overline{n-1}}{1 \cdot 2} \; \Delta^2 t_s + \frac{n \cdot \overline{n-1} \cdot \overline{n-2}}{1 \cdot 2 \cdot 3} \; \Delta^3 t_s + \&c. \\ &= t_s + n \; \{ \Delta t_s - \frac{1}{2} \Delta^2 t_s + \frac{1}{3} \Delta^3 t_s - \frac{1}{4} \Delta^4 t_s + \&c. \} \\ &+ n^2 \; \{ \frac{1}{2} \Delta^2 t_s - \frac{1}{2} \Delta^3 t_s + \frac{11}{24} \Delta^4 t_s - \frac{10}{24} \Delta^5 t_s + \frac{137}{360} \Delta^6 t_s + \&c. \} + \&c. \} \; + \&c. \end{split}$$ Expanding t_{s+ni} by Taylor's Theorem, we have $$t_{s+nt} = t_s + \frac{dt_s}{ds} \frac{nl}{1} + \frac{d^2t_s}{ds^2} \frac{n^2l^2}{1 \cdot 2} + \frac{d^3t_s}{ds^3} \frac{n^3l^3}{1 \cdot 2 \cdot 3} + \&c.,$$ and equating the two coefficients of n and of n^2 in the two expansions of t_{s+n} , we have $$\begin{split} l\frac{dt_s}{ds} &= \Delta t_s - \tfrac{1}{2}\Delta^2 t_s + \tfrac{1}{3}\Delta^3 t_s - \tfrac{1}{4}\Delta^4 t_s + \tfrac{1}{5}\Delta^5 t_s - \&c., \\ \text{and} \qquad l^2\frac{d^2t_s}{ds^2} &= \Delta^2 t_s - \Delta^3 t_s + \tfrac{11}{12}\Delta^4 t_s - \tfrac{10}{12}\Delta^5 t_s + \tfrac{137}{180}\Delta^6 t_s + \&c. \\ &= (\Delta^2 t_{s-t} + \Delta^3 t_{s-t}) - (\Delta^3 t_{s-t} + \Delta^4 t_{s-t}) + \tfrac{11}{12}(\Delta^4 t_{s-t} + \Delta^5 t_{s-t}) \\ &- \tfrac{10}{12}(\Delta^5 t_{s-t} + \Delta^6 t_{s-t}) + \tfrac{137}{180}(\Delta^6 t_{s-t} + \Delta^7 t_{s-t}) - \&c. \\ &= \Delta^2 t_{s-t} - \tfrac{1}{12}\Delta^4 t_{s-t} + \tfrac{1}{12}\Delta^5 t_{s-t} - \tfrac{13}{180}\Delta^6 t_{s-t} - \&c. \\ &= \Delta^2 t_{s-t} - \tfrac{1}{12}\Delta^4 t_{s-t} + \tfrac{1}{100}\Delta^6 t_{s-2} - \&c. \end{split}$$ 32. Also by expanding t_{i-n} in the same way by Finite Differences and by Taylor's Theorem, it may be shown that $$\begin{split} l\frac{dt_s}{ds} &= \Delta t_{s-l} + \frac{1}{2}\Delta^2 t_{s-2l} + \frac{1}{3}\Delta^3 t_{s-3l} + \frac{1}{4}\Delta^4 t_{s-4l} + \&c. \\ l^2\frac{d^2t_s}{ds^2} &= \Delta^2 t_{s-2l} + \Delta^3 t_{s-3l} + \frac{1}{12}\Delta^4 t_{s-4l} + \frac{5}{6}\Delta^5 t_{s-5l} + \&c. \end{split}$$ and 33. Let s denote the distance from some fixed point to a screen, l the distance between successive screens, and t_{s-2} , t_{s-l} , t_s , t_{s+l} , t_{s+2} ... the observed times of the shot passing successive screens. Then if v_s denote the velocity of the shot, and f_s the retarding force of the air upon the shot at the time t_s , $$\begin{aligned} v_s &= \frac{ds}{dt_s} = \frac{l}{\Delta t_s - \frac{1}{2}\Delta^2 t_s + \frac{1}{3}\Delta^3 t_s - \frac{1}{4}\Delta^4 t_s + \frac{1}{5}\Delta^5 t_s - \&c.}, \\ \text{also} &= \frac{l}{\Delta t_{s-t} + \frac{1}{2}\Delta^2 t_{s-2t} + \frac{1}{3}\Delta^3 t_{s-3t} + \frac{1}{4}\Delta^4 t_{s-4t} + \frac{1}{5}\Delta^5 t_{s-5t} + \&c.}, \end{aligned}$$ and $$\begin{split} f_s &= \frac{d^2s}{dt_s^2} = -\frac{d^2t_s}{ds^2} \left(\frac{ds}{dt_s}\right)^s \\ &= -\frac{v_s^3}{l^2} \left(\Delta^2t_{s-l} - \frac{1}{12}\Delta^4t_{s-2} + \frac{1}{10}\Delta^6t_{s-3l} - \&c.\right). \end{split}$$ The following scheme explains how these differences are to be taken 34. Let v_5 denote the velocity of the shot at the 5th screen, f_5 the retarding force at the same point, and l=150 feet, in round 148, then we have $$\begin{split} v_{5} &= \frac{150}{\Delta t_{s} - \frac{1}{2}\Delta^{2}t_{s} + \frac{1}{3}\Delta^{3}t_{s} - \&c.} \\ &= \frac{150}{\cdot 11844 - \frac{1}{2}\cdot 00242 + \frac{1}{3}\cdot 00002 - \&c.} = 1279.5 \text{ f. s.} \\ \text{and} \qquad f_{5} &= -\frac{v_{5}^{3}}{l^{2}}\left(\Delta^{2}t_{s-l} - \frac{1}{1^{2}}\Delta^{4}t_{s-2} + \&c.\right) \\ &= -\frac{v_{5}^{3}}{(150)^{2}}\left(\cdot 00241\right) = -2bv_{5}^{3}. \end{split}$$ But when this experiment was made the weight of a cubic foot of air was 53455 grains, and the standard weight 53422 grains. Hence $$K_{r_5} = 2b (1000)^3 \frac{w}{d^2} \frac{534.22}{534.55}$$ = $\frac{.00241}{(150)^2} (1000)^3 \frac{23.84}{(4.92)^2} \frac{534.22}{534.55} = 105.4$. In the same way the corresponding values of v and K_* may be found at each screen, as follows | Screen | v | Δv | $\Delta^{s}v$ | K_v | 7 | |--------------------------------------|---|--|--|--|--| | 2
3
4
5
6
7
8
9 | f. s.
1363'0
1334'1
1306'3
1279'5
1253'7
1228'8
1204'6
1181'2 | - 27.8
- 26.8
- 25.8
- 24.9
- 24.2 | + 1·1
+ 1·0
+ 1·0
+ 0·9
+ 0·7
+ 0·8 | 104·5
104·5
105·0
105·4
105·9
106·7
107·6
108·5 | 0
+ · 5
+ · 4
+ · 5
+ · 9
+ · 9 | 35. Thus round 148 gives the following values of K_{\star} | v | K_v | 7' | K_v | v | K_v | |---|---|--|--|---|--| | f. s.
1360
1350
1340
1330
1320
1310 | 104.5 0
104.5 0
104.5 + 1
104.6 + 1
104.7 + 1
104.9 + .2 | f.s.
1300
1290
1280
1270
1260
1250 | 105·1 + ·1
105·2 + ·2
105·6 + ·2
105·8 + ·2
106·0 + ·3 | f. s.
1240
1230
1220
1210
1200
1190 | 106·3 + ·4
106·7 + ·3
107·0 + ·4
107·8 + ·4
108·2 + ·4 | Each of these values of K_* will be found under its proper velocity v in the Summary. - 36. The Chronograph when tried with 10 equidistant screens in November and December 1865, in Plumstead Marshes, proved successful. Eighteen rounds in all were fired through ten screens 120 feet apart from the Armstrong 12 Pr. B. L. gun. The diameter of the shot was 3 inches, and its weight about 12 lbs., but no particular care was taken to weigh the shot, as the only object of the experiment was simply to test the working of the instrument. Of the eighteen rounds, two were fired by mistake, while the cylinder was stationary. One shot carried away a screen, and another cut the conducting wire at the second screen. But I was able to give a good account of eleven out of the eighteen rounds fired to test the Chronograph. - 37. The following is a statement of the results of this trial experiment, where d denotes the diameter in inches and w the weight of the shot in pounds, and l the distance in feet between successive screens. | Report dated | Deceml | oer 18, | 1865. | |------------------|----------|---------|---------| | d = 3 in., w = | 12 lbs., | l = 120 | 0 feet. | | Round | Screen | Screen 2. | Screen 3. | Screen 4. | Screen 5. | Screen 6. | Screen 7. | Screen 8. | Screen 9. | Screen 10. | |-------------------|-------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------------| | I 2 5 | 0.0 | 10640
10450
10461 | °21409
°20981
°21025 | '32297
'31609
'31694 | '43293
'42349
'42472 | ·54386
·53215
·53365 | ·65564
·64220
·64381 | ·76816
·75376
·75530 | ·88131
·86694
·86826 | ·99498
·98184 | | 7
10
11 | 0.0
0.0
0.0 | ·10335
·10540
·10467 | '20872
'21164
'21096 | ·31567
·31891
·31877 | '42386
'42732
'42800 | .53305
.53694
.53855 | ·64310
·64786
·65032 | '75398
'76008
'76321 | ·86577
·87360 | ·97866
·98842
— | | 13
15
16 | 0.0 | ·10505
·10420
·10495 | '21110
'21010
'21120 | .31830
.31820
.31875 | ·42670
·42620
·42760 | ·53630
·53600
·53775 | ·64710
·64670
·64917 | 75910
75810
76182 | ·87228

·87567 | ·98660
—
·99072 | | 17
18
Means | 0.0 | 10506
10572 | ·21147
·21239 | ·31924
·32004 | .42838
.42872 | .53890
.53850 | .65080
.64947
.64783 | .76409
.76173 | ·87877
·87538 | 99484
990 52
-08832 | | Means | 0.0 | 10490 | '21107 | 31847 | '42708 | ·53688 | ·64783 | 75994 | 87311 | .98832 | 38. Thus it appears that the average of the mean times of passing each screen was | Screen | dist.
feet | t | Δt | $\Delta^2 t$ | |--------------------------------------|---|--|--|--| | 1
2
3
4
5
6
7
8 | 0
120
240
360
480
600
720
840
960 | o":0000
:1049
:2111
:3185
:4271
:5369
:6478
:7599
:8731
:9883 | 1049
1062
1074
1086
1098
1109
1121
1132 | 13
12
12
12
11
12
11
20 | | | | 2 - 3 | | | As $\Delta^2 t$ was here found to be nearly constant it was assumed that the space s described in the time t were connected by the equation $$t=as+bs^2$$, which gives $v=\dfrac{ds}{dt}=\dfrac{1}{a+2bs}$, and $$f=\dfrac{d^2s}{dt^2}=-\dfrac{2bv}{(a+2bs)^2}=-2bv^3,$$ or the resistance appeared to vary approximately as the cube of the velocity for this short range. #### CHAPTER III. #### EXPERIMENTS WITH THE CHRONOGRAPH. 39. In the next place, some experiments were authorised to be made at Shoeburyness with elongated projectiles
having hemispherical, hemispheroidal, and ogival heads struck with radii of one and of two diameters of the shot. These experiments were carried out on Sept. 25, 26, and 27, 1866. The firing was often interrupted by passing ships, and on the 28th not a single experimental round could be safely fired. As only 44, out of the 70 shots provided were fired, and there was never an opportunity to complete the experiment, the results were not quite so satisfactory as they should have been. But all the hollow ogival headed shot of one and of two diameters were fired alternately, and this constitutes one of the best experiments of the kind ever performed. In order to avoid any confusion in numbering the rounds between the parties on the range and in the observing room it was usual to note at both places the exact time of firing every round. This arrangement enables me to state that the rounds 23-31 were fired in 44 min. 50 sec., and these nine rounds gave 89 good records. The following is a statement of the particulars of each round. The results of these experiments were applied to calculate tables of remaining velocities for each form of shot used. The screens were 150 feet apart. ¹ Reports, &c. 1865—1870, p. 10, and Transactions of the Royal Society, 1868, p. 417. # 40. Report dated Oct. 23, 1866. | No. of
Round | | ı Sc. | 2 Screen. | 3 Screen. | 4 Screen. | 5 Screen. | 6 Screen. | 7 Screen. | 8 Screen. | 9 Screen. | 10 Screen. | |-----------------|--------|-------|--------------|-----------|----------------|------------------|------------------|------------------|------------------|------------------|------------| | | lbs. | | | Hemis | nherica | l-heade | ed Proje | ectiles | | | | | | | lo".o | 1 ** 0 6 0 0 | | | | | | 1 *0000# | 1 **06006 | 1 | | 5 | 39.344 | 0.0 | 12639 | '25467 | 38481 | ·51678 | 65055 | '78609
'26810 | '92337
'40440 | 1.06236 | 1.50303 | | 13 | 39.330 | 0.0 | 12669 | .25487 | .38456 | .51578 | 64855 | .78289 | 91882 | 1.05636 | 1.19223 | | 34 | 39.340 | 0.0 | 12670 | 25500 | 38490 | .51643 | 64962 | .78450 | .92110 | 1.05945 | 1.19928 | | 43 | 39:340 | 0.0 | 12596 | .5361 | 38297 | 51406 | .64690 | 78151 | .91791 | 1.05612 | 1.00616 | | | | | | Hemis | pheroid | al-head | ed Proj | ectiles. | | | | | 2 | 38.72 | 0.0 | 12662 | '25444 | 38352 | .51392 | 64570 | 77892 | 91364 | | * | | 7 | 38.69 | 0.0 | 12721 | *25582 | '38583 | .21724 | 65005 | .78426 | 191987 | 1.05688 | * | | 35 | 38.69 | 0.0 | 12677 | 25482 | .38412 | .21478 | .64673 | .78002 | 91467 | 1.02020 | 1.18813 | | 40 | 38.69 | 0.0 | 12640 | '25416 | 38329 | .51380 | 64570 | '77900 | 91370 | 1.04980 | 1.18730 | | | | | Solid | Ogival- | headed | Projec | tiles (or | ne diam | eter). | | | | 3
36 | 39.26 | 0.0 | 12910 | *25997 | | .22702 | | .80112 | | * | | | | 39.26 | 0.0 | 12642 | *25430 | *38360 | '51430 | .64640 | '77990 | ·91478 | 1.02100 | * | | 41 | 39.56 | 0.0 | 12605 | *25340 | .38210 | .21220 | 64367 | '77647 | 91057 | 1.04597 | 1.18267 | | | | | Solid (| Ogival-l | ncaded | - | iles (tw | | • | | | | 4 | 38.26 | 0.0 | 12655 | •25461 | | .21210 | | ·78119 | 91626 | 1.05264 | 1.19030 | | 37 | 38.48 | 0.0 | 12756 | 25652 | •38683 | .21844 | .65130 | * | * | * | * | | 42 | 38.47 | 0.0 | 12302 | .24768 | 37397 | .20188 | 63140 | '76252 | .89523 | 1.02922 | 1.10232 | | | | | Hollow | Ogiva | l-heade | d Proje | ctiles (d | | neter). | | | | 14 | 21.78 | 0,0 | .10010 | 20276 | '30795 | 41565 | 52585 | 63855 | 75374 | .87140 | '99150 | | 16 | 21.81 | 0,0 | 109850 | 19926 | '30247 | 40824 | .21662 | 62762 | '74124 | 85748 | 197634 | | 18 | 21.81 | 0.0 | .09930 | 20114 | .30225 | 41244 | .2189 | 63386 | . 74834 | .86532 | 98479 | | 20 | 21.83 | 0.0 | 109900 | 20072 | .30502 | '41190 | 52120 | 63290 | *74699 | .86346 | 98230 | | 22 | 21.81 | 0.0 | 109892 | 20019 | *30382 | '40983 | 51825 | 62912 | 74248 | ·85837
·86708 | 97683 | | 24
26 | 21.81 | 0.0 | 09953 | °20157 | 30613
30687 | '41322
'41418 | '52285
'52395 | ·63503 | 74977
75075 | ·86 772 | 98703 | | 28 | 21.83 | 0.0 | ,00000 | 20048 | 30444 | 41088 | 51981 | 63123 | 74514 | .86154 | 98043 | | 30 | 21.81 | 0.0 | 109947 | 20147 | 30600 | 41306 | 52265 | 63477 | 74942 | 86660 | 98631 | | 32 | 21.81 | 0.0 | 10379 | 20989 | .31833 | 42915 | 54240 | | | .89738 | 1'02105 | | | | | Hollow | Ogival | -headed | Projec | ctiles (tv | vo dian | neters). | | | | 15 | 21.02 | 0.0 | '09934 | 20123 | 30562 | 41247 | 52175 | 63344 | 74753 | *86402 | * | | 19 | 21.94 | 0.0 | 09829 | .19913 | '30257 | 40866 | 51745 | 62899 | * | * | * | | 21 | 21.89 | 0.0 | 109951 | '20143 | 30575 | 41246 | 52155 | ·63301 | .74683 | ·86300 | *98151 | | 23 | 21.89 | 0.0 | 109857 | 19949 | 30277 | 40842 | ·51645 | 62687 | 73969 | 85492 | * | | 25 | 21.97 | 0.0 | '09921 | 20072 | 30453 | 41064 | .21902 | 62976 | 74277 | ·858o8 | 97569 | | 27 | 21.95 | 0.0 | .09906 | 20045 | .30416 | 41018 | 51850 | 62911 | 74201 | 85720 | *97468 | | 29 | 21.97 | 0.0 | 09890 | 20025 | 30401 | 41014 | .21861 | 62939 | 74246 | ·85780 | 97539 | | 3! | 21.91 | 0.0 | 09928 | 20075 | 30448 | 41053 | .21895 | 62978 | 74305 | 85878 | 97698 | | 33 | 21.94 | 0.0 | 10171 | 20569 | '31200 | 42070 | .23182 | 64550 | 76169 | *88045 | * | | | | | | | | | | ! | | | | #### Report dated Oct. 23, 1886. #### 41. Hemispherical Head. | | v= | 1160 f. s. | 1150 f. s. | 1140 f. s. | 1130 f. s. | 1120 f. s. | 1110 f.s. | 1100 f.s. | |----------------|--|----------------|-------------------------|----------------|----------------|-------------------------|----------------|-----------| | Round I | $K_v = K_v $ | | 145.8 | 144.5 | 142.7 | 141.5 | 139.5 | 137.9 | | 13
34
43 | $K_v = K_v $ | 120.0
124.0 | 121·2
128·6
137·0 | 130.3
138.0 | 131.9
131.9 | 124.7
133.6
140.0 | 135.4
131.1 | 127.1 | | Mean | $K_v =$ | | 133.5 | 133.7 | 134.3 | 134.9 | 132.1 | 130.5 | #### 42. Hemispheroidal Head. | • | v= | 1160 f.s. | 1150 f.s. | 1140 f.s. | 1130 f.s. | 1120 f.s. | |---------|-------------|-----------|-----------|-----------|-----------|-----------| | | | | | | | | | | | | | | | | | Round 2 | $K_v =$ | 101.4 | 105.3 | 109'4 | 113.1 | - | | 7 | $K_v =$ | 100.1 | 100.1 | 100.1 | 100.1 | - | | 35 | $K_{\nu} =$ | 100.5 | 101.6 | 103.0 | 104.3 | 105.7 | | 40 | $K_v =$ | 106.9 | 107.6 | 108.3 | 108.8 | 108.8 | | | 1 | | | | | | | Mean | $K_v =$ | 104'4 | 105.9 | 107.5 | 108.8 | 107.3 | | | | | | | | | # 43. Ogival Head (one diameter) Solid. | | z'= | 1160 f.s. | 1150 f.s. | 1140 f. s. | 1130 f.s. | 1120 f.s. | 1110 f.s. | |------
--|-----------|----------------|-------------------------|-----------|-----------|---------------------| | | $K_v = K_v $ | 112.1 | 100.8
111.3 | 141.0
111.3
107.2 | 141.0 | 141.0 | 141.0
*
103.6 | | Mean | $K_{v}=$ | 111.8 | 110.6 | 119.8 | 110.0 | 118.3 | 122.3 | # 44. Ogival Head (two diameters) Solid. | ĺ | | v= | 1160 f.s. | 1150 f.s. | 1140 f.s. | 1130 f.s. | |---|---------|----------|-----------|-----------|-----------|-----------| | Į | | | | | | | | 1 | Round 4 | $K_{v}=$ | 113.0 | 110.4 | 108.7 | 106.7 | | 1 | 37 | $K_v =$ | 105.5 | 102.0 | 98.6 | * | | 1 | 42 | $K_v =$ | 124.1 | 123.6 | 123.0 | 122.2 | | 1 | Mean | $K_{2}=$ | 114.1 | 112.1 | 110.1 | 114.6 | | 1 | | | | | | | #### Report dated Oct. 23, 1886. #### 45. Ogival Head (one diameter) Hollow. | τ′= | 1460 f. s. | 1440 f.s. | 1420 f.s. | 1400 f.s. | 1380 f.s. | 1360 f.s. | 1340 f.s. | 1320 f.s. | 1300 f.s. | |-------------------------|--|--|--|---|---|---|---|---|---| | | | | | | | | | | | | $K_v =$ | * | 110.0 | 110.4 | 110.0 | 109.7 | 109.7 | 109.6 | 109.3 | 108.7 | | $K_v =$ | 109.2 | 111.0 | 113.2 | 114.7 | 115.0 | 112.1 | 112.1 | 112.1 | 112.1 | | $K_v =$ | * | 111.6 | 111.6 | 111.3 | 111.1 | 110.8 | 110.2 | 110.5 | 100.0 | | $K_{n}=$ | * | 113.0 | 110.8 | 108.0 | 107:3 | 105.2 | 105.3 | 105.0 | 104.7 | | | 103.8 | 104.4 | 105.0 | 105.9 | 107.0 | 108.1 | 100.3 | 110.2 | 111.7 | | $K_v =$ | * | 111.0 | 111.5 | 111.2 | 111.8 | 112.1 | 112.3 | 112.6 | 112.9 | | $K_v =$ | * | 110.4 | 109.6 | 108.8 | 108.0 | 107.1 | 106.3 | 105.3 | 104.4 | | $K_v =$ | 108.9 | 108.9 | 100.0 | 109.3 | 109.4 | 109.4 | 109.4 | 109.4 | 109.4 | | $K_v =$ | 111.0 | 111.0 | 111.0 | 111.0 | 111.0 | 111.0 | 111.0 | 111.0 | 111.0 | | <i>Κ</i> _ν = | * | * | * | 102.2 | 103.6 | 104.9 | 106.4 | 108.3 | 110.5 | | $K_v =$ | 108.3 | 110.3 | 110.5 | 109.4 | 109.4 | 109.4 | 109.2 | 109.7 | 109.8 | | | $K_{v}^{-} = K_{v}^{-} K_{v$ | $K'_{v} = * K'_{v} = 109.2$ $K'_{v} = * K'_{v} = 108.9$ $K'_{v} = * * * * * * * * * * * * * * * * * * $ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | #### 46. Ogival Head (two diameters) Hollow. | | v= | 1460 f.s. | 1440 f. s. | 1420 f. s. | 1400 f. s. | 1380 f.s. | 1360 f.s. | 1340 f.s. | 1320 f.s. | |-------|-------------------------|-----------|------------|------------|------------|-----------|-----------|-----------|-----------| | Round | | | | | | | | | | | 15 | $K_{v} =$ | * | 109.5 | 108.2 | 107.7 | 106.9 | 106.4 | 106.0 | * | | 21 | $K_v =$ | * | 105.7 | 105.4 | 105.1 | 104.9 | 104.6 | 104.3 | 104.0 | | 23 | $K_v =$ | 104.5 | 104.2 | 104.7 | 105.0 | 105.3 | 105.6 | 105.9 | * | | 25 | <i>Κ</i> _v = | 101.8 | 101.8 | 101.8 | 101.8 | 101.8 | 101.8 | 101.8 | 101.8 | | 27 | $K_v =$ | 102.6 | 102.3 | 102.0 | 101.2 | 101.4 | 101.3 | * | * | | 29 | $ K_v $ | 106.2 | 105.2 | 104.2 | 103.4 | 102.8 | 102.0 | 101.4 | 100.4 | | 31 | λ' _v = | 99.9 | 101.6 | 103.1 | 104.2 | 105.7 | 106.4 | 107.7 | 108.3 | | 33 | $K_v =$ | * | * | 103.6 | 105.2 | 107.0 | 108.7 | 110.1 | 111.4 | | - 30 | | | | | | | | | | | Mean | $K_v = $ | 103.0 | 104.4 | 104.5 | 104.3 | 104.2 | 104.6 | 105.3 | 105.5 | | 1 | - 1 | | | | | | | | | 47. Afterwards an extended series of experiments was authorised to be made at Shoeburyness by the use of my chronograph, which were carried out in 1867, 68. The M. L. guns employed were 3, 5, 7 and 9 inches in calibre; and the projectiles were 2.92, 4.92, 6.92 and 8.92 inches in diameter, their heads being all struck with a radius of one diameter and a half. Their lengths were generally two and a half times the calibres of the guns from which they were fired. Both hollow and solid or cored shot were provided for each gun. The charge of powder was varied in order to obtain as great a variation in the velocity of the shot as possible. The maximum velocity of 1700 f. s. was at that time considered ample for all practical purposes. The firing was continued till five good rounds were obtained with each charge. The 3, 7 and 9-inch guns were service guns, and to complete the series a bronze gun was bored out to 5 inches and rifled, but it only gave a few good rounds with low charges before it failed. Afterwards a condemned Armstrong B. L. gun was converted into a 5-inch M. L. rifled gun. This imparted a remarkable degree of steadiness to the projectiles, as was shown by the lowness of its coefficients of resistance, and by the great number of records it gave for the rounds fired. 48. Further experiments were carried out with elongated projectiles, in 1878, 9 and again in 1880. The particulars of these three sets of experiments made with ogival-headed shot are here given together, in order to combine all the values of K obtained for each velocity. Rounds 1—240 were fired on thirteen days from Oct. 7, 1867 to May 21, 1868, which were reported July 23, 1868¹ (84/B/1941). Rounds 412—482 were fired on fourteen days from Sept. 13, 1878 to March 12, 1879 which were reported July 8, 1879^2 (84/B/2853); and rounds 483—502 on three days March 8—10, 1880, which were reported Aug. 13, 1880^3 (84/B/2909). 49. Experiments were also carried out by firing both hollow and solid spherical projectiles from the 3, 5, 7 and 9-inch guns on twelve days from May 6 to Nov. 5, 1868. The Report of these experiments was dated, Feb. 13, 1869. The screens were 150 feet
apart, except in the few cases noted. 50. The coefficients of resistance were originally reduced for a density of the air such that one cubic foot of air weighed 530.6 grains. But since 1879 the standard density of air has been taken to be that which corresponds to a temperature of 62° Fah., and a height of 30 inches of the Barometer, which give the weight of a cubic foot of dry air 534.22 grains. All the English coefficients have now been adapted to this density. 51. As these experiments are now concluded I have carefully revised all the rounds already published, expressing time to *five* places of decimals of a second—not because time can be really ¹ Reports, &c. 1865—1870, pp. 18—54, and pp. 123—152. ² Report, &c., Part II., 1879. ³ Final Report, 1880. ⁴ Reports, &c. 1865—1870, pp. 55—122. measured with such extreme accuracy—but in order to obtain from each round consistent values of v and K_v . Thus the reader has placed before him the evidence for the values of K finally adopted. When each group of values of K for a given velocity consisted of numerous experimental determinations of K, I have endeavoured to include all irregular values of K as far as possible in taking the means. But in the few cases where I have felt obliged to exclude any experimental value of K, it has been marked (*). 52. In each case I have been careful to specify here not the date on which any experiment was made—but the date of the Report of my results to Government, which would always be found to be a day or two prior to the date of the official stamp affixed to all documents of this kind when they are received. As the dates of each round have already been given in published Reports, they need not be here repeated, for in all cases of question of priority, the date required is the day when the statement in its definite form left the hands of the experimenter. For so long as any experimenter's results remain in his own possession they are liable to be corrected or modified by him as circumstances may seem to require. With a view to afford the Secretary of State full and reliable information of the precise value of the results obtained, the Committee, who superintended the experiments with my chronograph, 1867, 8, suggested that their report should be "referred to "mathematicians of eminence, such as the Astronomer Royal, "Professor Adams, Director of the Cambridge Observatory, or "Professor Stokes, Secretary to the Royal Society¹." After considerable delay the referees sent in a most valuable report, in which they reviewed most of the recent chronoscopes and modes of conducting ballistic experiments. This report was printed² in full, but at the time no further notice was taken of it. Shortly afterwards I retired from Her Majesty's Service, but some years after this, being invited to lend my chronograph and complete my experiments, I readily agreed to do so. ¹ Reports, &c. 1870, p. 26. ² Ib. pp. 155-161, and Captain Ingalls's Ballistic Machines, p. 25. #### Report dated July 23, 1868. Times at which the Projectiles passed the Screens. ### 53. (1) 3-inch Gun. Solid Ogival-headed Projectiles. w = 12 lbs.; d = 2.92 inches. | No. of
Round | 1 Sc. | 2 Screen. | 3 Screen. | 4 Screen. | 5 Screen. | 6 Screen. | 7 Screen. | 8 Screen. | 9 Screen. | 10 Screen | |---|---|--|---|---|--|---|---|---|---|--| | 1 | o"•o | 12457 | '25125 | *38005 | .51098 | .64405 | •77927 | 91665 | 1.05620 | 1.19793 | | 2 | 0'0 | 12244 | •24659 | .37241 | .49986 | .62890 | 75949 | .89160 | 1.02221 | 1.19031 | | 3 | 0.0 | 12335 | *24866 | 37597 | .20230 | .63665 | ·77001 | 190536 | 1.04262 | 1.18130 | | 4 | 0.0 | 12244 | *24645 | 37208 | 49938 | .62841 | 75923 | .89190 | 1.02648 | * | | 5 | 0.0 | 12279 | 24702 | 37279 | .20012 | 62920 | * | * | * | * | | 49 | 0.0 | 14400 | *28909 | *43528 | .58258 | .73100 | ·88o54 | 1.03120 | 1.18298 | 1.33588 | | 5ó | 0.0 | 14570 | *29244 | *44032 | .58943 | .73986 | ·89168 | 1.04492 | 1'19972 | 1.32603 | | 52 | 0.0 | 14356 | .28847 | 43470 | •58221 | 73097 | ·88o95 | 1.03213 | 1.18449 | * | | 53 | 0.0 | 14657 | *29447 | *44375 | .59445 | 74660 | '90022 | 1.05532 | 1.51100 | * | | 54 | 0.0 | 14502 | 29124 | .43867 | .58733 | 73725 | ·88847 | 1.04104 | * | * | | 55 | 0.0 | 19273 | •38696 | .58267 | .77985 | •97850 | 1.17862 | * | * | * | | 55
56 | 0.0 | 19347 | *38832 | .58456 | .78221 | .98129 | * | * | * | * | | 57 | 0.0 | 19139 | •38406 | .57804 | .77336 | 97005 | 1.16814 | 1.36767 | 1.26868 | * | | 50 | 0.0 | 18913 | .37983 | .57213 | .76607 | .96168 | 1.12000 | * | * | * | | 59
60 | 0.0 | 19077 | 38294 | .57656 | .77167 | 96831 | 1.16621 | * | * | * | | 135 | 0.0 | 19074 | .38299 | .57677 | .77210 | * | * | * | * | * | | 137 | 0.0 | 18694 | | .56506 | .75632 | 94910 | 1.14344 | 1.33937 | 1.53692 | * | | 138 | 0.0 | 19341 | ·37528
·38840 | .58497 | .78312 | 98285 | 1.18419 | * 33734 | * 3309 | * | | | ! | | | 1 1 1 | D : | . * 7 | - 11 | 7 | | | | | ! | | Ogival- | headed | Projec | tiles. | w = 9 lb | os.; d = | 2 [.] 92 inc | hes. | | | ! | Hollow | Ogival- | | | <u> </u> | w = 9 lb | * | 2.92 inc | ehes. | | 5. | 4. :
 | Hollow | Ogival- | *35052 | Projec | tiles. | w = 9 lb | * | * | ehes. | | 6 7 | 4. | Hollow | Ogival- | ·35052 | ·47329
·44870 | ·59920
·56649 | * | s.; d = | 2.02 inc | ehes. | | 6 7 9 | 4. | Hollow -11395 -10900 -11318 | Ogival- | ·35052
·33325
·34680 | *47329
*44870
*46730 | ·59920
·56649
·59030 | ·68669
* | *
*80935 | * | ehes. | | 6 7 | 4. | Hollow -11395 -10900 -11318 -11193 | Ogival-
23077
22005
22877
22634 | *35052
*33325
*34680
*34325 | *47329
*44870
*46730
*46269 | ·59920
·56649
·59030
·58469 | * | * | *93450 | * * * * * * * * * * * * * * * * * * * | | 6 7 9 10 | 4. 0.0 0.0 0.0 0.0 0.0 | Hollow -11395 -10900 -11318 -11193 -10996 | Ogival-
-23077
-22005
-22877
-22634
-22243 | ·35052
·33325
·34680
·34325
·33744 | *47329
*44870
*46730
*46269
*45502 | ·59920
·56649
·59030
·58469
·57520 | **

******************************* | *
*80935 | *93450 | thes. | | 6 7 9 10 11 | 4.
0.0
0.0
0.0
0.0
0.0 | Hollow -11395 -10900 -11318 -11193 | Ogival-
-23077
-22005
-22877
-22634
-22243
-22339 | *35052
*33325
*34680
*34325
*33744
*33872 | *47329
*44870
*46730
*46269
*45502
*45657 | ·59920
·56649
·59030
·58469 | * '68669
* '70928
'69801
'70008 | *
*80935
*
*83649
* | *
*93450
*
*
* | * * * * * | | 6
7
9
10
11 | 4. 000 000 000 000 000 000 000 000 000 0 | Hollow -11395 -10900 -11318 -11193 -10996 -11051 | Ogival-
-23077
-22005
-22877
-22634
-22243 | ·35052
·33325
·34680
·34325
·33744 | *47329
*44870
*46730
*46269
*45502 | *59920
*56649
*59030
*58469
*57520
*57701 | ************************************** | * ·80935
* ·83649
* ·82580 | *93450 | *
*
*
*
* | | 6
7
9
10
11
12
124 | 4. | Hollow -11395 -10900 -11318 -11193 -10996 -11051 -11114 | Ogival- -23077 -22005 -22877 -22634 -22243 -22243 -22470 -21978 -26382 | ·35052
·33325
·34680
·34325
·33744
·33872
·34070 | '47329
'44870
'46730
'46269
'45502
'45657
'45916 | ·59920
·56649
·59030
·58469
·57520
·57701
·58009 | * ·68669
* ·70928
·69801
·70008
·70350 | * .80935
* .83649
* .82580
.82940 | * '93450
* *
*
*
*
* | *
*
*
*
* | | 6
7
9
10
11
12
124
126 | 4. | Hollow -11395 -10900 -11318 -11193 -10996 -11051 -11114 -10865 | Ogival- -23077 -22005 -22877 -22634 -22243 -22339 -22470 -21978 | *35052
*33325
*34680
*34325
*33744
*33872
*34070
*33337 | *47329
*44870
*46730
*46269
*45502
*45657
*45916
*44941 | ·59920
·56649
·59030
·58469
·57520
·57701
·58009
·56790 | * '68669
* '7028
'69801
'7008
'70350
'68885 | * .80935
* .83649
* .82580
.82940 | * '93450
* *
*
*
*
*
*
*
*
*
*
*
*
*
*
*
'95779
'93822 | *
*
*
*
* | | 6
7
9
10
11
12
124
126 | 4. 0'0 0'0 0'0 0'0 0'0 0'0 0'0 0'0 0'0 0' | Hollow -11395 -10900 -11318 -11193 -10996 -11051 -11114 -10865 | Ogival- -23077 -22005 -22877 -22634 -22243 -22243 -22470 -21978 -26382 | 35052
33325
34680
34325
33744
33872
34070 | *47329
*44870
*46730
*46269
*45502
*45657
*45916
*44941 | '59920
'56649
'59030
'58469
'57520
'57701
'58009
'56790
'67905
'68604
'68790 | * .68669
* .70928
.69801
.70008
.70350
.68885 | *
.80935
* .83649
* .82580
.82940
.81228
* .97430 | * '93450
* *
* *
'95779
'93822
* * | *
*
*
*
* | | 6
7
9
10
11
12
124
126 | 4. 000 000 000 000 000 000 000 000 000 0 | Hollow -11395 -10900 -11318 -11193 -10996 -11051 -11114 -10865 -13064 -13340 -13244 | Ogival23077 -22005 -22877 -22634 -22243 -22243 -22339 -22470 -21978 -26382 -26865 | '35052
'33325
'34680
'34325
'33744
'33872
'34070
'33337
'39959
'40581 | *47329
*44870
*46730
*46269
*45502
*45657
*45916
*44941
*53799
*54493
*54496 | '59920
'56649
'59030
'58469
'57520
'57701
'58009
'56790
'67905
'68604
'68790 | * .68669
* .70928
.69801
.70008
.70350
.68885 | * .80935
* .83649
* .82580
.82940
.81228 | * '93450
* *
* *
* '95779
'93822
* | * * * * * * * * * * * * * * * * * * * | | 6
7
9
10
11
12
124
126
13
14 | 4. | Hollow -11395 -10900 -11318 -11193 -10951 -11114 -10865 -13064 -13340 | Ogival- -23077 -22005 -22877 -22634 -22243 -22339 -22470 -21978 -26382 -26865 -26731 -26267 | '35052
'33325
'34680
'34325
'33744
'33872
'34070
'33337
'39959
'40581
'40478 | *47329
*44870
*46730
*46269
*45502
*45657
*45916
*44941
*53799
*54493 | ·59920
·56649
·59030
·58469
·57520
·57701
·58009
·56790
·67905
·68604
·68790
·67146 | * .68669
* .70928
.69801
.70008
.70350
.68885
.82279
.82916 | * .80935
* .83649
* .82580
.82940
.81228
* .97430 | * '93450
* *
* *
'95779
'93822
* * | * * * * * * * * * * * * * * * * * * * | | 6
7
9
10
11
12
124
126
13
14
15
16 | 4. | Hollow -11395 -10900 -11318 -11193 -10996 -11051 -11114 -10865 -13064 -13340 -13244 -13037 | Ogival- -23077 -22005 -22877 -22634 -22243 -22243 -22339 -22470 -21978 -26382 -26865 -26731 -26267 -25754 -26119 | 35052
33325
34680
34325
33744
33872
34070
33337
39959
40581
40478
39693
38970 | '47329
'44870
'46730
'46769
'455657
'45916
'44941
'53799
'54493
'54496
'53318
52416 | ·59920
·56649
·59030
·58469
·57520
·57701
·58009
·56790
·67905
·68604
·68790
·67146 | * ·68669
* ·70928
·69801
·7008
·70350
·68885
·82279
·82216
* ·81181 | * .80935
* .83649
* .82580
.82940
.81228
* .97430
* .95426 | * '93450
* *
* *
'95779
'93822
* * | * * * * * * * * * * * * * * * * * * * | | 6
7
9
10
11
12
124
126
13
14
15
16 | 4. | Hollow -11395 -10900 -11318 -11193 -10996 -11051 -11114 -10865 -13064 -13340 -13244 -13037 -12765 | Ogival- -23077 -22005 -22877 -22634 -22243 -22339 -22470 -21978 -26382 -26865 -26731 -26267 -25754 | 35052
33325
34680
34325
33744
33872
34070
33337
39959
40581
40478
39693 | *47329
*44870
*46730
*46269
*45502
*45657
*45916
*44941
*53799
*54493
*54496
*53318 | ·59920
·56649
·59030
·58469
·57520
·57701
·58009
·56790
·67905
·68604
·68790
·67146 | * '68669
* '70928
'69801
'70008
'70350
'68885
'82279
'82916
* * * * * * * * * * * * * * * * * * * | * 80935
* 83649
* 82580
*82940
*81228
* 97430
* 95426 | * '93450
* *
* *
'95779
'93822
* * | * * * * * * * * * * * * * * * * * * * | | 50
6 7 9 100 111 122 1244 1266 131 141 151 161 171 181 19 | 4. | Hollow -11395 -10900 -11318 -11193 -10996 -11051 -11114 -10865 -13064 -13340 -13244 -13037 -12765 -12958 -12421 -16784 | Ogival- -23077 -22005 -22877 -22634 -22243 -22243 -22339 -22470 -21978 -26382 -26865 -26731 -26267 -25754 -26119 | -35052
-33325
-34680
-34325
-33744
-33872
-34070
-33337
-39959
-40581
-40478
-39693
-38970
-39484
-38001
-50751 | *47329
*44870
*46730
*46269
*455657
*45916
*44941
*53799
*54494
*53349
*52416
*53055
*51160 | -59920
-56649
-59030
-58469
-577201
-58009
-56790
-67905
-68604
-68790
-66095
-66834
* | * '68669
* '70928
'69801
'70008
'70350
'68885
'82279
'82916
* * * * * * * * * * * * * * * * * * * | * 80935
* 83649
* 82580
*82940
*81228
* 97430
* 95426 | * '93450
* *
* *
'95779
'93822
* * | *
*
*
*
*
*
1.088671 | | 50
6 7 9 10 11 12 124 126 13 14 15 16 17 18 19 26 27 | 4. | Hollow -11395 -10900 -11318 -11193 -10996 -11051 -11114 -10865 -13064 -13340 -13244 -13037 -12765 -12958 -12421 | Ogival- -23077 -22005 -22877 -22634 -22243 -22339 -22470 -21978 -26382 -26865 -26731 -26267 -25754 -26119 -25088 | 35052
33325
34680
34325
33744
33872
34070
33337
39959
40581
40478
39693
38970
39484
38001 | *47329
*44870
*46730
*46269
*45562
*45657
*45916
*44941
*53799
*54496
*53318
*52416
*67935
*69391 | -59920
-56649
-59030
-58469
-57520
-57701
-58009
-56790
-67905
-68604
-68790
-66095
-66834
* | * '68669
* '70928
'69801
'70008
'70350
'68885
'82279
'82916
* '81181
'80010
'80822
* '102709 | * '80935
* '83649
* '82580
* '82940
* '81228
* '97430
* '95426
'94164
'95020
* * | * '93450
* *
* '95779
'93822
* *
* '09882
* *
* * | * * * * * * * * * * * * * * * * * * * | | 55.
6 7 9 10 11 12 124 126 13 14 15 16 17 18 19 26 | 4. 000 000 000 000 000 000 000 000 000 0 | Hollow -11395 -10900 -11318 -11193 -10996 -11051 -11114 -10865 -13064 -13340 -13244 -13037 -12765 -12958 -12421 -16784 | Ogival- | -35052
-33325
-34680
-34325
-33744
-33872
-34070
-33337
-39959
-40581
-40478
-39693
-38970
-39484
-38001
-50751 | *47329
*44870
*46730
*46269
*45502
*455502
*45916
*44941
*53799
*54496
*53318
*52416
*53055
*51160
*67935
*69391
*68668 | **59920 -56649 -59030 -58469 -57520 -58009 -56790 -67905 -68604 -66095 -66834 * * * * * * * * * * * * * * * * * * * | ** -68669 * -70928 -69801 -70008 -70350 -68885 -82279 -82916 * -81181 -80010 -80822 * | * 80935
* 83649
* 82580
* 82940
* 81228
* 97430
* 95426
* 94164
* 95020
* | * '93450
* *
* *
'95779
'93822
* * | * * * * * * * * * * * * * * * * * * * | | 50
6 7 9 10 11 12 124 126 13 14 15 16 17 18 19 26 27 28 29 | 4. | Hollow -11395 -10900 -11318 -11193 -10996 -11051 -11114 -10865 -13064 -13340 -13244 -13037 -12765 -12958 -12421 -16784 | Ogival- -23077 -22005 -22877 -22634 -22243 -22339 -22470 -21978 -26382 -26865 -26731 -26267 -25754 -26119 -25088 -33701 -34500 -34072 | 35052
33325
34680
34325
33744
33872
34070
33337
39959
40581
40478
39693
38970
39484
38001 | *47329
*44870
*46730
*46269
*45502
*455502
*45916
*44941
*53799
*54496
*53318
*52416
*53355
*51150
*67935
*6935
*69368
*69243 | *59920
*56649
*59030
*58469
*57520
*57520
*57590
*66604
*68790
*67146
*66095
*66834
*
*85926
*86965
*86960 | ** -68669 * -70928 -69801 -700350 -68885 -82279 -82916 * -81181 -80010 -80822 * 1.02709 * 1.03796 * | * '80935
* '83649
* '82580
* '82940
* '81228
* '97430
* '95426
'94164
'95020
* * | * '93450
* *
* '95779
'93822
* *
* *
* 1.39468 | *
*
*
*
*
*
1.088671 | | 55. 6 7 9 10 11 12 124 126 13 14 15 16 17 18 19 26 27 28 29 30 | 4. | Hollow -11395 -10900 -11318 -11193 -1096 -11051 -11114 -10865 -13044 -13340 -13244 -13037 -12765 -12958 -12421 -16784 -17203 -16784 | Ogival- -23077 -22005 -22877 -22634 -22243 -22339 -22470 -21978 -26382 -26865 -26731 -26267 -25754 -26119 -25088 -33701 -34500 | 35052
33325
34680
34325
33744
33872
34070
33337
39959
40581
40478
39693
38970
39484
38001 | *47329
*44870
*46730
*46269
*455657
*45916
*44941
*53799
*54496
*53318
*52416
*53055
*51160
*67935
*69391
*68668
*69243 | -59920
-56649
-59030
-58469
-57701
-58009
-56790
-67905
-68604
-68095
-66834
*
-85254
-86990
-86165
-86900
-87005 | * '68669
* '70928
'69801
'70008
'70350
'68885
'82279
'82916
* '81181
'80010
'80822
* '102709 | * '80935
* '83649
* '82580
* '82940
* '81228
* '97430
* '95426
'94164
'95020
* * | * '93450
* *
* '95779
'93822
* *
* '09882
* *
* * | * * * * * * * * * * * * * * * * * * * | | 50
7 9 10 11 12 124 126 13 14 15 16 17 18 19 26 27 28 29 | 4. | Hollow -11395 -10900 -11318 -11193 -10996 -11051 -11114 -10865 -13064 -13340 -13244 -13037 -12765 -12958 -12421 -16784 -17203 -16971 | Ogival- -23077 -22005 -22877 -22634 -22243 -22339 -22470 -21978 -26382 -26865 -26731 -26267 -25754 -26119 -25088 -33701 -34500 -34072 -34351 | 35052
33325
34680
34325
334744
33872
34070
33337
39959
40581
40478
39693
38970
39484
38070
50751
51304
51728 | *47329
*44870
*46730
*46269
*45502
*455502
*45916
*44941
*53799
*54496
*53318
*52416
*53355
*51150
*67935
*6935
*69368
*69243 | *59920
*56649
*59030
*58469
*57520
*57520
*57590
*66604
*68790
*67146
*66095
*66834
*
*85926
*86965
*86960 | ** -68669 * -70928 -69801 -700350 -68885 -82279 -82916 * -81181 -80010 -80822 * 1.02709 * 1.03796 * | * '80935
* '83649
* '82580
* '82940
* '81228
* '97430
* '95426
'94164
'95020
* * | * '93450
* *
* '95779
'93822
* *
* *
* 1.39468 | * * * * * 1.088671 * * * 1.24549 * * *
| # 55. Hollow Ogival-headed Projectiles. w = 6 lbs.; d = 2.92 inches. | No. of
Round | ı Sc. | 2 Screen. | 3 Screen. | 4 Screen. | 5 Screen. | 6 Screen. | 7 Screen. | 8 Screen. | 9 Screen. | 10 Screen | |-----------------|-------|-----------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------| | 39 | o″•o | ·0946 7 | 19281 | *29443 | *39954 | .50815 | * | * | * | * | | 40 | 0.0 | .09412 | 19169 | *29259 | •39683 | .20440 | .61531 | .72958 | .84724 | •96833 | | 41 | 0.0 | · 0 9567 | 19458 | .29676 | '40225 | .21108 | .62327 | .73885 | .85784 | * | | 43 | 0.0 | .09795 | .19931 | .30408 | '41227 | .52388 | .63892 | .75741 | 87936 | 1.00479 | | 44 | 0.0 | .09300 | .18929 | .28892 | .39193 | *49837 | .60828 | .42171 | ·83870 | .95930 | | 127 | 0.0 | .09902 | .20169 | -30797 | .41784 | .23130 | .64837 | .76909 | * | * | | 129 | 0.0 | .09863 | 20054 | 30573 | * | * | * | * | * | * | | 130 | 0.0 | .09733 | 19809 | .30228 | '40990 | .52096 | .63547 | .75345 | .87492 | .99990 | | 131 | 0.0 | 10219 | .20779 | .31685 | 42931 | *54529 | •66480 | .78787 | '91454 | * | | 132 | 0.0 | .09830 | 19992 | .30492 | '41334 | .52520 | .64050 | 75924 | 88143 | 1.00200 | | 133 | 0.0 | .09855 | *20078 | *30669 | '41628 | .52956 | .64654 | .76722 | ·89160 | 1.01968 | | 134 | 0.0 | 10249 | 120883 | .31902 | '43307 | .22099 | ·67280 | .79852 | * | * | | 33 | 0.0 | .11131 | .22678 | .34643 | .47029 | .59840 | * | * | * | * | | 34 | 0.0 | 111298 | .22889 | *34780 | 46978 | * | * | * | * | * | | 35 | 0.0 | 11027 | .22396 | .34107 | 46159 | .28221 | .71282 | •84351 | .97757 | 1.11499 | | 36 | 0.0 | 11075 | .22503 | *34289 | 46438 | .58955 | .71843 | 85103 | * | * | | 37 | 0.0 | 10979 | '22325 | •34038 | .46118 | .58566 | .71383 | * | * | * | | 38 | 0.0 | .11181 | 22709 | '34587 | .46817 | .59402 | 72344 | .85645 | -99308 | 1.13332 | | 20 | 0.0 | 14753 | .29677 | 44773 | .60043 | .75489 | .91114 | 1.06921 | 1.55015 | 1.39089 | | 21 | 0.0 | 14718 | 29620 | 44706 | 59977 | 75434 | 91078 | 1.06910 | * | * | | 23 | 0.0 | 14240 | 128724 | 43456 | 58439 | .73676 | 89170 | * | * | * | | 24 | 0.0 | 14572 | *29374 | 44406 | •59668 | 75160 | 90883 | 1.06839 | 1.53031 | 1.39462 | | 25 | 0.0 | 14554 | 129318 | '44294 | •59483 | .74887 | 90507 | 1.06342 | 1.55404 | 1.38688 | # 56. (2) 5-inch Gun. Cored Ogival-headed Projectiles. w = 47.68 lbs.; d = 4.92 inches. | 164 | 0.0 | 10995 | .22112 | ·33352 | *44716 | .56205 | .67820 | .79561 | .91428 | 1.03421 | |-----|-----|--------|--------|--------|--------|--------|---------------------|---------|---------|---------| | 165 | 0.0 | 11234 | .22573 | .34019 | 45574 | 57240 | 69019 | .80912 | .92920 | 1.02044 | | 166 | 0.0 | 11320 | .22745 | *34275 | .45910 | .57650 | •69496 | 81449 | .93510 | 1.02680 | | 167 | 0.0 | 11194 | '22500 | .33919 | 45451 | *57097 | ·688 ₅ 8 | .80735 | .92728 | 1.04838 | | 168 | 0.0 | 11401 | .52910 | '34528 | .46255 | •58092 | .20039 | .82097 | .94266 | 1.06242 | | 139 | 0.0 | 12284 | .24682 | .37194 | .49820 | .62561 | .75418 | ·88391 | 1.01480 | 1.14685 | | 140 | 0.0 | 12201 | 24519 | 36957 | 49518 | .62204 | 75016 | .87955 | 1.01051 | 1.14214 | | 141 | 0.0 | .12192 | *24511 | 36959 | *49537 | 62247 | 75090 | 88066 | 1.01176 | 1'14422 | | 142 | 0.0 | 12175 | .24462 | 36863 | 49380 | 62013 | 74762 | .87627 | 1.00900 | 1.13710 | | 143 | 0.0 | 12216 | •24566 | .37049 | ·49664 | '62410 | .75286 | .88292 | 1.01428 | 1.14694 | | 169 | 0.0 | 13336 | .26776 | .40324 | .53984 | .67759 | -81651 | ·95661 | 1.09790 | | | 170 | 0.0 | 13124 | *26371 | *39741 | 53234 | 66850 | ·80589 | .94450 | 1.08432 | 1.22534 | | 171 | 0.0 | 13040 | .26189 | 39447 | .52814 | .66291 | 79879 | 93579 | 1'07392 | 1.21319 | | 172 | 0.0 | 12979 | .26075 | 39289 | .52621 | 66071 | 79639 | .93326 | 1.07132 | 1.21057 | | 173 | 0.0 | 13082 | .26275 | .39580 | •52998 | .66529 | .80174 | .93933 | 1.02806 | 1.51793 | | 159 | 0.0 | 14329 | .28743 | .43242 | .57826 | .72495 | .87248 | 1 02085 | 1.17005 | 1.32007 | | 160 | 0.0 | 14541 | 29168 | 43881 | 5868o | 73565 | 88536 | 1.03593 | 1.18736 | 1.33965 | | 161 | 0.0 | 14629 | *29339 | 44131 | 159004 | 73958 | .88994 | 1.04112 | 1.19311 | 1.34592 | | 162 | 0.0 | 14762 | 129625 | 44590 | 59658 | 74830 | 90107 | 1 05490 | 1.20980 | * | | 163 | 0.0 | 14520 | '29111 | 43773 | .58506 | 73310 | 88185 | 1.03131 | 1.18149 | 1.33239 | | | | | | | | | | | ,,, | "" | 57. Hollow Ogival-headed Projectiles. $w = 23.84 \, \text{lbs.}$; $d = 4.92 \, \text{inches.}$ | No. of
Round | ı Sc. | 2 Screen. | 3 Screen. | 4 Screen. | 5 Screen. | 6 Screen. | 7 Screen. | 8 Screen. | 9 Screen. | 10 Screen. | |-----------------|-------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|------------| | 144 | o"•o | .08737 | .17643 | •26718 | .35962 | * | * | * | * | * | | 145 | 0.0 | ·08586 | 17377 | .26374 | .35578 | *44991 | *54614 | °64449 | •74498 | .84763 | | 146 | 0.0 | °08542 | 17284 | .26227 | *35372 | '44720 | .54272 | .64028 | .73988 | *84152 | | 147 | 0.0 | ·08694 | 17594 | .56201 | .36012 | '45537 | .55267 | 65206 | .75354 | .85711 | | 154 | 0.0 | *09137 | 18491 | 28063 | *37854 | ·47865 | *58097 | .68552 | .79234 | .90147 | | 155 | 0.0 | .09160 | 18504 | .28042 | *37784 | 47740 | *57920 | .68334 | .78992 | *89904 | | 156 | 0.0 | *09133 | 18455 | '27974 | *37698 | *47635 | *57793 | ·6818o | .78805 | *89677 | | 157 | 0.0 | .09239 | 18654 | .28257 | *38060 | '48074 | .28310 | ·68779 | ·7949I | 90456 | | 158 | 0.0 | .09160 | .18233 | .58151 | .37926 | '47950 | .28192 | .68663 | '79356 | 90276 | | 148 | 0.0 | 10885 | *22009 | 33372 | *44975 | .56819 | .68905 | .81235 | .93811 | 1.06632 | | 149 | 0.0 | 10793 | .21842 | '33149 | *44715 | .56540 | .68624 | .80967 | 93568 | 1.06426 | | 150 | 0.0 | 10935 | *22099 | *33493 | 45118 | .56975 | 169065 | .81389 | 93949 | 1.06747 | | 151 | 0.0 | 10933 | '22101 | *33507 | '45154 | .57045 | .69183 | * | * | * | | 152 | 0.0 | .10899 | *22041 | *33427 | *45058 | .56935 | .69058 | ·81427 | *94042 | 1.06903 | | 153 | 0.0 | 10729 | .51691 | '32886 | '44314 | .55975 | •67869 | '79997 | 92359 | 1.04922 | | 61 | 0.0 | 11780 | •23863 | .36251 | •48946 | .61950 | .75265 | * | * | * | | 62 | 0.0 | 11556 | *23401 | *35535 | 47958 | * | * | * | * | * | | 63 | 0.0 | 11612 | *23473 | *35587 | .47958 | * | * | * | * | * | | 64 | 0.0 | 11673 | .23596 | *35767 | .48184 | 60845 | *73748 | .86893 | 1.00280 | 1.13909 | | 66 | 0.0 | 11617 | .23467 | .35551 | 47870 | .60426 | .73222 | .86262 | .99551 | 1.13092 | | 67 | 0.0 | .11991 | *23567 | *35715 | .48103 | *60731 | .73600 | .86711 | 1.00062 | 1.13675 | | 174 | 0.0 | .12618 | .25463 | .38533 | .51826 | .65341 | .79076 | -93030 | 1.07202 | 1.51205 | | 175 | 0.0 | ·13780 | 27780 | 41990 | .56402 | '71011 | 85813 | 1.00800 | * | * | | 176 | 0.0 | 13321 | .26840 | 40557 | .24471 | .68581 | ·82886 | .97385 | * | * | | 177 | 00 | 16960 | ·34051 | .51273 | 68627 | .86115 | 1.03740 | 1.51206 | * | * | | 178 | 0.0 | 16103 | *32342 | .48719 | 165236 | 81895 | 98698 | 1.12642 | * | * | 58. (3) 7-inch Gun. Cored Ogival-headed Projectiles. w = 123.125 lbs.; d = 6.92 inches. | | | | | | | | | | | 1 | |--|---|---|--|--|---|---|--|--|---|--| | 97
98
99
100
101 | 0.0
0.0
0.0
0.0 | ·11185
·11054
·10916
·10940
·11467 | *22465
*22205
*21922
*21974
*23039 | 33841
33455
33019
33104
34718 | '45314
'44806
'44207
'44332
'46506 | ·56885
·56260
·55487
·55660
·58405 | •68555
•67819
•66860
•67091 | ·80326
·79485
·78328
·78627 | *92200
*91260
*89893
*90270 | *
1.03146
1.01557
1.02022
* | | 86
87
88
89
91
92
93
103
104 | 0.0
0.0
0.0
0.0
0.0
0.0
0.0 | 12305
12232
12380
12331
12591
12330
12515
15018
15138 | ·24691
·24564
·24863
·24758
·25275
·24739
·25157
·30102
·30335
·29960 | ·37160
·36996
·37451
·37281
·38049
·37227
·37924
·45251
·45590
·45055 | ·49714
·49528
·50146
*
·50910
·49794
·50814
·60464
·60902
·60224 | ·62355
·62160
·62949
*
·63856
*
·63825
·75740
*
·75465 | * '74892
'75860
* '76885
* '76955
'91078 | * .87724
.88878
* .89995
* .90202
I.06477
* I.06156 | * 1.00657 1.02002 * 1.03185 * 1.03563 1.21604 | * 1.13692
1.15230
* 1.16454
* 1.17035
1.37454
* * | 59. Hollow Ogival-headed Projectiles. w = 61.156 lbs.; d = 6.92 inches. | ••• | | 0 8 | | | 3 | | | | | | |-------------------|-------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|--------------------|------------------|------------------|------------| | No. of
Round | ı Sc. | 2 Screen. | 3 Screen. | 4 Screen. | 5 Screen. | 6 Screen. | 7 Screen. | 8 Screen. | 9 Screen. | 10 Screen. | | 113
114
115 | 0.0 | ·09199
·09303
·09147 | ·18565
·18782
·18474 | ·28101
·28440
·27984 | ·37810
·38280
·37680 | ·47694
·48305
·47565 | .57754
.58518 | ·67991
·68921 | ·78406
·79516 | * | |
116 | 0.0 | .09193 | ·18834
·18552 | ·28503
·28079 | ·38339
·37776 | ·48341
·47646 | ·58508
·57692 | ** | ·79333
* | *89989 | | 94
96 | 0.0 | ·11213 | ·22604
·22187 | ·34177
·33599 | ·45936
·45226 | ·57885
·57068 | ·70028
·69125 | *82368 | *94907 | 1.07646 | | 110 | 0.0 | .11100 | 22421 | *33966 | '45738
'45820 | 57740 | * | * | * | * | | 111 | 0.0 | .11138 | .22486 | 34046 | 45820 | .57810 | .70018 | ·82446 | * | * | | 112 | 0.0 | 11192 | *22573 | '34149 | '45924 | .27900 | .70079 | .82463 | '95054 | 1.07824 | | 121 | 0.0 | 17071 | *34313 | -51725 | .69306 | .87055 | 1.04971 | * | * | • | | 122 | 0.0 | 17178 | *34522 | .2031 | .69704 | .87540 | 1.02239 | 1.53401 | 1.42026 | | | | 1 | 60. (4 | 9-inc | h Gun.
v = 250 | Cored lbs.; d | d Ogiva
= 8.92 | l-heade
inches. | ed Proje | ectiles. | | | 218 | 0.0 | 11523 | *23124 | .34803 | .46560 | .58395 | .70308 | .82300 | .94371 | 1.06221 | | 219 | 00 | 11549 | 23166 | *34854 | .46616 | .58455 | .70375 | ·82381 | *94478 | * | | 220 | 0.0 | 11590 | .23271 | ·35041 | 46898 | •58839 | ·70861 | ·82961 | 95136 | 1.07383 | | 221 | 0.0 | 11496 | 23076 | '34740 | ·46488 | .58320 | .70236 | .82237 | 94323 | 1.06494 | | 228 | 0.0 | 11674 | 23441 | 35298 | 47243 | .59274 | .71389 | ·83587 | 95867 | * | | 229 | 0.0 | 11876 | .23812 | .35808 | .47864 | •59980 | .72156 | .84392 | .96688 | * | | 239 | 0.0 | 11872 | .23804 | .35798 | ·47856 | .59979 | .72169 | .84428 | .96758 | 1.00161 | | 240 | 0.0 | .13000 | .24182 | .36372 | 48630 | .60951 | '73339 | ·85795 | '98321 | 1.10020 | | 208 | 0.0 | 12522 | .52151 | '37796 | .20546 | .63370 | '76267 | .89237 | 1.05580 | 1.12396 | | 209 | 0.0 | 12464 | '24999 | *37605 | .20282 | 63029 | '75846 | .88732 | 1.01684 | * | | 210 | 0.0 | 12407 | .24882 | '37425 | .20032 | .62713 | 75459 | 88273 | * | * | | 211 | 0.0 | 12517 | .25125 | .37823 | .20609 | ·63481 | .76436 | ·89471 | 1.02282 | * | | 212 | 0.0 | 12560 | .22181 | .37864 | •50609 | *63417 | .76289 | .89227 | 1.05535 | 1.12306 | | 232
233 | 0.0 | ·13428
·13390 | ·26942
·26887 | '40541
'40491 | ·54224
·54202 | •67990 | .81838 | .95768 | * | * | | | 0.0 | 13390 | 26855 | 40366 | | .67575 | .81281 | 95060 | 1.08919 | | | 234 | 0.0 | 13401 | 20055 | 40300 | 53938 | .68104 | ·81886 | 95725 | 1.09623 | - | | 236 | 0.0 | 13362 | 26803 | '40323 | 54377 | 67601 | 81362 | 95725 | 1.09023 | 1.23168 | | 237 | 0.0 | 13302 | 26977 | 40587 | 54277 | 68046 | ·81894 | 95821 | 1.09142 | 1.53015 | | 238 | 0.0 | 13412 | 26899 | 40462 | .24103 | .67824 | .81627 | .95514 | 1.09487 | 1.53248 | | 222 | 0.0 | 15369 | .30781 | .46237 | ·61738 | .77285 | ·92879 | 1.08251 | 1.54515 | | | 223 | 0,0 | 15327 | .30717 | .46170 | .61686 | .77266 | .02911 | 1.08623 | 1.54401 | 1.40220 | | 224 | 0.0 | 15287 | 30635 | .46047 | ·61526 | 77074 | *92693 | 1.08382 | 1.24125 | 1.39996 | | 225 | 0.0 | 15486 | .31049 | ·46688 | .62403 | .78194 | ·94061 | 1.10003 | * | * | | 226 | 0.0 | 15304 | 30667 | ·46091 | 61579 | .77133 | 92755 | * | * | * | | 227 | 0.0 | 15539 | .31135 | 46789 | .62502 | .78277 | 94118 | 1.10030 | 1.59019 | * | | 61. | Н | ollow C |)
Ogival-h | eaded | Projecti | les. w | = 125 | lbs.; d | = 8.92 ii | nches. | | | | | | | 1 | | | | | | | 230 | 0.0 | 14203 | 28707 | 43512 | | | * | * | * | * | | 213 | 0.0 | 17402 | 35024 | •52866 | | * | | * | * | * | | 214 | 0.0 | 17620 | 35453 | .53499 | 71757 | 90226 | | * | * | | | | - | , | 33 133 | 33422 | 1-131 | , | | | | | #### Report dated Feb. 13, 1869. Times at which the Projectiles passed the Screens. 62. (1) 3-inch Gun. Solid Spherical Projectiles. $w = 3.316 \, \text{lbs.}$; $d = 2.92 \, \text{inches.}$ | No. of
Round | ı Sc. | 2 Screen. | 3 Screen. | 4 Screen. | 5 Screen. | 6 Screen. | 7 Screen. | 8 Screen. | 9 Screen. | 10 Screen | |-----------------|-------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------| | - | | | | | | | | | | | | 284 | ე″•о | .07184 | 14980 | *23389 | *32410 | * | * | . * | * | * | | 285 | 0.0 | .07294 | 15215 | *23806 | .33110 | *43170 | •54028 | .65725 | .78302 | ·91800 | | 286 | 0.0 | ·07062 | •14698 | *22963 | .31915 | °41601 | •52086 | 63423 | .75668 | * | | 287 | 0.0 | .07170 | 14937 | *23347 | *32446 | 42281 | .20900 | .62352 | '74687 | .87956 | | 288 | 0.0 | .07592 | .12801 | *24677 | *34270 | •44631 | .22810 | •67858 | ·8oS25 | *94762 | | 290 | 0.0 | ·08388 | •17483 | *27329 | *37970 | ·49448 | .61798 | .75048 | .89219 | 1.04325 | | 291 | 0.0 | ·07691 | 116011 | *25008 | *34730 | 45225 | .26540 | .68722 | 81818 | 95874 | | 292 | 0.0 | ·08361 | 17437 | 27270 | *37897 | *49350 | .61652 | '74833 | ·88900 | 1.0386 | | 293 | 0.0 | *07932 | .16572 | *25929 | .36011 | * | * | * | * | * | | 294 | 0.0 | .07821 | .16311 | .25510 | *35459 | ·46200 | .57776 | '70231 | * | * | | 295 | 0.0 | .08312 | 17320 | .27070 | *37608 | *48979 | .61228 | .74400 | ·88540 | * | | 296 | 0.0 | *08225 | 17166 | .26863 | *37355 | ·48681 | .60879 | .73986 | * | * | | 297 | 0.0 | ·08183 | 17096 | '26771 | *37240 | *48535 | *60688 | '7373I | * | * | | 312 | 0.0 | .08442 | 17644 | •27637 | .38451 | .20112 | .62657 | .76104 | .89482 | * | | 261 | 0.0 | *12310 | .25571 | *39738 | .54773 | .70646 | .87336 | | * | * | | 262 | 0.0 | 12460 | 25812 | '40033 | *55104 | .71009 | .87736 | 1.05276 | * | * | | 263 | 0.0 | 12318 | *25554 | *39677 | •54655 | .70456 | ·87048 | 1.04399 | * | * | | 264 | 0.0 | *11669 | *24255 | 37732 | .52076 | .67266 | .83284 | 1.00119 | 1.17752 | 1.36186 | | 266 | 0.0 | 12536 | .25987 | '40326 | * | * | * | * | * | * | | 267 | 0.0 | 12046 | •25079 | '39027 | .53821 | * | * | * | * | * | | 268 | 0.0 | 15270 | •31383 | .48337 | .66130 | .84760 | * | * | * | * | | 269 | 0.0 | 13915 | 28619 | '44124 | *60443 | .77590 | *9558o | 1.14429 | * | * | | 270 | 0.0 | 12822 | .26517 | 41085 | •56526 | .72840 | * | * | * | * | | 271 | 0.0 | 13572 | '28001 | 43270 | 159362 | 76260 | 93947 | 1.12402 | * | * | | 272 | 0.0 | 14167 | .29124 | *44888 | .61477 | .78910 | .97207 | * | * | * | | 273 | 0.0 | 13753 | *28347 | *43745 | .29910 | * | * | * | * | * | 63. Hollow Spherical Projectiles. w = 2 lbs.; d = 2.92 inches. | | 1 | | | | 1 | | | 1 | 1 | | |-----|-----|--------|--------|--------|--------|---------------------|--------|---------|---------|---------| | 310 | 0.0 | .07226 | 15304 | *24534 | *35123 | '47185 | '60741 | .75718 | .91949 | * | | 311 | 0.0 | .07149 | 15327 | 24658 | .35305 | '47391 | -60958 | .75964 | .92318 | * | | 281 | 0.0 | 109060 | 19443 | *31194 | •44356 | .58970 | .75075 | * | * | * | | 282 | 0.0 | 11458 | *24393 | .38742 | *54442 | .71429 | •89638 | 1.00004 | * | * | | 283 | 0.0 | .09013 | 19353 | *31024 | * | * | * | * | * | * | | 299 | 0.0 | ·07816 | 16795 | 27023 | •38586 | .21570 | * | * | * | * | | 300 | 0.0 | *09936 | .51333 | *34157 | .48373 | 63945 | 80837 | 99012 | * | * | | 301 | 0,0 | .07729 | °16520 | •26556 | *37963 | .20811 | .65115 | *80837 | 197887 | 1.19154 | | 277 | 0.0 | 11958 | *25372 | .40171 | .56286 | ·73650 | * | * | * | * | | 279 | 0.0 | 11549 | *24592 | *39048 | •54836 | * | * | * | * | * | | 302 | 0.0 | *09346 | *20110 | *32296 | 45908 | 60950 | .77426 | * | * | * | | 303 | 0.0 | '09221 | 19822 | .31857 | *45347 | ·60278 | .76597 | *94214 | 1.13004 | 1.35808 | | 304 | 0.0 | '09274 | 19968 | *32098 | °45680 | •60730 | * | * | * | * | | 274 | 0.0 | 17092 | *35481 | -55005 | -75502 | * | * | * | * | * | | 275 | 0.0 | 18342 | *37606 | .57907 | •79360 | * | * | * | * | * | | 308 | 0.0 | 12551 | •26565 | '41962 | .58662 | * | * | * | * | * | | 309 | 0.0 | 12540 | .26580 | *42044 | .58855 | · 7 6933 | .96193 | * | * | * | | | | | 1 | | | | | 1 | | | 64. (2) 5-inch Gun. Solid Spherical Projectiles. w = 15.789 lbs.; d = 4.92 inches. | No.of
Round | ı Sc. | 2 Screen. | 3 Screen. | 4 Screen. | 5 Screen. | 6 Screen. | 7 Screen. | 8 Screen. | 9 Screen. | 10 Screen. | |----------------|-------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|------------| | | | | | | | | | | | | | 407 | 0"0 | '07452 | 15252 | *23432 | *32024 | * | * | * | * | * | | 408 | 0.0 | .07814 | •16030 | •24664 | ·33732 | *43251 | .53238 | .63710 | •74683 | •86173 | | 409 | 0.0 | .06918 | 14195 | *21847 | •29884 | '38314 | 47147 | •56399 | 66098 | .76291 | | 410 | 0.0 | '06822 | *14003 | .21558 | .29502 | .37849 | •46613 | •55807 | '65444 | 75537 | | 411 | 0.0 | *06927 | 14206 | .51821 | 129876 | •38296 | .47126 | .26381 | * | * | | 315 | 0.0 | .07980 | .16385 | .25227 | *34518 | .44269 | ·54491 | .65195 | * | * | | 316 | 0.0 | .08213 | 16834 | *25878 | *35359 | 45295 | .22202 | .66618 | .78053 | .90039 | | 317 | 0.0 | '07982 | 16372 | *25188 | *34449 | '44174 | 154382 | .65091 | '76318 | .88079 | | 318 | 0.0 | .09412 | 19278 | •29583 | '40332 | .21525 | * | * | * | * | | 380 | 0.0 | •07848 | .16069 | •24689 | *33734 | '43229 | .23199 | .63669 | •74663 | .86205 | | 381 | 0.0 | .08012 | •16423 | .25235 | ·34471 | '44149 | .24287 | .64902 | .46011 | .87630 | | 382 | 0.0 | .09119 | 18674 | ·28690 | .39191 | .50200 | .61739 | •73829 | ·86491 | .99746 | | 383 | 0.0 | 09078 | •18561 | *28508 | .38978 | .50030 | * | * | * | * | | 385 | 0.0 | ·08680 | 17754 | 27247 | 37186 | '47600 | •58519 | .69974 | ·81996 | ·94616 | | 386 | 0.0 | ·08817 | .18031 | .27688 | .37830 | *48492 | 159700 | .71467 | ·83789 | 196641 | | 387 | 0.0 | .08788 | .18011 | .27687 | '37834 | .48470 | .29613 | .71280 | * | * | | 388 | 0.0 | •09636 | 19724 | .30278 | '41312 | .52840 | .64875 | | * | | | 389 | 0.0 | 109625 | 19685 | 30209 | 41226 | .52763 | •64846 | .77500 | 190750 | * | | 390 | 0.0 | .09533 | 19495 | 29942 | 140929 | .52510 | * | | * | * | | 392 | 0.0 | 109583 | 19598 | *30086 | 41090 | 152655 | * | * | * | * | # 65. Hollow Spherical Projectiles. w = 7.894 lbs.; d = 4.92 inches. | 394 | 0.0 | ·06508 | 13692 | .21622 | •30367 | .39995 | .50573 | .62167 | .74842 | | |-------------
-----|--------|--------|--------|--------|--------|--------|--------|--------|--------| | 395 | 0.0 | °06332 | 13282 | 20930 | 29356 | *38639 | 48857 | 60087 | 72405 | | | 395 | 0.0 | .06266 | 13262 | 20930 | 29350 | 38425 | 48616 | -59815 | 72095 | .85529 | | | 0.0 | ·06355 | | 20//4 | | 30423 | 43010 | 39013 | /2093 | 03329 | | 397 | | 00355 | 13354 | | 29540 | 38858 | ****** | .60022 | .71810 | | | 398 | 0.0 | .06172 | 13141 | *20910 | 29482 | | *49038 | | | .0.0. | | 399 | 0.0 | .06278 | 13209 | •20863 | .29310 | •38619 | •48858 | .60094 | '72393 | *85820 | | 400 | 0.0 | .06521 | 13732 | .51695 | .30461 | '40100 | •50671 | .62237 | * . | * | | 401 | 0.0 | .06236 | 13127 | *20741 | 129145 | *38405 | ·48587 | .59756 | .71978 | .85319 | | | | | | | | 1 | | | | | | 320 | 0.0 | .07762 | 16322 | *25746 | •36100 | 47451 | •59867 | 73416 | ·88166 | * | | 321 | 0.0 | ·07680 | 16159 | *25499 | •35762 | .47010 | * | * | * | * | | 322 | 0.0 | .07769 | 16288 | *25666 | *36012 | * | * | * | * | * | | 323 | 0.0 | 07574 | 15963 | .25226 | 35421 | .46605 | .58835 | .72168 | ·86661 | * | | 324 | 0.0 | 07616 | 16036 | .25322 | *35537 | 46745 | .29011 | | * | * | | 325 | 0.0 | 07681 | 16120 | *25398 | 35595 | 46790 | .29061 | * | * | * | | J- J | | ., | | -555- | 33373 | 4-75- | 3,5 | | | | | 402 | 0.0 | .07657 | 16082 | *25355 | .35556 | .46765 | .59062 | * | | * | | 403 | 0.0 | .07870 | 16534 | 126065 | 36537 | 48026 | 60608 | .74359 | .89355 | * | | 404 | 0.0 | 07564 | .12892 | *25065 | 35146 | 46211 | *58333 | 74332 | * | | | | 0.0 | 07655 | 16075 | | 35607 | 46920 | 2533 | | | | | 405 | 1 1 | | | 25359 | | | 8.80 | , ī | i I | _ | | 406 | 0.0 | °07597 | .12922 | 25154 | °35273 | *46390 | .58582 | 7 | 7 | | 66. (3) 7-inch Gun. Solid Spherical Projectiles. w = 44.094 lbs.; d = 6.92 inches. | No. of
Round | ı Sc. | 2 Screen. | 3 Screen. | 4 Screen. | 5 Screen. | 6 Screen. | 7 Screen. | 8 Screen. | 9 Screen. | 10 Scree | |---|--|--|---|--|---|--|---|---|---|---| | 326 | 0".0 | .08417 | .17110 |
.26107 | .35436 | .45125 | .55202 | * | * | | | 327 | 0.0 | .08409 | 17124 | .26154 | .35507 | 45190 | .25209 | .65571 | .76282 | .87349 | | 329 | 0.0 | .08673 | 17631 | 26889 | .36463 | .46370 | .26627 | 67250 | 78255 | 0/345 | | | 0.0 | .08412 | 17125 | 26144 | 35475 | 45124 | | .65400 | 76039 | | | 330 | 0.0 | '08431 | 17168 | 26221 | 35600 | | .55097 | 65793 | | .87720 | | 341 | 0.0 | 108431 | | | | 45315 | .55376 | .66498 | .76577 | .87739 | | 373 | | .08552 | 17406 | *26571 | .36055 | 45866 | .26011 | 166600 | .77336 | ·88534
·88808 | | 379 | 0.0 | 08547 | 17415 | *26607 | .36127 | '45979 | .26168 | .66699 | '7757 7 | *88808 | | 331 | 0.0 | .09281 | 18900 | •28863 | *39175 | .49840 | .60862 | * | * | * | | 332 | 0.0 | *09285 | .18910 | .28875 | .391So | ·49826 | .60813 | * | * | * | | 334 | 0.0 | .09353 | .19019 | •28999 | .39313 | *49969 | .60979 | * | * | * | | 336 | 0,0 | .09343 | .19010 | ·29011 | .39356 | .20024 | .61115 | .72548 | ·84361 | *96561 | | 342 | 0.0 | °0924I | .18819 | ·28731 | .38992 | *49606 | .60581 | * | * | * | | 343 | 0.0 | .09226 | .18809 | .28740 | *39029 | .49672 | .60668 | .72016 | * | * | | 227 | 0.0 | 11053 | ·22480 | .34285 | •46473 | *59049 | .72017 | .85381 | *99145 | 1.1331 | | 337 | 0.0 | 12033 | *24458 | 37276 | .50487 | .64090 | /201/ | 05301 | 99143 | 1 1331 | | 338 | 0.0 | | | .38689 | | .66484 | .80953 | *05700 | 1.10982 | 1 | | 339 | 1 1 | 12482 | 25382 | | .52393 | 160065 | | *95790
*86897 | | * | | 344 | 0.0 | 11235 | *22853 | *34860 | 47262 | | 73275 | 30897 | 1.00932 | | | 345 | 0.0 | .11343 | .23054 | *35148 | .47639 | .60541 | .73867 | -* | * | * | | 353 | 0.0 | ·14380 | .29083 | 44122 | .29509 | 75255 | ·91370 | 1.07863 | 1.24741 | 1.4201 | | 354 | 0.0 | 14585 | *29504 | .44768 | .60387 | .76370 | .92725 | 1.09459 | * | * | | 355 | 0.0 | .19081 | *32433 | *49151 | .66289 | ·83861 | 1.01838 | 1.50121 | * | * | | 356 | 0.0 | 15464 | .31210 | | .6.0000 | 0 | *********** | | | | | | | 11404 | 51210 | 47.599 | .63802 | .80700 | 9/905 | 1.12910 | * | * | | 357 | 0.0 | 14087 | •28567 | '47309
'43445 | •58726 | 74415 | *97985 | * | * | * | | | 0.0 | 14087 | | *43445 | •58726 | 74415 | * | d = 0 | * | * | | 67 | 0.0 | 14087 | Spheric | 43445
al Proje | ·58726
ectiles. | w = 2 | * | * | * | * | | 357
67
346 | 0.0 | ·14087 | 28567
Spheric | '43445
al Proje | ·58726 ectiles. | v = 2 | * | * | * | clies. | | 67 | 0.0 | ·14087
Iollow \$
·08645
·08485 | 28567
Spheric
-17875
-17569 | 43445
al Proje | ·58726 ectiles. | w = 2 | * | * | * | clies. | | 357
67
346 | 0.0 | ·08645
·08485
·08534 | 28567
Spheric
17875
17569 | '43445
al Proje | ·58726 ectiles. | v = 2 | * | * | 6·92 in | clies. | | 357
67
346
347 | 0.0
0.0 | .14087
Iollow \$
.08645
.08485
.08534
.08473 | 28567
Spheric
17875
17569
17644
17545 | ·43445
al Proje
·27741
·27296
·27388
·27255 | ·58726 ectiles. | 74415 $w = 2$ | * 2:047 ll * * 61040 60589 | * | * | clies. | | 357
67
346
347
349 | 0.0
0.0
0.0 | ·08645
·08645
·08485
·08534
·08473
·08780 | 28567
Spheric
-17875
-17569 | ·43445
al Proje
·27741
·27296
·27388
·27255 | ·58726
ectiles.
·38293
·37711
·37826 | w = 2 49580 48860 49021 | *
2.047 ll
*
* | s.; d == | 6·92 in | clies. | | 357
67
346
347
349
350 | 0.0
0.0
0.0 | ·08645
·08645
·08485
·08534
·08473
·08780
·08530 | 28567
Spheric
17875
17569
17644
17545
18186
17698 | ·43445
al Proje
·27741
·27296
·27388 | ·58726
ectiles.
·38293
·37711
·37826
·37641
·39024 | w = 2 49580 48860 49021 48740 | * 2:047 ll * * 61040 60589 | * os.; d = * * * * * * * * * * * * * * * * * * | 6·92 in | clies. | | 357
67
346
347
349
350
351 | 0.0
0.0
0.0
0.0 | .14087
Iollow \$
.08645
.08485
.08534
.08473 | 28567
Spheric
17875
17569
17644
17545
18186 | ·43445
al Proje
·27741
·27296
·27388
·27255
·28255
·27528 | ·58726 ectiles38293 -37711 -37826 -37641 -39024 -38043 | w = 2 49580 48860 49021 48740 50530 | * 2:047 ll * * 61040 60589 | * os.; d = * * * * * * * * * * * * * * * * * * | 6·92 in | clies. | | 357
67
346
347
349
350
351
352 | 0.0
0.0
0.0
0.0
0.0 | ·08645
·08645
·08485
·08534
·08473
·08780
·08530 | 28567
Spheric
17875
17569
17644
17545
18186
17698 | ·43445 al Proje ·27741 ·27296 ·27388 ·27255 ·28255 ·28599 | ·58726
ectiles.
·38293
·37711
·37826
·37641
·39024 | w = 2 49580 48860 49021 48740 50530 49267 | * 2:047 ll * * 61040 60589 62810 * * 62343 | * os.; d = * * * * * * * * * * * * * * * * * * | 6·92 in | clies. | | 357
67
346
347
349
350
351
352
365 | 0.0
0.0
0.0
0.0
0.0 | .08645
.08645
.08485
.08534
.08473
.08780
.08530
.08581 | 28567
Spheric
17875
17569
17644
17545
18186
17698
18402 | ·43445
al Proje
·27741
·27296
·27388
·27255
·28255
·27528 | ·58726 ectiles38293 -37711 -37826 -37641 -39024 -38043 -39508 | w = 2 49580 48860 49021 48740 50530 49267 51165 50150 | * 2:047 ll * * *61040 *60589 *62810 * * | * os.; d = * '73225 '75901 * * | 6.92 in | clies. | | 357
67
346
347
349
350
351
352
365
366 | 0.0
0.0
0.0
0.0
0.0
0.0 | ·08645
·08645
·08485
·08534
·08473
·08780
·08530
·08530
·08881
·08716 | ·28567
Spheric
·17875
·17569
·17644
·17545
·18186
·17698
·18402
·18045
·19626 | ·43445 al Proje ·27741 ·27296 ·27388 ·27255 ·28255 ·27528 ·28599 ·28034 | 38293
37711
37826
37641
39024
38543
39508 | w = 2 49580 48860 49021 48740 50530 49267 51165 50150 54440 | * 2.047 ll * 61040 60589 62810 * * 62343 67630 * | * os.; d = * '73225 '75901 * * | 6.92 in | clies. | | 357
67
346
347
349
350
351
352
365
366
367 | 0.0
0.0
0.0
0.0
0.0
0.0 | 14087 10llow 8 08645 08485 08485 08534 08473 08780 08530 08881 08718 09480 | 28567
Spheric
17875
17569
17644
17545
18186
17698
18402
18045 | *43445
al Projection | 38293
37711
37826
37641
39024
38043
39508
38724
42068
42322 | w = 2 49580 48860 48860 49021 48740 50530 49267 51165 50150 54440 54740 | * 2:047 ll * * 61040 60589 62810 * * 62343 | * os.; d = * '73225 '75901 * * | 6.92 in | clies. | | 357
67
346
347
349
350
351
352
365
366
367
368
369 | 0.0 | ·08645
·08645
·08485
·08534
·08473
·08780
·08530
·08530
·08881
·08716
·09480 | ·28567
Spheric
·17875
·17569
·17644
·17545
·18186
·17698
·18402
·18045
·19626
·19750 | ·43445 al Proje ·27741 ·27296 ·27388 ·27255 ·28255 ·28559 ·28599 ·28034 ·30476 | 38293
37711
37826
37641
39024
38043
39508
38724
42068 | w = 2 49580 48860 48860 49021 48740 50530 49267 51165 50150 54440 54545 | * 2.047 ll * 61040 60589 62810 * * 62343 67630 * | * * * * * * * * * * * * * * * * * * * | * 6.92 in * * * * *86685 * * *89146 * * | clies. | | 357
346
347
349
350
351
352
365
366
367
368
369
370 | 0.0 | 14087 10llow 5 108645 108485 108534 108473 108780 108530 108530 108530 109536 109536 | 28567
Spheric
17875
17569
17644
17584
18186
18402
18045
19626
19750 | *43445
al Proje
*27741
*27296
*27388
*27255
*28255
*28559
*28599
*28034
*30476
*30659
*30553
*30618 | 38293
37711
37826
37641
39024
38043
39508
42323
42153
42262 | w = 2 49580 48860 48860 48740 50530 49267 51165 50150 54440 54740 54746 | * 2.047 ll * 61040 60589 62810 * * 62343 67630 * | * * * * * * * * * * * * * * * * * * * | 6.92 in * * *86685 * *89146 * *97398 | clies. | | 357
67
346
347
349
350
351
352
365
367
368
369
370
371 | 0.0 | 14087 16llow 8 08645 08485 08534 08473 08780 08530 08581 08716 09480 09536 09525 09468 | ·28567
Spherice
·17875
·17569
·17644
·17545
·18186
·17698
·18402
·18045
·19626
·19750
·19684
·19717
·19600 | *43445
al Projection of the control | 38293
37711
37826
37641
39024
38043
39508
38724
42068
42322
42153
42262
42153 | w = 2 49580 48560 48660 49021 48740 50530 49267 51165 54440 54740 54545 54675 | * 2.047 ll * 61040 60589 62810 * 62343 67630 * 67875 67885 | * * * * * * * * * * * * * * * * * * * | * 6.92 in * * *86685 * *89146 * *97398 *96663 | clies. | | 357
67
346
347
349
350
351
363
363
363
363
370
371
372 | 0.0 | 14087 10llow 8 108645 108485 108530 108716 109480 109536 109536 109566 109568 109468 109444 | -28567
Spheric
-17875
-17569
-17644
-17545
-18186
-17698
-18402
-18045
-19626
-19750
-19684
-19717
-196600
-19524 | *43445 al Proje *27741 *27296 *27385 *27255 *27528 *28599 *2803476 *30669 *30553 *30618 *30421 *30299 | 38293
37711
37826
37641
39024
38043
39508
42322
42153
42262
41153
42262
41153 | w = 2 49580 48560 48860 49021 48740 50530 49267 51165 50150 54440 54740 54545 54675 54236 54102 | * 2.047 ll * 61040 60589 62810 * 67811 67871 67871 67878 67185 | * * * * * * * * * * * * * * * * * * * | * 6.92 in * * * *86685 * * *89146 * * *97398 *96663 * .95785 | * clies. * * * * * * * * * * * * * * * * * * * | | 357
67
346
347
349
350
351
352
363
367
373
371
372
374 | 0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0 | 14087 10llow 5 08645 08455 08534
08473 08786 08530 08530 09536 09525 09468 09444 | ·28567
Spheric
·17875
·17569
·17644
·17545
·18186
·18402
·18045
·19626
·19750
·19684
·19717
·19600
·19524
·19173 | *43445 al Proje *27741 *27296 *27388 *27255 *28255 *28599 *28034 *30476 *30659 *30553 *30618 *30421 *30299 *29801 | 38293
37711
37826
37641
38043
38043
38724
42062
42153
42262
42153
42262
41957
41814
41153 | w = 2 49580 48860 48860 49621 48740 50530 49267 51165 50150 54740 54740 54545 54075 54102 53249 | * 2.047 ll * 61040 60589 62810 * 62343 67630 * 67875 67885 | * * * * * * * * * * * * * * * * * * * | * 6.92 in * * *86685 * *89146 * *97398 *96663 | * clies. * * * * * * * * * * * * * * * * * * * | | 357
67
346
347
349
351
365
367
368
369
370
371
372
374
375 | 0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0 | 14087 10llow 5 108645 108535 108534 108473 108780 109536 109556 109556 109556 109556 109556 109556 109556 109556 109556 109556 109556 109556 109556 109556 | -28567 Spheric17875 -17569 -17644 -17545 -18186 -17648 -18045 -19626 -19750 -19684 -19717 -19600 -19524 -19173 -18226 | *43445 al Proje *27741 *27726 *27388 *27255 *28255 *28259 *28034 *30476 *30693 *30533 *30421 *30290 *29801 *29887 | 38293
37711
37826
37641
39024
38043
39508
42322
42153
42153
42153
42153
39020 | w = 2 49580 48560 48860 48740 50530 49267 51165 50150 54440 54545 54545 54675 54236 53249 50326 | * 2:047 ll * * 61040 60589 62810 * * 62343 67630 * 67811 67875 67287 67185 66109 62626 | * * 73225 75901 * 75332 * 82054 81871 81140 81077 779752 * | * * * * * * * * * * * * * * * * * * * | * clies. * * * * * * * * * * * * * * * * * * * | | 357
346
347
349
350
351
365
366
367
368
369
370
371
372
374
375
376 | 0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0 | 14087 16llow 8 08645 08485 08534 08473 08780 08530 08581 09716 09480 09536 09525 09468 09444 09247 088807 | -28567
Spheric
-17875
-17569
-17644
-17545
-18186
-17698
-18402
-19626
-19750
-19684
-19717
-19600
-19524
-19173
-18226
-19295 | *43445 al Proje *27741 *27296 *27285 *28255 *28255 *285394 *30476 *30669 *30553 *30421 *30299 *29801 *28287 *29928 | 38293
37711
37826
37621
37621
39024
38043
39508
38724
42068
42322
42153
42262
42153
42262
41957
41814
41153
39029
41275 | w=2 49580 48560 48660 49021 48740 50530 49267 51165 50440 54740 54740 54740 55426 55420 55329 | * 2'047 ll * '61040 '60589 '62810 * '62343 '67630 * '67875 '67287 '67185 '661026 '62626 '66282 | * * * * * * * * * * * * * * * * * * * | * 6.92 in * * * *86685 * * *89146 * * *97398 *96663 * .95785 | * clies. * * * * * * * * * * * * * * * * * * * | | 357
67
346
347
349
350
351
352
365
367
373
371
372
374 | 0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0 | 14087 10llow 5 108645 108535 108534 108473 108780 109536 109556 109556 109556 109556 109556 109556 109556 109556 109556 109556 109556 109556 109556 109556 | -28567 Spheric17875 -17569 -17644 -17545 -18186 -17648 -18045 -19626 -19750 -19684 -19717 -19600 -19524 -19173 -18226 | *43445 al Proje *27741 *27726 *27388 *27255 *28255 *28259 *28034 *30476 *30693 *30533 *30421 *30290 *29801 *29887 | 38293
37711
37826
37641
39024
38043
39508
42322
42153
42153
42153
42153
39020 | w = 2 49580 48560 48860 48740 50530 49267 51165 50150 54440 54545 54545 54675 54236 53249 50326 | * 2:047 ll * * 61040 60589 62810 * * 62343 67630 * 67811 67875 67287 67185 66109 62626 | * * 73225 75901 * 75332 * 82054 81871 81140 81077 779752 * | * * * * * * * * * * * * * * * * * * * | * clies. * * * * * * * * * * * * * * * * * * * | | 357
67
346
347
349
350
351
363
363
363
363
370
371
375
376
377
378 | 0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0 | 14087 10llow 8 108645 108535 108534 108473 108780 108530 108531 108786 109480 109536 109536 109536 109525 109468 109444 109247 109233 109692 108971 | ·28567 Spheric. ·17875 ·17569 ·17644 ·17545 ·18186 ·17698 ·18045 ·19626 ·19750 ·19684 ·19717 ·19600 ·19524 ·19173 ·18226 ·19295 ·20102 ·18601 | *43445 al Proje *27741 *27296 *27388 *27255 *28255 *28259 *28034 *30476 *30693 *30553 *30518 *30421 *30292 *29801 *29801 *29801 *2982 *31252 *28919 | 38293
37711
37826
37641
39024
38043
39524
42068
42322
42153
42162
41957
41814
41153
42162
41275
43164
39954 | w=2 49580 48560 48660 48921 50530 49267 51165 50150 54440 54740 54545 54675 54675 54236 53179 55859 51736 | * 2.047 ll * 61040 60589 62810 * 62343 67630 * 67875 67185 66109 62626 66282 69357 | * * * * * * * * * * * * * * * * * * * | * 6.92 in * * *86685 * *89146 * *97398 *96663 * *95785 *94196 * *94648 * | * clies. * * * * * * * * * * * * * * * * * * * | | 357
67
346
347
349
350
351
363
363
363
363
371
372
375
376
377
378
360 | 0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0 | 14087 16llow 6 08645 08485 08534 08473 08780 08530 08581 09166 09480 09536 09525 09468 09444 09247 09333 09692 08971 | ·28567 Spheric. ·17875 ·17569 ·17644 ·17545 ·18186 ·17698 ·18402 ·19626 ·19750 ·19684 ·19717 ·19600 ·19524 ·19173 ·18226 ·19295 ·20102 ·18601 | *43445 al Proje *27741 *27296 *27285 *28255 *28255 *28539 *30476 *30669 *30553 *30618 *30421 *30299 *29801 *28287 *29928 *31252 *28919 *35036 |
38293
37711
37826
37621
37621
39024
38043
39508
38724
42068
42322
42153
42068
42322
42153
42067
41814
41153
39024
42153
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164 | w=2 -49580 -48560 -48660 -49021 -48740 -50530 -49267 -51165 -504740 -54740 -54740 -54745 -54236 -54102 -53379 -55859 -51736 -62250 | * 2'047 ll * '61040 '60589 '62810 * '62343 '67630 * '67875 '67287 '67185 '661026 '62626 '66282 '69357 '64295 | * * * * * * * * * * * * * * * * * * * | * * * * * * * * * * * * * * * * * * * | * clies. * * * * * * * * * * * * * * * * * * * | | 357
67
346
347
349
350
351
363
363
373
374
375
376
377
378
360
363 | 0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0 | 14087 16llow 8 108645 108485 108538 108780 108780 1087816 109480 109536 109536 109526 109247 108807 109333 109692 108971 110942 110800 | ·28567 Spheric. ·17875 ·17569 ·17644 ·17545 ·18186 ·17698 ·18402 ·18045 ·19626 ·19750 ·19684 ·19717 ·19600 ·19524 ·19173 ·18226 ·19295 ·20102 ·18601 ·22612 ·22382 | *43445 al Proje *27741 *27296 *27385 *28255 *28255 *28259 *30476 *30669 *30553 *30618 *30421 *30299 *29801 *28287 *29928 *31252 *28919 *35036 *34751 | 38293
37711
37826
37641
39024
38043
39508
42302
42153
42268
42322
42153
42153
42164
39054
43164
39054 | w=2 49580 48860 48860 49021 48740 50530 49267 51165 50150 54440 54740 54545 5402 53249 50456 53379 55859 51736 62250 61835 | * 2.047 ll * 61040 60589 62810 * 62343 67630 * 67875 67185 66109 62626 66282 69357 | * * * * * * * * * * * * * * * * * * * | * 6.92 in * * *86685 * *89146 * *97398 *96663 * *95785 *94196 * *94648 * | clies. | | 357
67
346
347
349
350
351
363
363
363
363
371
372
375
376
377
378
360 | 0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0 | 14087 16llow 6 08645 08485 08534 08473 08780 08530 08581 09166 09480 09536 09525 09468 09444 09247 09333 09692 08971 | ·28567 Spheric. ·17875 ·17569 ·17644 ·17545 ·18186 ·17698 ·18402 ·19626 ·19750 ·19684 ·19717 ·19600 ·19524 ·19173 ·18226 ·19295 ·20102 ·18601 | *43445 al Proje *27741 *27296 *27285 *28255 *28255 *28539 *30476 *30669 *30553 *30618 *30421 *30299 *29801 *28287 *29928 *31252 *28919 *35036 | 38293
37711
37826
37621
37621
39024
38043
39508
38724
42068
42322
42153
42068
42322
42153
42067
41814
41153
39024
42153
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164
42164 | w=2 -49580 -48560 -48660 -49021 -48740 -50530 -49267 -51165 -504740 -54740 -54740 -54745 -54236 -54102 -53379 -55859 -51736 -62250 | * 2'047 ll * '61040 '60589 '62810 * '62343 '67630 * '67875 '67287 '67185 '661026 '62626 '66282 '69357 '64295 | * * * * * * * * * * * * * * * * * * * | * * * * * * * * * * * * * * * * * * * | * clies. * * * * * * * * * * * * * * * * * * * | 68. (4) 9-inch Gun. Solid Spherical Projectiles. $w = 94^{\circ}5$ lbs.; $d = 8^{\circ}888$ inches. | 253 0" 0 07805 15818 24043 32485 41148 50035 59148 668489 7805
7805 | | | | | 94 3 | 105., α | | | · | | | |--|-----------------|-------|-----------|-----------|-----------|-----------|----------------|-----------|-----------|-----------|-----------------| | 255 0 0 0 07716 | No. of
Round | ı Sc. | 2 Screen. | 3 Screen. | 4 Screen. | 5 Screen. | 6 Screen. | 7 Screen. | 8 Screen. | 9 Screen. | 10 Screen | | 255 0 0 0 07716 | 253 | 0."0 | .07805 | .12818 | *24043 | .32485 | '41148 | .50035 | .50148 | .68480 | •78059 | | 257 0°0 °08011 | | - | | | | | | | •58557 | | .77222 | | 258 0 °° 08021 16231 24510 33058 42005 51161 60466 70019 7958 250 0 °° 07661 16131 24510 33088 41898 50913 6048 6048 6968 7930 260 0 °° 08015 16206 24591 33187 42010 51074 60392 69974 7982 204 0 °° 08858 18018 27404 37047 46949 57112 67538 78228 8918 205 0 °° 08673 17575 26707 36071 45669 55503 * * * * * * * * * * * * * * * * * * * | | 1 | | | | | | | .60432 | | | | 250 0°0 '07061 '16131 '24510 '33068 '41858 '50913 '60148 '69696 '7930 '260 0°0 '08015 '16206 '24591 '33187 '42010 '51074 '60392 '69974 '7930 '244 0°0 '08885 '18018 '27404 '37047 '46949 '57112 '67538 '7828 '8918 '27404 '37047 '46949 '57112 '67538 '7828 '8918 '27400 '08801 '17575 '26707 '36071 '43669 '55503 '* * * * * 8000 '08007 '18050 '27454 '37007 '46989 '55133 '67531 '78183 '8922 '241 0°0 '08801 '17841 '27121 '36640 '46399 '55397 '66633 '77107 '8000 '09022 '18284 '27792 '37552 '47569 '57849 '68396 '79216 '90212 '3000 '08914 '18060 '27443 '37068 '46949 '57064 '67445 '78087 '8899 '244 0°0 '08950 '18130 '27546 '37204 '47110 '57270 '67690 '78376 '8933 '27021 '36500 '46227 '56209 '66454 '76970 '8776 '8933 '27021 '36500 '46227 '56209 '66454 '76970 '8776 '89180 '0° '09729 '19714 '29957 '40459 '51221 '62244 '73527 '85600 '9687 '88180 '0° '09712 '19691 '29937 '40448 '51221 '62254 '73547 '85100 '9691 '180 '0° '09931 '19918 '30257 '40884 '51251 '62254 '73547 '85100 '9691 '180 '0° '09831 '19918 '30267 '40884 '51757 '62943 '74588 '86113 '9812 '8500 '13617 '27488 '41614 '55996 '70634 '85528 '176698 '176083 '* * * * * * * * * * * * * * * * * * * | | l . | | | | | | | | | 79829 | | 260 0°0 0'08015 116206 124591 33187 342010 51074 60392 69974 77982 204 0°0 0'08885 118018 27404 37047 46949 57112 67538 78228 8918 205 0°0 08673 17575 26707 36071 45669 55503 * | | ı | | | | | | | | | | | 205 0 0 0 08673 17575 126707 36071 45669 155503 | | ı | | | | | | | | | .79827 | | 205 0°0 08673 17575 226707 36071 45669 155503 * * * * * * * * * * * 205 0°0 08697 18050 17581 37097 46989 157133 67531 778183 899 241 0°0 08801 17841 27121 36640 46399 15733 67531 77107 * 9031 242 0°0 109022 18284 127792 37552 47569 157849 66396 779216 9031 243 0°0 08914 18060 27443 37088 46940 157064 67445 78087 8899 244 0°0 08950 18130 127546 37204 47110 157270 67690 78376 8933 245 0°0 08779 17783 127021 36500 46227 156209 66454 776970 8776 180 0°0 09729 119714 129957 40459 151221 62244 773527 8500 96871 180 0°0 09712 119691 129937 40448 151221 62254 73547 85100 9681 181 0°0 09799 119849 30155 40723 151560 162673 74470 85716 9681 183 0°0 09608 119459 129559 39915 150534 61423 77259 86113 9812 183 0°0 09608 119459 129559 39915 150534 61423 72589 84038 * 184 0°0 112312 124946 37894 151148 64700 78541 92662 107053 * 116083 * 1160 | 204 | 0.0 | ·08885 | .18018 | .27404 | *37047 | ·46949 | .57112 | .67538 | .78228 | 89182 | | 206 o' 0' 08907 '18050 '27454 '37097 '46089 '57133 '67531 '78183 '8909 '2241 o' 0' 08801 '17841 '27121 '36640 '46399 '56397 '66633 '77107 '8216 '9031 '2710 '9031 '27364 '37552 '47569 '57849 '68396 '79216 '9031 '244 o' 0' 08950 '18130 '27546 '37204 '47110 '57064 '67445 '78087 '8899 '244 o' 0' 08950 '18130 '27546 '37204 '47110 '57270 '67690 '78376 '8933 '27021 '36500 '46227 '56209 '66454 '76970 '8776 '87776 '8776 | 205 | 0.0 | | 17575 | •26707 | | | .55503 | * | * | * | | 241 0°0 '08801 '17841 '27121 '36640 '46399 '56397 '66633 '7710' * 242 0°0 '09022 '18284 '27792 '37552 '47569 '57849 '68396 '79216 '9031 243 0°0 '08914 '18060 '27443 '37068 '46940 '57064 '67445 '78087 '8893 244 0°0 '08959 '18130 '27546 '37204 '47110 '57270 '67690 '78376 '8893 245 0°0 '08779 '17783 '27021 '36500 '46227 '56209 '66454 '76670 '8776 179 0°0 '09729 '19714 '29957 '40459 '51221 '62244 '73527 '85060 '9681 180 0°0 '09729 '19849 '30155 '40723 '51560 '62673 '74070 '85756 '9773 180 0°0 '09831 '19918 '30267 '40884 '51775 '62943 '74388 '86113 '9812 183 0°0 '09608 '19459 '29559 '39915 '50534 '61423 '72589 '84038 * 184 0°0 '12202 '24689 '37462 '50523 '63875 '77521 '91464 '105706 '12024 185 0°0 '13617 '27488 '41614 '55996 '70634 '85528 '100678 '116083 * 187 0°0 '12312 '24946 '37894 '51148 '64700 '78541 '92662 '107053 * 189 0°0 '13121 '26522 '40204 '54168 '68415 '82945 '97758 '112855 '12833 '190 0°0 '12599 '25478 '38638 '52806 '65856 '79814 * 190 0°0 '12590 '25478 '38638 '52806 '65856 '79814 * 191 0°0 '12830 '25946 '39350 '53044 '67030 '81310 '95887 '110763 '12824 '100763 '12824 '100763 '12824 '000 '08773
'17581 '27388 '24290 '33004 '42035 '51389 '61071 '71086 * 248 0°0 '07793 '15262 '23306 '33644 '67030 '81310 '95887 '110763 '12826 '2469 '000 '07793 '15388 '24290 '33004 '42035 '51389 '61071 '71086 '* 249 0°0 '07793 '15262 '23306 '33044 '67030 '81310 '95887 '110763 '12826 '240 '000 '08778 '17768 '27354 '37177 '47371 '57946 '68819 '79424 '91076 '2520 '0008777 '17891 '27384 '37177 '47371 '57946 '68819 '79424 '91076 '2520 '0008778 '17891 '27354 '37177 '47371 '57946 '68819 '79424 '91076 '2520 '0008788 '17933 '27407 '37226 '47400 '57944 '68877 '80222 '* 246 0°0 '08798 '17933 '27407 '37226 '47400 '57944 '68877 '80222 '* 247 0°0 '08788 '17768 '23359 '43926 '55895 '68948 '81816 '99080 '10841 '10913 '12256 '32476 '44092 '56107 '68524 '81069 '94284 '10792 '10860 '000 '10788 '12198 '33357 '45573 '57985 '70812 '84059 '94284 '10792 '10916 '000 '10788 '12198 '33357 '45573 '57985 '70812 '84059 '94284 '10792 '10916 '000 '10788 '1 | | 0.0 | *08907 | | 27454 | *37097 | *46989 | | •67531 | .78183 | ·89090 | | 242 0°0 09022 118284 22792 37552 147569 57849 68396 79216 9031 | 241 | 0.0 | | 17841 | .27121 | 136640 | '46399 | | .66633 | .77107 | * | | 243 0°0 '08914 '18060 '27443 '37068 '46940 '57064 '67445 '78087 '8893 244 0°0 '08950 '18130 '27546 '37204 '47110 '57070 '67690 '78376 '8933 245 0°0 '08779 '17783 '27021 '36500 '46227 '56209 '66454 '76970 '8776 '87180 0°0 '09729 '19714 '29957 '40459 '51221 '62244 '73547 '85100 '9691 181 0°0 '09799 '19849 '30155 '40723 '51560 '62673 '74070 '85756 '9773 182 0°0 '09831 '19918 '30267 '40884 '51721 '62254 '73547 '85100 '9691 181 0°0 '09799 '19849 '30155 '40723 '51560 '62673 '74070 '85756 '9773 182 0°0 '09831 '19918 '30267 '40884 '51775 '62943 '74388 '86113 '9812 '85100 '09688 '19459 '29559 '39915 '50534 '61423 '72589 '84038 * 184 0°0 '12202 '24689 '37462 '50523 '63875 '77521 '91464 '1°5706 '12024 '185 0°0 '13617 '27488 '41614 '55996 '70634 '85528 '1°0678 '1°16083 '8 '185 0°0 '13121 '226522 '40204 '53168 '68415 '82045 '97758 '1°12855 '12823 '190 0°0 '12599 '25478 '38638 '52080 '65805 '79814 '8 '10803 '190 0°0 '128930 '25946 '39350 '53044 '67030 '81310 '95887 '1°10763 '8 '190 0°0 '171316 '26577 '40265 '53024 '67030 '81310 '95887 '1°10763 '8 '1°1070 '171086 '26577 '40265 '54222 '68449 '82947 '97718 '1°12765 '1°2805 '190 0°0 '07793 '15888 '24290 '33004 '42035 '51389 '61071 '71086 '8 '1°1070 '07555 '15415, '23580 '32051 '40828 '49911 '57990 '68969 '80362 '9218 '4700 '08728 '17768 '27354 '37177 '47371 '57990 '68969 '80362 '9218 '4700 '08728 '17768 '27354 '37177 '47371 '57990 '68969 '80362 '9218 '4700 '08728 '17768 '27354 '37177 '47371 '57946 '68911 '80273 '9203 '27407 '37226 '47400 '57944 '6897 '79132 '90694 '44092 '56107 '68524 '81345 '94572 '91076 '2248 '00 '08788 '17933 '27407 '37226 '47400 '57944 '68877 '80222 '8 '17933 '27407 '37226 '47400 '57944 '68877 '80222 '8 '17933 '27407 '37226 '47400 '57944 '68877 '80222 '8 '17933 '27407 '37226 '47400 '57944 '68877 '80222 '8 '17933 '27407 '37226 '47400 '57944 '68877 '80222 '8 '17933 '27407 '37226 '47400 '57944 '68877 '80222 '8 '17933 '27407 '37226 '47400 '57944 '68877 '80222 '8 '17933 '27407 '37226 '47400 '57944 '6887 '97722 '1180 '19940 '00 '14482 '29332 '44521 '60084 '76013 ' | 242 | 0.0 | 109022 | 18284 | 27792 | *37552 | *47569 | | .68396 | *79216 | .90313 | | 244 0°0 '08550 '18130 '27546 '37204 '47110 '57270 '67650 '78376 8933 245 0°0 '08779 '17783 '27021 '36500 '46227 '56209 '66454 '76970 '8776 8973 179 0°0 '09729 '19714 '29957 '40445 '51221 '62244 '73527 '85100 '9687 181 0°0 '09729 '19849 '30155 '40723 '51221 '62254 '73547 '85100 '9691 181 0°0 '09799 '19849 '30155 '40723 '51560 '62673 '74070 '85756 '9773 182 0°0 '09831 '19918 '30267 '40884 '51775 '62943 '74070 '85756 '9773 182 0°0 '09608 '19459 '29559 '39915 '50534 '61423 '72589 '84038 * 184 0°0 '12202 '24689 '37462 '50523 '63875 '77521 '91464 '1°5706 '1°2041 '185 0°0 '13617 '27488 '41614 '55996 '70634 '85528 '1°0678 '1°16083 * 187 0°0 '12312 '24946 '37894 '51148 '64700 '78541 '92662 '1°7053 * 1°1083 '8 '1°1090 '1°12599 '25478 '38638 '52080 '65805 '79814 * * * * * * * * * * * * * * * * * * * | | 0.0 | .08914 | 18060 | | | | | .67445 | .78087 | .88995 | | 245 0°0 '08779 '17783 '27021 '36500 '46227 '56209 '66454 '76970 '8776. 179 0°0 '09729 '19714 '29957 '40459 '51221 '62244 '73527 '85069 '96871. 180 0°0 '09712 '19691 '29937 '40448 '51221 '62244 '73527 '85069 '96871. 181 0°0 '09799 '19849 '30155 '40723 '51560 '62673 '74070 '85756 '9773. 182 0°0 '09831 '19918 '30267 '40884 '51775 '62943 '74388 '86113 '9812 '87870 '09688 '19459 '29559 '39915 '50534 '61423 '72589 '84038 '87870 '09688 '19459 '29559 '39915 '50534 '61423 '72589 '84038 '87870 '09688 '19459 '29559 '39915 '50534 '61423 '72589 '84038 '87870 '09688 '19459 '29559 '39915 '50534 '61423 '72589 '84038 '87870 '09691 '13617 '27488 '41614 '55996 '70634 '85528 '100678 '116083 '87870 '00 '12312 '24946 '37894 '51148 '64700 '78541 '92662 '107053 '87870 '00 '12312 '26522 '40204 '54168 '68415 '82945 '97758 '112855 '12823 '190 0°0 '12599 '25478 '38638 '52080 '65805 '79814 '8 '8 '8 '8 '191 0°0 '12830 '25946 '39350 '53044 '67030 '81310 '95887 '110763 '8 '191 0°0 '12830 '25946 '39350 '53044 '67030 '81310 '95887 '110763 '8 '12809 '00 '07793 '15888 '24290 '33004 '42035 '51389 '61071 '71086 '8 '8 '2910 '00 '07793 '15888 '24290 '33004 '42035 '51389 '61071 '71086 '8 '8 '2910 '00 '07793 '15888 '24290 '33004 '42035 '51389 '61071 '71086 '8 '8 '2910 '00 '07555 '15415, '23580 '32051 '40828 '49911 '59300 '68996 '8 '2918 '2918 '00 '078797 '17891 '27388 '37214 '47410 '57990 '68969 '80362 '9218 '254 '00 '08798 '1768 '27354 '37177 '47371 '57946 '68911 '80273 '9203 '254 '00 '08798 '17638 '27354 '37177 '47371 '57946 '68911 '80273 '9203 '254 '00 '08798 '17633 '27407 '37226 '47400 '57944 '68877 '80222 '8 '27407 '07688 '21978 '33592 '44501 '57985 '70812 '84059 '94284 '10792 '95060 '070788 '21978 '33572 '45573 '57985 '70812 '84059 '94284 '10792 '95060 '07688 '21978 '33592 '44551 '60044 '76101 '92437 '109151 '126247 '8 '1090 '00 '14483 '29332 '44551 '60044 '76101 '92437 '109151 '126247 '8 '1090 '00 '14483 '29332 '44551 '60044 '76101 '92437 '109151 '126247 '8 '1090 '00 '14483 '29332 '44551 '60044 '76101 '92437 '109151 '126247 '8 '1090 '00 '144 | | 0.0 | 08050 | .18130 | | | | | | 78376 | | | 180 0°0 '09712 '19691 '29937 '40448 '51221 '62254 '73547 '85100 '9691 '1881 0°0 '09799 '19849 '30155 '40723 '51560 '62673 '74070 '85756 '9773 '85100 '09631 '19918 '30267 '40684 '51775 '62943 '74388 '86113 '9812 '83 0°0 '09608 '19459 '29559 '39915 '50534 '61423 '72589 '84038 * 184 0°0 '12202 '24689 '37462 '50523 '63875 '77521 '91464 '1°5706 '170618 '185 0°0 '13617 '27488 '41614 '55996 '70634 '85528 '1°00678 '1°1608 '187 0°0 '12312 '24946 '37894 '51148 '64700 '78541 '2966 '1°07053 * 189 0°0 '13121 '26522 '40204 '54168 '68415 '82945 '97758 '1°12855 '1990 0°0 '12599 '25478 '38638 '52080 '65805 '79814 '8 * * * * * * * * * * * * * * * * * * | | | | | | | | | | | 87765 | | 180 0°0 '09712 '19691 '29937 '40448 '51221 '62254 '73547 '85100 '9691 '1881 0°0 '09799 '19849 '30155 '40723 '51560 '62673 '74070 '85756 '9773 '85100 '09631 '19918 '30267 '40684 '51775 '62943 '74388 '86113 '9812 '83 0°0 '09608 '19459 '29559 '39915 '50534 '61423 '72589 '84038 * 184 0°0 '12202 '24689 '37462 '50523 '63875 '77521 '91464 '1°5706 '170618 '185 0°0 '13617 '27488 '41614 '55996 '70634 '85528 '1°00678 '1°1608 '187 0°0 '12312 '24946 '37894 '51148 '64700 '78541 '2966 '1°07053 * 189 0°0 '13121 '26522 '40204 '54168 '68415 '82945 '97758 '1°12855 '1990 0°0 '12599 '25478 '38638 '52080 '65805 '79814 '8 * * * * * * * * * * * * * * * * * * | 179 | 0.0 | *09729 | 19714 | *29957 | *40459 | .21221 | .62244 | .73527 | ·85069 | ·96870 | | 181 0°0 '09799 '19849 '30155 '40723 '51560 '62673 '74070 '85756 '9773 '182 0°0 '09831 '19918 '30267 '40884 '51775 '62943 '74388 '86113 '9812 '8183 0°0 '09608 '19459 '29559 '39915 '50534 '61423 '72589 '84038 * 184 0°0 '12202 '24689 '37462 '50523 '63875 '77521 '91464 '1°05706 '1°2024 '855 0°0 '13617 '27488 '41614 '55996 '70634 '85528 '1°0678 '1°16083 * 187 0°0 '12312 '24946 '37894 '51148 '64700 '78541 '92662 '1°07053 * 189 0°0 '13121 '26522 '40204 '54168 '68415 '82945 '97758 '1°12855 '1°2823 '1°90 0°0 '12599 '25478 '38638 '52080 '65805 '79814 * * * * 191 0°0 '12830 '25946 '39350 '53044 '67030 '81310 '95887 '1°10763 * 192 0°0 '13156 '26577 '40265 '54222 '68449 '82947 '97718 '1°12765 '1°2809 '1°2748 | 180 | 0.0 | .09712 | 19691 | | *40448 | '51221 | .62254 | | .85100 | .96915 | | 182 0°0 '09831 '19918 '30267' '40884 '51775 '62943 '74388 '86113 '9812 '183 0°0 '09608 '19459 '29559 '39915 '50534 '61423 '72589 '84038 * 184 0°0 '12202 '24689 '37462 '50523 '63875 '77521 '91464 '105706 '12024 '85500 '0°0
'13112 '27488 '41614 '55996 '70634 '85528 '100678 '116083 * 187 0°0 '12312 '24946 '37894 '51148 '64700 '78541 '92662 '107053 * 189 0°0 '13121 '26522 '40204 '54168 '68415 '82945 '97758 '112855 '12823 '1000 '0°0 '12599 '25478 '38638 '52080 '65805 '79814 * 191 0°0 '12330 '25946 '39350 '53044 '67030 '81310 '95887 '110763 * 192 0°0 '13156 '26577 '40265 '54222 '68449 '82947 '97718 '112765 '12809 '191 0°0 '07793 '15888 '24290 '33004 '42035 '51389 '61071 '71086 * 248 0°0 '07793 '15888 '24290 '33004 '42035 '51389 '61071 '71086 * 229 0°0 '08794 '17919 '27388 '37214 '47410 '57990 '68969 '80362 '9218 '247 0°0 '08798 '17768 '27135 '36845 '46914 '57357 '68189 '79424 '91074 '252 0°0 '08798 '17933 '27407 '37226 '47400 '57946 '68911 '80273 '920 | 181 | 0.0 | *09799 | 19849 | '30155 | 40723 | •51560 | .62673 | | 85756 | .97733 | | 183 | 182 | 0.0 | | | | | 1 | 62943 | | | .98121 | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | l | | | | | | | | | * | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 184 | 0.0 | 12202 | •24689 | .37462 | .50523 | 63875 | .77521 | ·91464 | 1.05706 | 1.20248 | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 185 | 0.0 | 13617 | .27488 | | | | 85528 | 1.00678 | | * | | 189 | | 0.0 | | | *37894 | | | 78541 | | 1.07023 | * | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | 0.0 | | | | | | 82945 | •97758 | | 1.28236 | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | 1 | | | | | | | * | * | * | | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ | | | | | | 1 - | | | .05887 | 1.10263 | * | | 248 0 0 0 07497 15262 23306 31651 40310 449296 558620 68291 78316
249 0 0 0 07793 15888 24290 33004 42035 51389 61071 71086 *
251 0 0 07555 15415 23580 32051 40828 49911 59300 68996 *
246 0 0 08794 17919 27388 37214 47410 57990 68869 80362 9218
247 0 0 08728 17768 27135 36845 46914 57357 68189 79424 91076
252 0 0 08777 17891 27354 37177 47371 57946 68119 80273 9203
254 0 0 08648 17643 26987 36884 46740 57162 67957 79132 9069
256 0 0 08698 17933 27407 37226 47400 57944 68877 80222 *
193 0 0 10513 21416 32710 44396 56475 68948 81816 95080 10874
194 0 0 10431 21256 32476 44092 56107 68524 81345 94572 10820
195 0 0 10401 21186 32359 43926 55895 68274 81069 94284 1092
196 0 0 10788 21978 33572 45573 57985 70812 88057 99722 11180
197 0 0 11482 22583 34427 46641 59225 72178 85500 99193 11326
198 0 0 14273 228919 43942 59345 75130 91298 107850 124787 *
199 0 0 14482 29332 44551 60140 76101 92437 109151 126247 *
200 0 0 14483 29322 44521 60084 76013 92308 108969 125998 14339
201 0 0 12838 26021 39549 *
202 0 0 14483 29322 34501 88949 *
202 0 0 14483 29322 34501 88949 *
203 0 0 14283 26021 39549 *
204 0 0 14670 29679 45033 60741 76815 93266 110103 127333 14496 | | 0.0 | | | | | | | | | 1.58003 | | 249 0°0 '07793 '15888 '24290 '33004 '42035 '51389 '61071 '71086 * 251 0°0 '07555 '15415 '23580 '32051 '40828 '49911 '59300 '68996 * 246 0°0 '08794 '17019 '27388 '37214 '47410 '57990 '68969 '80362 '9218 252 0°0 '08777 '17891 '27354 '37177 '47371 '57946 '68911 '80273 '9203' 254 0°0 '08648 '17643 '26987 '36684 '46740 '57162 '67957 '79132 '9069 256 0°0 '08798 '17933 '27407 '37226 '47400 '57944 '68877 '80222 * 193 0°0 '10431 '21256 '32476 '44992 '56107 '68524 *81816 '95680 1'0874 194 0°0 '10431 '21256 '32476 | 6 | 9. | Hollow | Spheri | cal Pro | jectiles. | $w = \epsilon$ | 57.5 lbs. | ; $d = 8$ | 886 inc | hes. | | 249 0°0 '07793 '15888 '24290 '33004 '42035 '51389 '61071 '71086 * 251 0°0 '07555 '15415 '23580 '32051 '40828 '49911 '59300 '68996 * 246 0°0 '08794 '17019 '27388 '37214 '47410 '57990 '68969 '80362 '9218 252 0°0 '08777 '17891 '27354 '37177 '47371 '57946 '68911 '80273 '9203' 254 0°0 '08648 '17643 '26987 '36684 '46740 '57162 '67957 '79132 '9069 256 0°0 '08798 '17933 '27407 '37226 '47400 '57944 '68877 '80222 * 193 0°0 '10431 '21256 '32476 '44992 '56107 '68524 *81816 '95680 1'0874 194 0°0 '10431 '21256 '32476 | | 1 | | | | 1 | 1 | | <u> </u> | 1 | · · · · · · · · | | 251 0°0 0°7555 15415 23580 32051 40828 49911 *59300 68996 * 246 0°0 08794 17919 27388 *37214 *47410 *57390 68969 *80362 *9218 247 0°0 08728 17768 *27135 36845 *46914 *57357 *68189 *79424 *9107 252 0°0 08777 17891 *27354 37177 *47371 *57466 68911 *80273 *9203 254 0°0 08648 17643 *26987 *36845 *46740 *57162 *67957 *79132 *9069 256 0°0 08798 17933 *27407 *37226 *47400 *57944 *68877 *80222 * 193 0°0 *10431 *21256 *32476 *44992 *56107 *68524 *81816 *95080 1°0874 194 0°0 *10431 *21256 *32476 *4499 | 248 | | .07497 | | •23306 | .31621 | | | | | .78316 | | 246 0°0 '08794 '17919 '27388 '37214 '47410 '57990 '68969 '80362 '9218 247 0°0 '08728 '17768 '27135 '36845 '46914 '57357 '68189 '79424 '91076 252 0°0 '086777 '17891 '27354 '37177 '47371 '57946 '68189 '79424 '91076 254 0°0 '08648 '17643 '26987 '36684 '46740 '57162 '67957 '79132 '90694 256 0°0 '08798 '17933 '27407 '37226 '47400 '57162 '68877 '80222 * 193 0°0 '10431 '21256 '32476 '44992 '56107 '68524 '81345 '94572 10820 194 0°0 '10431 '21256 '32476 '44092 '56107 '68524 '81345 '94572 10820 195 0°0 '10431 '21256 ' | 249 | 0.0 | .07793 | •15888 | *24290 | '33004 | *42035 | 51389 | .61071 | .71086 | * | | 247 0°0 088728 117768 227135 36845 46914 157357 68189 79424 91076 252 0°0 08777 17891 27354 37177 157946 68911 80273 92037 254 0°0 08648 17643 26987 36684 46740 57162 67957 79132 99694 256 0°0 08798 17933 27407 37226 47400 57944 68877 80222 * 193 0°0 10431 21256 32476 444992 56107 68524 81816 95080 1°0874 194 0°0 10431 21256 32476 44092 56107 68524 81345 94572 1°0870 195 0°0 10401 21186 32359 43926 55895 68274 81669 94284 1°0922 1°1180 197 0°0 11108 22583 33427 46641 59225 </td <td>251</td> <td>0.0</td> <td>·07555</td> <td>15415,</td> <td>*23580</td> <td>*32051</td> <td>*40828</td> <td>.49911</td> <td>*59300</td> <td>.68996</td> <td>*</td> | 251 | 0.0 | ·07555 | 15415, | *23580 | *32051 | *40828 | .49911 | *59300 | .68996 | * | | 247 0°0 088728 117768 227135 36845 46914 157357 68189 79424 91076 252 0°0 08777 17891 27354 37177 157946 68911 80273 92037 254 0°0 08648 17643 26987 36684 46740 57162 67957 79132 99694 256 0°0 08798 17933 27407 37226 47400 57944 68877 80222 * 193 0°0 10431 21256 32476 444992 56107 68524 81816 95080 1°0874 194 0°0 10431 21256 32476 44092 56107 68524 81345 94572 1°0870 195 0°0 10401 21186 32359 43926 55895 68274 81669 94284 1°0922 1°1180 197 0°0 11108 22583 33427 46641 59225 </td <td>246</td> <td>0.0</td> <td>.08794</td> <td>17919</td> <td>.27388</td> <td>37214</td> <td>47410</td> <td>157990</td> <td>•68969</td> <td>*80362</td> <td>.92185</td> | 246 | 0.0 | .08794 | 17919 | .27388 | 37214 | 47410 | 157990 | •68969 | *80362 | .92185 | | 252 0 °0 08777 17891 27354 37177 47371 57946 68911 80273 9203 254 0 °0 08648 17643 26987 36684 46740 57162 67957 79132 90692 256 0 °0 08798 17933 27407 37226 47400 57944 68877 80222 * 193 0 °0 10513 221416 32710 44396 56475 68948 81816 95080 170872 194 0 °0 10431 22156 32476 44992 56107 68524 81345 94572 10820 195 0 °0 10431 22186 32359 43926 55895 68274 81609 94284 10792 196 0 °0 10788 221978 33572 45573 57985 70812 84057 97722 11180 197 0 °0 11108 22583 34427 46641 59225 </td <td>247</td> <td>0.0</td> <td>08728</td> <td>17768</td> <td>*27135</td> <td></td> <td></td> <td></td> <td>.68189</td> <td></td> <td>91076</td> | 247 | 0.0 | 08728 | 17768 | *27135 | | | | .68189 | | 91076 | | 254 O'O '08648 '17643 '26987 '36684 '46740 '57162 '67957 '79132 '90692 256 O'O '08798 '17933 '27407 '37226 '47400 '57944 '68877 '80222 * 193 O'O '10513 '21416 '32710 '44396 '56475 '68948 *81816 '95080 1'0870 194 O'O '10431 '21256 '32476 '44092 '56107 '68524 *81345 '94572 1'0820 195 O'O '10401 '21186 '32359 '43926 '55895 '68274 *81069 '94284 1'0792 196 O'O '10788 '21978 '33572 '45573 '57985 '70812 *84057 '97722 1'1180 197 O'O '11108 '22583 '34427 '46641 '59225 '72178 *85500 '99193 1'1326 198 O'O '14482 '29332 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>80273</td><td></td></td<> | | | | | | | | | | 80273 | | | 256 0 0 0 08798 17933 27407 37226 47400 57944 68877 80222 * 193 0 0 10513 21416 32710 44396 56475 68948 81816 95080 10874 194 0 0 10431 21256 32476 44092 56107 68524 81345 94572 10820 195 0 0 10401 21186 32359 43926 55895 68274 81069 94284 10992 196 0 0 10788 21978 33572 45573 57985 70812 84057 97722 11180 197 0 0 11108 22583 34427 46641 59225 72178 85500 99193 11326 198 0 0 14273 28919 43942 59345 75130 91298 107850 124787 * 199 0 0 14482 29332 44551 60040 76101 92437 109151 126247 * 199 0 0 14483 29322 44521 60084 76013 92308 108969 125998 14339 201 0 0 12838 26021 39549 * 10 10 12838 26021 39549 4503 60741 76815 93266 110103 127333 14496 | | | | | | | | | | *79132 | | | 194 0°0 '10431 '21256 '32476 '44092 '56107 '68524 '81345 '94572 1°0820 195 0°0 '10401 '21186 '32359 '43926 '55895 '68274 '81669 '94284 1°0792 196 0°0 '10788 '21978 '33572 '45573 '57985 '70812
'84057 '97722 1°1180 197 0°0 '11108 '22583 '34427 '46641 '59225 '72178 '85500 '99193 1°1326 198 0°0 '14482 '29332 '44551 '60140 '76101 '92437 1°09151 1'26247 * 200 0°0 '14483 '29332 '44521 '60084 '76013 '92308 1'08969 1'25998 1'4339 201 0°0 '12878 '26021 '39549 * * * * * * * * * * 202 0°0 '14670 '29679 '45033 '60741 '76815 '93266 1'10103 1'27333 1'4496 | | | | | | | | | .68877 | | * | | 194 0°0 '10431 '21256 '32476 '44092 '56107 '68524 '81345 '94572 1°0820 195 0°0 '10401 '21186 '32359 '43926 '55895 '68274 '81669 '94284 1°0792 196 0°0 '10788 '21978 '33572 '45573 '57985 '70812 '84057 '97722 1°1180 197 0°0 '11108 '22583 '34427 '46641 '59225 '72178 '85500 '99193 1°1326 198 0°0 '14482 '29332 '44551 '60140 '76101 '92437 1°09151 1'26247 * 200 0°0 '14483 '29332 '44521 '60084 '76013 '92308 1'08969 1'25998 1'4339 201 0°0 '12878 '26021 '39549 * * * * * * * * * * 202 0°0 '14670 '29679 '45033 '60741 '76815 '93266 1'10103 1'27333 1'4496 | 193 | 0.0 | .10213 | .21416 | .32710 | .44396 | .56475 | ·68948 | ·81816 | ·95080 | 1.08741 | | 195 0°0 10401 21186 32359 4326 55895 68274 81669 94284 1°0792 196 0°0 10788 21978 33572 45573 '57985 '70812 84057 '97722 1°1180 197 0°0 11108 '22583 '34427 '46641 '59225 '72178 '85500 '99193 1°1326 198 0°0 '14273 '28919 '43942 '59345 '75130 '91298 1°07850 1°24787 * 199 0°0 '14482 '29332 '44551 '60140 '76101 '92437 1°09151 1°26247 * 200 0° '14483 '29322 '44521 '60084 '76013 '92308 1°0899 1°25998 1'4339 201 0°0 '12838 '26021 '39549 * * * * * 202 0°0 '14670 '29679 '45033 '60741 '76815 | | 0.0 | | | | | | | 181345 | | 1.08206 | | 196 0°0 '10788 '21978 '33572 '45573 '57985 '70812 '84057 '97722 1'1180 197 0°0 '11108 '22583 '34427 '46641 '59225 '72178 '85500 '99193 1'1326 198 0°0 '14273 '28919 '43942 '59345 '75130 '91298 1'07850 1'24787 * 199 0°0 '14482 '29332 '44551 '60140 '76101 '92437 1'09151 1'26247 * 200 0°0 '14483 '29322 '44521 '60084 '76013 '92308 1'08969 1'25998 1'4339 201 0°0 '14670 '29679 '45033 '60741 '76815 '93266 1'10103 1'27333 1'4496 | | | | | | | | | | | 1.07921 | | 197 0°0 11108 22583 34427 46641 59225 72178 85500 99193 1*1326 198 0°0 14273 28919 43942 59345 75130 91298 1*07850 1*24787 * 199 0°0 14482 29332 44551 60140 76101 92437 1*09151 1*26247 * 200 0 14283 29322 44521 60084 76013 92308 1*08969 1*25998 1*4339 201 0°0 12838 26021 39549 * * * * * 202 0°0 14670 29679 45033 60741 76815 93266 1*10103 1*27333 1*4496 | | | | .21978 | | | | | | | 1.11808 | | 199 0 0 14482 29332 44551 60140 76101 92437 1 9151 1 26247 * 200 0 0 14483 29322 44521 60084 76013 92308 1 08969 1 25998 1 4339 * 201 0 0 12838 26021 39549 * 202 0 0 14670 29679 45033 60741 76815 93266 1 10103 1 27333 1 4496 | | 0.0 | | | | | | | | | 1.13261 | | 199 0 0 14482 29332 44551 60140 76101 92437 1 9151 1 26247 * 200 0 0 14483 29322 44521 60084 76013 92308 1 08969 1 25998 1 4339 * 201 0 0 12838 26021 39549 * 202 0 0 14670 29679 45033 60741 76815 93266 1 10103 1 27333 1 4496 | 198 | 00 | 14273 | ·28919· | 43942 | *59345 | .75130 | 91298 | 1.07850 | 1.24787 | * | | 200 0 0 14483 29322 44521 60084 76013 92308 1 08969 1 25998 1 4339 201 0 0 12838 26021 39549 * * * * * * * 202 0 0 14670 29679 45033 60741 76815 93266 1 10103 1 27333 1 4496 | • | 0.0 | | 29332 | | | 1 . 5 | 92437 | | | * | | 201 0 0 12838 26021 39549 * * * * * * * * * 202 0 0 14670 29679 45033 60741 76815 93266 1 10103 1 27333 1 4496 | | | | | | | | 92308 | | | 1.43390 | | 202 0.0 14670 29679 36033 60741 76815 93266 1.10103 1.52333 1.4496 | | | | | | * | * | * | * | * | * | | 203 0.0 .14453 .29263 .44436 .59977 .75890 .92178 1.08843 1.25888 1.4331 | | | | | | .60741 | .76815 | 93266 | 1.10103 | 1.27333 | 1.44961 | | | | | 14453 | | 44436 | 59977 | 75890 | | 1.08843 | 1.25888 | 1.43317 | Report dated July 8, 1879. 70. Times at which the Elongated Projectiles passed the Screens. | | 12 | *
.91174
.90106 | *
69986. | .93858
.93812 | .98362 | * * * | * * * | .79263
.78356
.78356 | |-------------------------|-----------------|----------------------------|----------------------------|----------------------------|----------------------------|-----------------------------|----------------------------|--------------------------------------| | | 11 | *
.82353
.81437 | *
*88608
*88675 | .84923
.84632
.84601 | 11106.
* | .75414
.74345
.74590 | 74611
74013
* | .71509
.70820
.71385
.70699 | | | 10 | *
.73634
.72866 | 78114
78763
78874 | .75855
.75559
.75526 | .79641
*
.80631 | .67347
.66374
.66594 | *
06099.
9£9999. | .63865
.63250
.63780
.63144 | | | 6 | .65019
.65019
.64392 | .68630
.69144
.69271 | .66915
.66636
.66587 | .70408 | .59390
.58524
.58711 | .58775
.58280
.56478 | .56331
.55789
.56276
.55692 | | part. | 8 | .55930
.56510
.56014 | .59347
.59749
.59871 | .58103
.57860
.57785 | .61264
*
.61986 | .\$1546
.50794
.50944 | .51028
.50585
.49039 | .48907
.48436
.48874
.48344 | | Screens 150 feet apart. | 7 | .47675
.48110
.47731 | .50265
.50575
.50680 | .49419
.49227
.49120 | .52212
* | .43818
.43183
.43297 | .43396
.43006
.41707 | 41593
41192
41575
41102 | | reens 1 | 9 | .39505
.39820
.39542 | .41384
.41619
.41702 | .40863
.40731
.40592 | .43256
.43276
.43761 | .36208
.35691
.35773 | .35879
.35545
.34483 | .34388
.34056
.34380
.33969 | | Š | N. | .31421
.31640
.31447 | .32704
.32877
.32940 | .32435
.32364
.32201 | .34398
.34450
.34806 | .28717
.28318
.28375 | 28202
28202
27368 | .27292
.27029
.27290 | | | 4 | .23425
.23570
.23446 | 24225
24346
24394 | .24135
.24116
.23947 | .25641
.25713
.25955 | .21348
.21063
.21102 | .21187
.20977
.20362 | .20305
.20306
.20306
.20038 | | | 8 | .15520
.15608
.15539 | 15948
16024
16061 | .15963
.15978
.15829 | .16987
17061
17205 | 14104
13925
13951 | 14012
13869
13466 | 13427
13299
13429
13244 | | | 64 | .07710
.07752
.07724 | .07873
.07909
.07934 | .07918
.07942
.07847 | .08439
.08491
.08554 | .06987
.06904
.06918 | 62690.
62690. | 59590.
96590.
96590. | | | H | 0.0 | 0.00 | 0.00 | 0.0 | 0.0 | 0.0 | 0.000 | | | No. of
Round | 461
462
463 | 464
465
466 | 467
468
469 | 470
471
472 | 473
474
475 | 476
477
478 | 479
480
481
482 | | | d inch. | 0.9 | ::: | ::: | ::: | ::: | ::: | :::: | | | w
lbs. | 0.02 | 70.0 | 0.01 | 70.0
70.0 | 50.0
50.0 | 50.0 | 50.0 | | | Form of
Head | Ogival
" | Flat
" | Hemi-
spherical | Ogival
" | | ::: | :::: | # EXPERIMENTS WITH THE CHRONOGRAPH. 71. Times at which the Ogival-headed Projectiles passed the Screens. | | 91 | 1.14598
1.10662 | *
1.18443
1.19497 | | 1.51324 | 1.47489 | 1.46883
1.36720 | |------------------------|-----------------|-------------------------------------|-------------------------------------|----------------------------|---|--|---| | | 15 | 1.06629 I'
1.02922 I'
1.05958 | 1.14957
1.10170
1.11086 | 1.13095
1.19803 | 1.19802
*
1.40838 | .37142 I.
*49506 II. | 1.36718 II.
1.23892
1.27279 II. | | | 14 | .98683 I
.95229 I | 1.05333 1
1.01963 1
1.02754 1 | 1.04651
1.10815 | | 1.16754 1.26918 1.37142
1.27214 1.38307 1.49506 | 1.26607 1
1.14667 1
1.17887 1 | | | 13 | .90766
.87584
.90184 | 93819 | * 69296. | 1.02202
1.03959
1.12917
1.20032
1.30407 | 1.16754
1.27214 | 1.16550 1.26607
1.05502 1.14667
1.08543 1.17887 | | | 12 | .82884
.79988
.82374 | .89283
.85734
.86307 | .90405
.87949
.93116 | .93430
.95055
I.09712 | 1.06667
1.16213
1.03961 | 1.06547
.96396
.99246 | | | 11 | 75041
72442
74614 | .80857
.77705
.78183 | .81850
.79691
.84390 | .84683
.86203
.99449 | .96654
1.05299
.94252 | .96598
.87349
.89995 | | part. | OI | .67242
.64946
.66903 | 72496 .69729 | 73355
71495
75736 | .75968
.77401
.89240 | .86713
.94468
.84597 | .86703
.78361
.80789 | | Screens 75 feet apart. | 6 | .\$9492
.\$7501
.\$9241 | .64200
.61804
.62118 | .64924
.63358
.67147 | .67293
.68647
.79086 | .76841
.83715
.74996 | .76862
.69433
.71629 | | creens 7 | 8 | .50105.
50107.
50108. | .55968
.53928
.54171 | .56561
.55275
.5867 | 58689.
62665. | .67035
.73034
.65448 | .67074
.60564
.62514 | | Š | 7 | .42765
.42765
.44067 | .47797
.46101
.46279 | .48269
.47242
.50139 | .50090
.51273
.58944 | .57292
.62419
.55951 | .57339
.51754
.53445 | | | 9 | .36609
.35478
.36562 | .39684
.38322
.38440 | .40050
.39256
.41707 | .41574
.42645
.48964 | .51866
.546504 | .47657
.43000
.44422 | | | 2 | 7116z.
0216z. | .31628
.30586
.30652 | 31316 | .33122
.34052
.39046 | .37986
.41374
.37106 | .38027
.34299
.35445 | | | 4 | .21709
.21085
.21735 | .23629
.22888
.22914 | .23830
.23421
.24955 | .25492
.25492
.29190 | .28416
.30942
.27756 | 28447
25650
26514 | | | n | .14382
.13986
.14420 | .15690
.15226
.15226 | .15824
.15570
.16620 | .16421
.16964
.19397 | .18897
.20569
.18455 | .18916
.17051
.17629 | | | C1 | .05957
.06957
.07174 | .07813
.07598
.07588 | .07882
.07763
.08304 | .08175
.08467
.09667 | .09426
.10255
.09203 | .08501
.08791 | | | н | 0.00 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | No. of
Round | 413 | 415
416
417 | 418
419
421 | 423
424
424 | 425
426
427 | 428
429
430 | | | inches. Round | 2.97 | ::: |
::: | ::: | ::: | ::: | | | 15 et | 6.50 | 6.50 | 6.44
6.50
6.47 | 6.56
6.47
6.66 | 6.56 | 6.63
6.47
6.47 | | 91 | * * * | 1.62001 | 2.01713
1.95669 | 1.98121
2.04625
1.53357 | 1.49754
1.57261
1.48443 | 1.93707
1.86544 | 1.89624
1.88484
2.07150 | 2.10153
2.41078
* | 2.38947 | |----|----------------------------|-------------------------------|-------------------------------|-------------------------------|-------------------------------|-------------------------------|-------------------------------|-------------------------------|--| | 15 | 1.54766
1.49462 | 1.50644 | *
1.87687
1.82044 | 1.84399
1.90338
1.42682 | 1.39369
1.46371
1.38153 | 1.48871
1.80265
1.73788 | 1.76631
1.75684
1.93074 | 1.95864
2.24633 | 2.22748
**
2.21853 | | 14 | *
I'43236
I'38340 | 1.39366
1.45625
1.45901 | 1.69147
1.73749
1.68506 | 1.70749
1.76144
1.32073 | 1.29042
1.35539
1.27918 | 1.37814
1.66905
1.61091 | 1.63690
1.62911
1.79038 | 1.81613
2.08233
2.24471 | 2.06590
2.23124
2.05675
2.24188 | | 13 | 1.31778
1.27285 | 1.28167
1.33979
1.34219 | 1.55658
1.59899
1.55054 | 1.57172
1.62043
1.21529 | 1.18772
1.24765
1.17739 | 1.26825
1.53625
1.48453 | 1.50803
1.50167
1.65041 | 1.67402
1.91883
2.06766 | 1.90473
2.05709
1.89542
2.06666 | | 12 | *
I.20392
I.16297 | 1.17047
1.22402
1.22612 | 1.42231
1.46136
1.41687 | 1.43667
1.48034
1.11049 | 1.08559
1.14049
1.07617 | 1.15903
1.40423
1.35874 | 1.37972
1.37454
1.51083 | 1.53232
1.75586
1.89141 | 1.74395
1.88336
1.73455
1.89189 | | 11 | 1.09078 | 08011.1
96801.1 | 1.28871
1.32458
1.28404 | 1.30235
1.34117
1.00633 | 0.98403
1.03392
0.97552 | 1.05047
1.27297
1.23351 | 1.25199
1.24774
1.37163 | 1.39103
1.59344
1.71594 | 1.58354
1.71005
1.57416
1.71757 | | OI | .97837
.94525 | .95045
.99463
.99624 | 1.15583
1.18862
1.15205 | 1.16876
1.20292
0.90280 | o.88305
o.92794
o.87544 | 0.94257
1.14246
1.10879 | 1.12484
1.12128
1.23281 | 1.25016
1.43157
1.54123 | 1.42349
1.53716
1.41426
1.54371 | | 6 | .85266
.86669
.83741 | .88164
.88104
.88245 | 1.02371
1.05346
1.02089 | 1.03590
1.06559
0.79990 | 0.78265
0.82254
0.77593 | o.83532
I.01269
o.98452 | 0.99824
0.99517
1.09473 | 1.10971
1.27025
1.36726 | 1.26379
1.36469
1.25487
1.37032 | | 8 | .74416
.75574
.73025 | 73363
76822
76943 | .89239
.91909
.89058 | 92919 | .68282
.71773
.67699 | .72871
.88365
.86064 | .87214
.86942
.95630 | .96967
1.10948
1.19400 | 1.19445
1.19264
1.09600
1.19740 | | 7 | .63626
.64553
.62378 | .62642
.65619
.65718 | .76192
.78549
.76105 | .77238
.79371
.59599 | .\$8356
.61350
.57861 | .62274
.75534
.73709 | .74648
.74404
.81861 | ·83003
·94926
I'02143 | 0.94548
1.02101
0.93767
1.02494 | | 9 | .52894
.53607
.51801 | .\$2001
.\$4495
.\$4570 | .63235
.65266
.63234 | .65914
.65914
.49498 | .48487
.50985
.48079 | .51740
.62775
.61381 | .62120
.61904
.68129 | .69079
.78960
.84954 | .78690
.84980
.77990
.85295 | | 2 | .42217
.42736
.41295 | .41440
.43449
.43500 | .50374
.52060
.50441 | .51186
.52548
.39462 | .38675
.40677
.38353 | .50086
.50086 | .49628
.49443
.54433 | .55193
.63052
.67832 | .62872
.67902
.62271
.68142 | | 4 | .31592
.31940
.30861 | .30959
.32478
.32508 | .37614
.38931
.37724 | .38274
.39273
.29493 | .28921
.30425
.28682 | .30858
.37465
.36785 | .37170
.37022
.40773 | .41344
.47202
.50777 | .50866
.46611
.51036 | | 3 | 20502. | 20558 | .24961
.25878
.25080 | .25439
.26090
.19593 | .19224
.20228
.19066 | .20510
.24911
.24511 | .24746
.24641
.27148 | .27530
.31410
.33788 | .31356
.33871
.31012
.33977 | | 0 | 10486
10572
10213 | 10238
10754
10758 | 12421
12901
12506 | 29260.
66621. | .09584
.10086
.09505 | .10224
.12423
.12250 | 12356
12300
13557 | 13749
15676
16863 | .15658
.16916
.15475
.16965 | | - | 0.00 | 0.00 | 000 | 0.00 | 0.00 | 0.00 | 000 | 0.0 | 0.000 | | | 432
433
434 | 436
436
437 | 438
439
440 | 14 | 444
465 | 744
844
64 | 450
451
452 | 453
454
455 | 456
457
458
459 | | | | | ::: | ::: | | | | ::: | :::: | | | 6.63 | 6.56
6.63
6.63 | 6.63
6.31
6.34 | 6.31
6.53
6.41 | 6.41
6.34
6.41 | 6.41
6.31
70.0 | 70.0 | 70.0 | 70.0 | Report dated Aug. 31, 1880. .83713 64154 64167 64726 74251 74427 73273 .64248 74929 .65665 12 .67482 .66954 .67013 .66010 .67338 .57918 .71322 70269 70234 75509 59173 .57848 .57835 .58372 -68185 58164 Times at which the Ogival-headed Projectiles passed the Screens. .51636 .51607 .52112 .59763 .59726 .58873 .51688 -63564 .60770 .61197 .62645 .62722 51914 52777 .60129 67425 .61401 19109. 01 .53489 .53897 .55156 .55320 .55320 46478 .45518 .45481 .45945 .52965 .52679 .52567 .51860 .53030 .45557 .55945 45761 54121 6 40278 .39494 .39455 .39871 46040 .46341 .46721 .47801 .48028 .46957 .45894 .45703 .45537 .44969 39525 39705 Screens 150 feet apart. ∞ 34179 33565 33528 33890 39908 38836 38637 38198 39158 33590 41125 39326 39669 40578 40845 43890 33746 .32382 .27751 .33925 32444 32742 33487 33770 36285 27884 28185 .27731 .27699 .28003 .29803 .32973 .32128 .32079 .31868 .31545 0 25695 25941 26527 26802 28798 22118 21967 .21993 .21967 .22211 23664 26151 25436 .25434 .25231 .25008 .25709 .22008 .26864 ເດ .16447 .16322 .16536 19443 .18903 .18726 .18586 .16351 .16331 .16515 117614 19138 16362 19942 .19078 99261 99261 19941 10871 10779 10893 12448 11653 .12665 .10812 .13158 12591 12718 12998 13187 14171 10805 10791 10915 12487 12353 12278 3 05389 .05355 .05347 .05410 .05358 06232 06296 06432 06540 .05782 .06367 .06156 98190. 11190. .06083 .06287 a 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 çi 2 No of Round 489 490 491 495 496 497 498 499 500 501 484 485 485 486 487 488 493 494 494 inches. 8.0 : : : : : : : : : : : : : ::::: 80.0 £ € : : : : : : : : : : : : : : : : 73. Report dated February 13, 1869. | | | 1 | | | | 1 | | | | | | |-------|---------|-------------|---------|------------|----------|------------|----------|------------|----------------|------------|---------| | Round | K_v | Round | K_v | Round | Κ̈ν | Round | K_v | Round | Κυ | Round | K_v | | 720 | f. s. | 880 | f. s. | 940 | f. s. | 100 | o f. s. | 104 | o f. s. | 108 | o f. s. | | 275 | 119.2 | 200 | 139.1 | Mean | 141.0 | cont | inued. | cont | inued. | cont | inued. | | -/3 | | 202 | 147.9 | | | 270 | 150.1 | 302 | 146.8 | 323 | 167.2 | | | | 203 | 143.7 | | | 271 | 143.9 | 303 | 147.6 | 337 | 159.7 | | 740 | f.s. | 262 | 139.9 | 960 | f. s. | 272
273 | 137.5 | 308
309 | 143.7
148.0 | 339
363 | 153.6 | | 1 ' ' | 113.5 | 264 | 138.6 | 198 | 143.6 | 277 | 138.9 | 310 | 145.5 | 369 | 197.5* | | 2/3 | | 268 | 144'4 | 199 | 139.2 | 279 | 138.9 | 311 | 147.6 | 370 | 158.4 | | | | 269 | 143.3 | 200 | 137.2 | 281 | 153.7 | 339 | 148.5 | 372 | 161.7 | | 760 | f. s. | 27 I
272 | 136.6 | 203 | 139.2 | 282
300 | 138.9 | 357
363 | 121.0 | 374
376 | 158.5 | | | | 282 | 145 3 | 261 | 141.7 | 301 | 146.5 | 369 | 210.4* | 377 | 163.5 | | 274 | 105.8 | 300 | 133.1 | 262 | 143.0 | 302 | 147.0 | 374 | 160.4 | 403 | 171.8 | | 2/3 | | 301 | 125.1 | 263
264 | 142.1 | 303 | 145.6 | Man | | Manu | | | Mear | 1 106.2 | 303
309 | 132.7 | 269 | 139.5 | 308
309 | 140.3 | Mear | 147.5 | Mean | 152.9 | | - | | 353 | 157.4 | 270 | 120.1 | 310 | 138.8 | | | | | | | | 355 | 173.1* | 271 | 141.7 | 311 | 144.1 | 1, | | | | | 78 | o f. s. | 356 | 158.4 | 272
273 | 133.5 | 339 | 142.1 | 100 | io f. s. | 110 | o f. s. | | Mean | 106.8 | Mear | 140.0 | 277 | 135.6 | 353
354 | 137.1 | Mean | 150.2 | Mear | 154.0 | | | | | | 282 | 137.1 | 357 | 161.9 | | | | | | | | | | 300 | 137.1 | 363 | 147.7 | | | | | | 80 | of. s. | 900 | f. s. | 301
302 | 142.6 | 374 | 163.1 | 108 | 30 f. s. | 112 | o f. s. | | 274 | 120.0 | Mear | 141.7 | 303 | 142.8 | Mean | 142.9 | 184 | 153.0 | 184 | 150.6 | | 282 | 120.3 | | | 308 | 136.2 | | | 185 | 130.0 | 187 | 153.4 | | 303 | 113.4 | | , | 309 | 139.8 | | | 187 | 145.2 | 189 | 147.6 | | Mean | 118.2 | 920 | of. s. | 353 | 145.3 | 102 | o f. s. | 189 | 148.4 | 190 | 148.5 | | Micai | | 198 | 144.3 | 354 | 144.9 | | • | 192 | 141.6 | 192 | 139.8 | | | | 199 | 141.6 | 356 | 118.1, | Mean | 144.0 | 196 | 158.2 | 193 | 149.1 | | 82 | o f. s. | 200 | 137.5 | 363 | 141.5 | | | 261
262 | 152.9 | 194 | 153.0 | | 1 | • | 203 | 141.4 | Mean | n 140'7 | | _ | 263 | 149.0 | 195 | 157.8 | | Mean | n 128·2 | 261 | 138.8 | | | 104 | to f. s. | 264 | 149.1 | 197 | 139.1 | | | | 262
263 | 141.3 | | | 185 | 131.6 | 266 | 152.8 | 261 | 126.9 | | 84 | o f. s. | 264 | 137.7 | 1 | o f. s. | 189 | 148.8 | 267 | 120.1 | 262
263 | 122.2 | | 1 | , | 268 | 144.7 | Mea | n 141.7 | 191 | 156.2 | 270
277 | 144.7 | 264 | 151.4 | | 264 | 137.4 | 269 | 141.1 | | | 261 | 149.0 | 279 | 145.7 | 266 | 155.2 | | 269 | 144.1 | 270
271 | 120.1 | 100 | oo f. s. | 262 | 146.9 | 281 | 150.6 | 267 | 158.7 | | 271 | 133.2 | 271 | 139.3 | | | 263 | 149.6 | 282
290 | 145.4 | 270
277 | 150.1 | | 274 | 133.3 | 277 | 131.9 | 185 | 131.6 | 264
269 | 135.8 | 290 | 121.9 | 279 | 148.6 | | 282 | 124.8 | 282 | 133.7 | 192 | 145.9 | 270 | 120.1 | 300 | 141.9 | 281 | 149.2 | | 303 | 127.2 | 300 | 135.3 | 198 | 142.5 | 271 | 145.9 | 301 | 149.4 | 282
288 | 147.7 | | 355 | 160.5, | 303 | 138.6 | 199 | 138.7 | 273 | 142.7 | 302
303 | 146.7 |
290 | 164.7 | | | | 309 | 137.3 | 200 | 135.2 | 277
279 | 141 9 | 304 | 150.5 | 291 | 162.0 | | Mea | n 133.9 | 353 | 152.2 | 203 | 136.6 | 281 | 152.1 | 308 | 146.8 | 292 | 150.7 | | | | 354 | 150.7 | 261 | 145.5 | 282 | 142.9 | 309 | 150.9 | 295 | 162.7 | | 86 | o f. s. | 355
356 | 160.0 | 262 | 144.9 | 290
292 | 153.1 | 310 | 149.3 | 300 | 149.9 | | | | | ' | 263
264 | 144.2 | 300 | 140.4 | 312 | 128.3 | 302 | 146.2 | | Mea | n 136·4 | Mean | n 141.1 | 269 | | 301 | 148.2 | 320 | 171.2 | 303 | 149.5 | | | - | i | | I | | 1 | | l . | | | | | Round | K_{ν} | Round | K, | Round | K_{ν} | Round | Κ̈́υ | Round | <i>Κ</i> _υ | Round | K_{v} | |------------|----------------|------------|---------|------------|----------------|------------|----------------|------------|-----------------------|------------|------------------| | 112 | o f. s. | 116 | o f. s. | 120 | o f. s. | 124 | o f. s. | 126 | o f. s. | 1 28 | o f. s. | | | inued. | | inued. | | inued. | 193 | 147.8 | Mean | 151.4 | cont | inued. | | 304 | 149.6 | 291 | 158.2 | 281 | 146.5 | 194 | 150.8 | | - 3- 4 | 377 | 152.5 | | 308 | 149.6 | 292 | 149.3 | 282 | 151.8 | 195 | 153.6 | l , | _ | 378 | 150.9 | | 309 | 153.5 | 295 | 159.0 | 285 | 154'3 | 196 | 154.1 | 128 | 0 f. s. | 382 | 158.4 | | 310 | 152.1 | 300 | 144'4 | 287 | 157.8 | 197 | 139.1 | 181 | 149.1 | 385 | 163.8 | | 311 | 152.0 | 301 | 149'9 | 288 | 156.3 | 281 | 145.5 | 182 | 144.7 | 386 | 162.1 | | 312
320 | 156.0 | 302
303 | 146.4 | 290
291 | 151.7 | 285
287 | 121.0 | 193 | 1.17:5 | 388
389 | 146.5 | | 323 | 163.6 | 304 | 149'1 | 292 | 147.7 | 288 | 152.7 | 194 | 149.8 | 394 | 156·8
 149·3 | | 337 | 158.0 | 310 | 153.8 | 295 | 155.5 | 290 | 149.5 | 195 | 150.8 | 395 | 153.4 | | 338 | 155.2 | 311 | 152.6 | 296 | 153.7 | 291 | 150.9 | 196 | 152.7 | 396 | 152.7 | | 339 | 158.6 | 312 | 153.7 | 297 | 151.0 | 292 | 146.0 | 197
281 | 138.8 | 399 | 150.0 | | 344 | 162.2 | 320 | 163.0 | 300 | 145.2 | 295 | 152.0 | 285 | 148.1 | 401 | 149.5 | | 360 | 160.9 | 323 | 160.5 | 301 | 149.2 | 296 | 150.0 | 286 | 122.2 | 402 | 153.6 | | 363 | 156.7 | 337 | 156.2 | 302 | 146.3 | 297 | 148.5 | 287 | 150.5 | 403 | 151.2 | | 366
369 | 186.1 | 338
339 | 155.9 | 303
304 | 149°5
148°6 | 299
300 | 144.9 | 288 | 149.1 | Moon | 150.1 | | 370 | 158.0 | 344 | 100.1 | 310 | 154.5 | 301 | 148.3 | 290 | 147'1 | Mean | 1501 | | 371 | 159.0 | 345 | 165.2 | 311 | 152.3 | 302 | 146.3 | 291 | 147.5 | | | | 372 | 160.5 | 350 | 161.6 | 312 | 151.5 | 303 | 149.2 | 292 | 144.5 | 120 | o f. s. | | 374 | 156.3 | 360 | 157.8 | 320 | 159.3 | 304 | 148.2 | 294
295 | 147.1 | | • | | 376 | 167.7 | 363 | 157.8 | 323 | 157.0 | 310 | 154.3 | 296 | 148.1 | Mean | 148.6 | | 377 | 160.9 | 366 | 160.7 | 337 | 154.4 | 311 | 151.6 | 297 | 146.0 | | | | 378
403 | 163.8 | 369 | 176.0 | 338 | 155.8 | 312 | 149.4 | 299 | 142.5 | | o f. s. | | 403 | 10/4 | 370
371 | 122.2 | 344
345 | 157.6 | 320
323 | 155.7 | 300 | 147.4 | 132 | 0 /. 3. | | Mean | 155'4 | 372 | 120.1 | 350 | 157.8 | 337 | 152.4 | 301 | 146.8 | 179 | 133.3 | | | | 374 | 154.0 | 351 | 158.4 | 344 | 155.5 | 302 | 146.1 | 180 | 133.7 | | | | 376 | 163.1 | 360 | 155.0 | 345 | 154.0 | 303 | 148.4 | 181 | 147.0 | | 114 | o f. s. | 377 | 158.8 | 363 | 158.4 | 350 | 154.0 | 304 | 147.8 | 182 | 142.7 | | Mean | 155.3 | 378 | 160.4 | 366 | 157.6 | 351 | 154.4 | 311 | 120.1 | 193 | 147.2 | | | .333 | 382
389 | 171.3 | 367 | 100.1 | 360 | 152.2 | 312 | 147.4 | 195 | 148.0 | | | | 403 | 163.5 | 369
370 | 167.0 | 363 | 158.5 | 320 | 152.2 | 196 | 151.8 | | 116 | of. s. | 403 | .03 2 | 371 | 125.5 | 364
366 | 154.2
154.2 | 323 | 150.9 | 197 | 138.2 | | 184 | 148 2 | Mean | 156.4 | 372 | 157.2 | 367 | 156.3 | 324 | 152.2 | 246 | 162.1 | | 187 | 159.6 | | | 374 | 151.9 | 369 | 159.5 | 325 | 155.1 | 247 | 159.6 | | 190 | 147.6 | | | 376 | 158.7 | 370 | 153.3 | 336 | 151.4 | 252 | 123.9 | | 193 | 148.8 | 0 | , | 377 | 156.4 | 37 I | 149.1 | 337 | 150.2 | 254
281 | 149.1 | | 194 | 152.5 | 118 | o f. s. | 378 | 157.0 | 372 | 155.0 | 345 | 148.3 | 285 | 145.1 | | 195 | 1576 | Mean | 156.2 | 382 | 166.8 | 374 | 149.8 | 350 | 150.2 | 286 | 151.7 | | 196 | 156.9 | | | 389 | 106.9 | 376
377 | 154°5
154°6 | 351 | 151.5 | 287 | 146.7 | | 197 | 138.7 | | | 396 | 160 1 | 378 | 123.0 | 360 | 149.6 | 288 | 145.5 | | 262 | | | , | 399 | 156.5 | 382 | 162.5 | 363 | 158.5 | 290 | 144.6 | | 263 | 153°2
158°7 | 120 | o f. s. | 401 | 155.9 | 385 | 169.7 | 364 | 149.4 | 291 | 144.5 | | 264 | 1536 | 184 I | 146.9 | 403 | 129.1 | 386 | 160.2 | 366
367 | 151.8 | 292 | 142'4 | | 267 | 164'7 | 187 | 165.2 | Mana | 15 | 389 | 161.8 | 368 | 149.4 | 294
295 | 144.0 | | 277 | 149.8 | 193 | 148-3 | wean | 154.9 | 394 | 152.6 | 369 | 1526 | 296 | 145.5 | | 279 | 151.3 | 194 | 151.7 | | | 396 | 156 4 | 370 | 151.0 | 297 | 143.8 | | 281 | 147.8 | 195 | 1560 | | | 399 | 153.2 | 371 | 146.1 | 299 | 140.5 | | | 149.8 | 196 | 155.6 | 122 | o f. s. | 403 | 155.3 | 372 | 152.3 | 300 | 148.3 | | 285
288 | 100.3 | 197
264 | 139·0 | | - | | | 374 | 147.8 | 301 | 145.5 | | 290 | 153.7 | 279 | 153.7 | Mean | 15412 | Mean | 152.7 | 375 | 145.1 | 302 | 146.0 | | | 33. | .,, | 557 | | | | | 376 | 150.4 | 303 | 147.6 | | Round | K_v | Round | K_v | Round | K_v | Round | K_{v} | Round | K_v | Round | K_v | |------------|----------------|------------|----------------|------------|----------------|------------|----------------|------------|---------|------------|---------| | 1320 | o f. s. | 136 | o f. s. | 136 | o f. s. | 140 | o f. s. | 140 | o f. s. | 144 | o f. s. | | conti | nued. | 179 | 134.0 | conti | nued. | conti | nued. | | inued. | | inned. | | 304 | 147.4 | 180 | 133.7 | 374 | 144.0 | 256 | 149.0 | 373 | 138.5 | 252 | 147.1 | | 310 | 152.2 | 181 | 142.7 | 375 | 139.3 | 281 | 140.8 | 374 | 142.2 | 254 | 142'3 | | 311 | 148.6 | 182 | 142.2 | 376 | 142'4 | 283 | 137.9 | 375 | 136.5 | 256 | 143.3 | | 312 | 145'4 | 183 | 142 4 | 377 | 148.2 | 285 | 139.2 | 376 | 138.6 | 281 | 139.7 | | 316 | 153.9 | 193 | 146.9 | 378 | 145.4 | 286 | 144.4 | 377 | 146.6 | 283 | 137.8 | | 317 | 152·9
148·9 | 194 | 148.5 | 380
381 | 155.4 | 287
288 | 140.0
138.8 | 378 | 142.8 | 285
286 | 136·9 | | 320 | 148.3 | 195 | 151.5 | 382 | 144.2 | 290 | 139.2 | 379
380 | 151.4 | 287 | 136.9 | | 324 | 149.5 | 204 | 138.9 | 385 | 152.2 | 291 | 137.9 | 381 | 141.2 | 288 | 135.4 | | 325 | 151.4 | 246 | 157.3 | 386 | 129.1 | 292 | 138.6 | 382 | 146.4 | 290 | 137.0 | | 336 | 148.6 | 247 | 155.3 | 387 | 148.0 | 294 | 138.5 | 383 | 167.1 | 291 | 134.9 | | 337 | 148.9 | 252 | 152.0 | 388 | 140.8 | 295 | 139.6 | 385 | 147.0 | 292 | 136.2 | | 349 | 128.2 | 254 | 146.8 | 389 | 146.8 | 296 | 140.4 | 386 | 122.2 | 294 | 135.2 | | 350 | 147.0 | 256 | 156.4 | 390 | 165.1 | 297 | 139.5 | 387 | 144.8 | 295 | 136.8 | | 351
360 | 147.8 | 281
285 | 141.8 | 392 | 152.8 | 299
300 | 136.0 | 388
389 | 138.2 | 296
297 | 138.0 | | 363 | 157.7 | 286 | 148.0 | 394
395 | 146.4 | 301 | 141.5 | 390 | 156.4 | 299 | 134.0 | | 364 | 144.3 | 287 | 143.5 | 396 | 146.0 | 302 | 145.8 | 392 | 145.3 | 301 | 138.8 | | 366 | 148.9 | 288 | 142.0 | 398 | 113.6 | 303 | 145.2 | 394 | 140.3 | 302 | 145.7 | | 367 | 149.0 | 290 | 142.1 | 399 | 143.8 | 304 | 146.6 | 395 | 143.0 | 303 | 144.3 | | 368 | 146.5 | 291 | 141.0 | 400 | 140.4 | 310 | 148.3 | 396 | 142.8 | 304 | 146.3 | | 369 | 146.8 | 292 | 140.6 | 401 | 143.0 | 311 | 143.7 | 398 | 113.6 | 310 | 145.8 | | 370 | 148.4 | 294 | 141.0 | 402 | 146.3 | 312 | 141.7 | 399 | 140.8 | 311 | 140.7 | | 371
372 | 143.4 | 295
296 | 142.9 | 403 | 144.4 | 316
317 | 144.8 | 400
401 | 137.5 | 312
315 | 138.7 | | 374 | 145.9 | 297 | 141.6 | 406 | 145.7 | 318 | 128.1 | 402 | 142.8 | 316 | 140.6 | | 375 | 142.1 | 299 | 138.1 | 408 | 144.4 | 320 | 142.6 | 403 | 141.0 | 317 | 144.1 | | 376 | 146.3 | 300 | 149.1 | | | 321 | 141.7 | 404 | 140.7 | 318 | 128.1 | | .377 | 150.4 | 301 | 143.3 | Mean | 145.2 | 323 | 142.9 | 405 | 149.9 | 320 | 139.6 | | 378 | 148.1 | 302 | 145.9 | | | 324 | 143.4 | 406 | 142.3 | 321 | 138.9 | | 381 | 147.5 | 303 | 146.6 | | | 325 | 144.3 | 408 | 141.6 | 323 | 140.4 | | 382
385 | 154·4
158·0 | 304
310 | 147.0 | 138 | o f. s. | 327 | 139.8 | Mear | 142.3 | 324
325 | 140.7 | | 386 | 161.7 | 311 | 146.1 | Mean | 143.5 | 329
331 | 1499 | Mean | 142 3 | 327 | 137.7 | | 387 | 151.3 | 312 | 143.2 | | -433 | 332 | | | | 329 | 144.8 | | 388 | 143.6 | 316 | 149.0 | | | 334 | 138.8 | 1/2 | o f. s. | 330 | 132.9 | | 389 | 121.2 | 317 | 150.0 | 140 | of.s. | 336 | 142.5 | | | 331 | 139.7 | | 394 | 146.5 | 320 | 145.7 | l . | | 341 | 146.2 | Mear | 140.7 | 332 | 132.3 | | 395 | 149 8 | 323 | 145.5 | 179
180 | 133.9 | 342 | 141.8 | | | 334 | 134.8 | | 396 | 149.3 | 324
325 | 146·4
147·8 | 181 | 134.4 | 343
346 | 139.4 | | | 336
341 | 142.6 | | 399 | 146.8 | 336 | 147.5 | 182 | 140.6 | 347 | 142.1 | 144 | o f. s. | 342 | 139.1 | | 401 | 146.0 | 343 | 139.0 | 183 | 138.3 | 349 | 147.5 | 179 | 133.3 | 343 | 139.7 | | 402 | 149.9 | 349 | 152.8 | 193 | 146.6 | 350 | 140.2 | 180 | 136.1 | 346 | 138.4 | | 403 | 147.9 | 350 | 143.7 | 194 | 148.2 | 351 | 141.3 | 181 | 134.2 | 347 | 140.3 | | 404 | 147.3 | 351 | 144.2 | 195 | 144.8 | 352 | 138.9 | 182 | 137.0 | 349 | 142.6 | | 406 | 149.2 | 364 | 139.2 | 204 | 138.9 | 364 | 134'1 | 183 | 138.6 | 350
351 | 137.5 | | Mean | 147.6 | 365
366 | 146.1 | 206
242 | 134.0
144.4 | 365
366 | 143°I | 204
206 | 133.6 | 351 | 136.9 | | -I Cull | -4/0 | 367 | 145.6 | 243 | 147 4 | 367 | 143.1 | 242 | 144.6 | 364 | 128.9 | | | | 368 | 143.8 | 244 | 145.4 | 368 | 141.3 | 243 | 139.9 | 365 | 140.1 | | 13/10 | of. s. | 369 | 142'4 | 246 | 152.8 | 369 | 138.9 | 244 | 141.8 | 366 | 140.3 | | | | 370 | 145.6 | 247 | 1510 | 370 | 142.7 | 245 | 146.6 | 367 | 139.1 | | Mean | 146.8 | 371 | 140.9 | 252 | 149.7 | 371 | 138.7 | 246 | 148.3 | 368 |
139.0 | | | | 372 | 146.0 | 254 | 144.2 | 372 | 142'4 | 247 | 146.6 | 369 i | 136.5 | | Round | Λ° ₂₁ | Round | 1.0 | Round | K_v | Round | ۲- | Round | ٨٠, | Round | Λ * _υ | |------------|------------------|------------|----------------|------------|----------|------------|---------|------------|----------|------------|-------------------------| | 144 | of.s. | 148 | o f. s. | 148 | o f. s. | 152 | o f. s. | | o f. s. | | o f. s. | | con | tinnal. | cont | inued. | conti | inued. | conti | inued. | conti | nued. | conti | nued. | | 370 | 139.6 | 244 | 138.2 | 367 | 136.0 | 243 | 134'4 | 368 | 134.7 | 246 | 137.1 | | 371 | 136.2 | 245 | 142'1 | 368 | 136.8 | 244 | 134.8 | 369 | 133.1 | 247 | 133.2 | | 372 | 138 3 | 246 | 144'3 | 369 | 134.5 | 245 | 137.7 | 370 | 132.9 | 248 | 134.6 | | 373 | 135 5 | 247 | 142.3 | 370 | 136.5 | 246 | 140.2 | 371 | 132.4 | 249 | 127.0 | | 374 | 140'4 | 252 | 144.3 | 371 | 134.4 | 247 | 138.0 | 372 | 129.0 | 252 | 138.4 | | 375 | 133.7 | 254 | 140'2 | 372 | 133.8 | 252 | 141.4 | 373 | 130.2 | 254
256 | 136.6 | | 376 | 134.8
144.8 | 256
281 | 138·9
138·8 | 373 | 132.7 | 254
256 | 138.3 | 374 | 128.8 | 257 | 140.3 | | 377
378 | 140.3 | 283 | 137.7 | 375 | 131.5 | 281 | 135.3 | 376 | 128.0 | 258 | 137.3 | | 379 | 134.8 | 285 | 134.3 | 376 | 131.4 | 283 | 137.6 | 378 | 135.9 | 260 | 144.8 | | 380 | 147'4 | 286 | 137.6 | 377 | 143.5 | 285 | 131.8 | 379 | 131.6 | 285 | 129.4 | | 381 | 138.2 | 287 | 133.9 | 378 | 138.1 | 286 | 134.3 | 380 | 139.2 | 286 | 131.5 | | 382 | 142.2 | 288 | 132.6 | 379 | 133.5 | 287 | 131.0 | 381 | 132.7 | 287 | 128.3 | | 383 | 158.3 | 290 | 134.4 | 380 | 143.4 | 288 | 129.6 | 382 | 134.7 | 288 | 126.6 | | 385 | 141.7 | 291 | 132.0 | 381 | 135.6 | 290 | 131.9 | 383 | 140.0 | 290
291 | 129.4 | | 386
387 | 150.9 | 292
294 | 134.4 | 382
383 | 138.6 | 291
292 | 132.4 | 385
386 | 131.9 | 291 | 130.3 | | 388 | 135.7 | 295 | 134.1 | 385 | 136.8 | 294 | 130.2 | 387 | 135.8 | 293 | 153.5 | | 389 | 136.5 | 296 | 135.7 | 386 | 145.8 | 295 | 131.2 | 388 | 130.8 | 294 | 128.1 | | 390 | 147.4 | 297 | 135.6 | 387 | 138.7 | 296 | 133.2 | 389 | 126.4 | 295 | 128.9 | | 392 | 137.9 | 299 | 132.0 | 388 | 133.1 | 297 | 133.8 | 390 | 128.9 | 296 | 131.3 | | 394 | 137.5 | 301 | 136.4 | 389 | 131.4 | 299 | 130.5 | 392 | 124.1 | 297 | 132.0 | | 395 | 139.8 | 302 | 145.6 | 390 | 138.2 | 301 | 133.7 | 394 | 132.1 | 299 | 128.4 | | 398 | 139.7 | 303 | 143.0 | 392 | 130.9 | 310 | 134.3 | 395
396 | 133.7 | 301 | 136.6 | | 399 | 138.0 | 310 | 143.0 | 394
395 | 136.7 | 312 | 136.4 | 398 | 113.6 | 311 | 131.0 | | 400 | 134.8 | 311 | 137.5 | 396 | 136.7 | 315 | 135.1 | 399 | 132.6 | 312 | 134.8 | | 401 | 137.2 | 312 | 138.1 | 398 | 113.6 | 316 | 133.3 | 400 | 129.6 | 315 | 133.4 | | 402 | 13914 | 315 | 136.8 | 399 | 135.3 | 317 | 138.3 | 401 | 131.9 | 316 | 130.1 | | 403 | 137.8 | 316 | 136.8 | 400 | 132.1 | 318 | 128.1 | 402 | 132.9 | 317 | 135.3 | | 404 | 137.6 | 317
318 | 141°2 | 401 | 134.5 | 320 | 134.0 | 403 | 131.7 | 320 | 131.4 | | 406 | 139.0 | 320 | 136.8 | 402
403 | 136.1 | 321
323 | 133.7 | 404 | 138.0 | 321 | 132.3 | | 408 | 138.9 | 321 | 136.3 | 404 | 134.5 | 324 | 132.3 | 406 | 132.7 | 323 | 133.2 | | , | | 323 | 138.0 | 405 | 141.9 | 325 | 134.3 | 408 | 133.2 | 324 | 132.8 | | Mea | n 139°2 | 324 | 138.0 | 406 | 135.8 | 326 | 153.7 | 409 | 136.9 | 325 | 131.5 | | | | 325 | 137.6 | 408 | 136.2 | 327 | 133.2 | | | 326 | 146.1 | | | r . r | 327
329 | 135.6 | Man | 226:- | 329 | 134.7 | Mean | 133.6 | 327 | 131.6 | | 1.4 | 65 f. s. | 330 | 130.0 | Mean | n 136.4 | 330 | 128.9 | 1 | | 329 | 129.6 | | Mea | m 137.8 | 331 | 138.2 | 1 | | 332 | 134.9 | ١., | | 330 | 135.3 | | | | 332 | 134.9 | 150 | 00 f. s. | 334 | 127.5 | 154 | 10 f. s. | 332 | 134.9 | | | | 334 | 131.0 | | | 336 | 133.0 | Mean | n 132.4 | 334 | 124.5 | | 1.4 | 80 f. s. | 336 | 136.1 | Mea | n 134.8 | 341 | 136.3 | 1 | | 336 | 129.9 | | 179 | 1 1327 | 341 | 139.3 | 1 | | 342 | 135.0 | 1 | | 341 | 133.4 | | 180 | | 342 | 136-9 | | | 343 | 139.8 | 156 | 50 f. s. | 342 | 133.3 | | 181 | 131.5 | 346 | 134'4 | 15: | eo f. s. | 346 | 133.3 | 204 | 135.6 | 343
346 | 139.7 | | 182 | | 347 | 136.7 | 179 | 131.7 | 349 | 133.3 | 205 | 123.4 | 347 | 120.0 | | 183 | | 349 | 137.8 | 180 | 137.3 | 350 | 131.2 | 206 | 130.3 | 349 | 128.7 | | 204 | | 350 | 134'5 | 183 | 126.7 | 351 | 132.3 | 241 | 129.3 | 350 | 128.6 | | 200 | 133.0 | 351 | 135.3 | 204 | 136.6 | 352 | 133.5 | 242 | 135.6 | 251 | 129.5 | | 241 | | 352
365 | 135.0 | 206 | 131.6 | 365 | 134'4 | 243 | 131.4 | 352 | 131.2 | | 243 | | 366 | 137.2 | 241 | 138.3 | 366
367 | 134.0 | 244 | 133.9 | 365
366 | 131.7 | | 1 | , 3 | 1 | 3/ - | 1 -4. | | 130/ | | 1 -43 | 1339 | 300 | 1307 | | Round | Κ̈υ | Round | K_v | Round | Λ, | Round | Α̈́υ | Round | Kυ | Round | K_v | |------------|---------|------------|---------|------------|---------|------------|---------|------------|---------|------------|---------| | 156 | o f. s. | 166 | o f. s. | | o f. s. | | conti | nued. | cont | inued. | cont | inued. | cont | inued. | Mean | 124.0 | conti | inued. | | 373 | 128.3 | 257 | 1350 | 395 | 127.8 | 294 | 123.6 | | | 379 | 127.0 | | 374 | 135.1 | 258 | 132.7 | 396 | 128.3 | 295 | 124.0 | | | 380 | 124.6 | | 375 | 126.4 | 259
260 | 121.8 | 398 I | 113.6 | 296
297 | 127.0 | 168 | o f. s. | 381 | 121.4 | | 378
379 | 130.3 | 285 | 127.0 | 400 | 124.8 | 299 | 125.1 | 205 | 120.8 | 385
394 | 114.9 | | 380 | 135.7 | 286 | 128.1 | 401 | 127.0 | 301 | 125.0 | 241 | 128.8 | 395 | 122.3 | | 381 | 129.7 | 287 | 125.6 | 402 | 126.8 | 310 | 129.5 | 245 | 122.1 | 396 | 153.1 | | 382 | 130.7 | 288 | 123.8 | 403 | 126.0 | 311 | 124.4 | 247 | 131.1 | 398 | 113.6 | | 383 | 130.0 | 290 | 126.9 | 404 | 126.0 | 312 | 131.6 | 248 | 127.3 | 399 | 122.2 | | 385 | 127.3 | 291 | 123.7 | 405 | 130.6 | 315 | 130.1 | 249 | 122.5 | 400 | 150.3 | | 386 | 133.4 | 292 | 128.2 | 406 | 126.7 | 316 | 124.7 | 251 | 117.9 | 401 | 122.2 | | 387 | 132.9 | 293 | 125.8 | 408 | 128.4 | 317 | 129.4 | 253 | 121.5 | 402 | 121.1 | | 394
395 | 129.5 | 294
295 | 126.4 | 409
410 | 124.0 | 320
321 | 126.6 | 254
255 | 112.0 | 403
404 | 120.6 | | 396 | 131.1 | 296 | 120.1 | 4.0 | | 322 | 127.9 | 257 | 152.5 | 405 | 123.7 | | 398 | 113.6 | 297 | 130.3 | Mean | 128.1 | 323 | 129.2 | 258 | 155.0 | 406 | 151.1 | | 399 | 129.9 | 299 | 126.7 | | | 324 | 128.2 | 259 | 116.5 | 408 | 123.6 | | 400 | 127.2 | 301 | 158.1 | | | 325 | 125.2 | 260 | 129.5 | 409 | 116.0 | | 401 | 129.4 | 310 | 133.5 | 162 | o f. s. | 326 | 131.3 | 285 | 122.4 | 410 | 151.1 | | 402 | 129.8 | 311 | 127.7 | | - | 327 | 127.7 | 286 | 122.2 | 411 | 110.0 | | 403 | 128.8 | 312 | 133.5 | Mean | 126.7 | 329 | 119.8 | 287
288 | 120.6 | Maan | | | 404 | | 315 | 131.4 | | | .330 | 123.6 | 290 | 118.5 | Mean | 122.4 | | 405 | 134.3 | 316 | | | | 341
346 | 110.1 | 291 | 1186 | | | | 408 | 130.0 | 320 | 132.2 | 104 | o f. s. | 347 | 123.4 | 292 | 124.0 | | | | 409 | 129.7 | 321 | 128.9 | 204 | 131.9 | 349 | 150.1 | 293 | 121.9 | 170 | o f. s. | | 410 | 126.9 | 322 | 131.8 | 205 | 121.6 | 350 | 123.0 | 294 | 121.6 | Mean | 121.1 | | | | 323 | 131.3 | 206 | 128.6 | 351 | 124.2 | 295 | 121.6 | | | | Mean | 131.4 | 324 | 130.2 | 241 | 129.4 | 352 | 128.2 | 296 | 125.1 | | | | | | 325 | 128.2 | 242 | 129.5 | 366 | 124.0 | 297 | 127'1 | 172 | o f. s. | | | _ | 326
327 | 138.7 | 243 | 126.2 | 373 | 123.7 | 299
301 | 123.2 | 248 | 124'4 | | 1580 | of.s. | 329 | 124.7 | 245 | 126.6 | 375
379 | 128.0 | 310 | 125.4 | 249 | 121.5 | | Mean | 129.8 | 330 | 125.4 | 246 | 130.4 | 380 | 128.3 | 311 | 151.5 | 251 | 117.9 | | | | 341 | 130.2 | 247 | 125.0 | 381 | 124.1 | 312 | 130.1 | 253 | 120.4 | | | | 346 | 122.9 | 248 | 130.0 | 385 | 118.8 | 315 | 128.2 | 255 | 116.3 | | 1600 | f. s. | 347 | 126.6 | 249 | 124.1 | 386 | 119.2 | 316 | 155.2 | 257 | 119.7 | | | - | 349 | 124.3 | 251 | 117.9 | 387 | 127.5 | 317 | 127.0 | 258 | 118.0 | | 204 | 134.1 | 350 | 125.8 | 252 | 132.6 | 394 | 124.2 | 320 | 124.0 | 259
260 | 114.5 | | 206 | 129.3 | 351
352 | 120 9 | 253
254 | 134.4 | 395
396 | 125.0 | 321
322 | 124.4 | 284 | 102.5 | | 241 | 128.0 | 365 | 129.1 | 255 | 115.4 | 398 | 113.6 | 323 | 127.1 | 285 | 120.3 | | 242 | 132.2 | 366 | 127.4 | 256 | 130.1 | 399 | 124.9 | 324 | 125.8 | 286 | 119.4 | | 243 | 129.0 | 373 | 125.9 | 257 | 130.1 | 400 | 122.5 | 325 | 122.2 | 287 | 118.5 | | 244 | 128.4 | 375 | 124.1 | 258 | 127'9 | 401 | 124.6 | 326 | 123.8 | 288 | 112.0 | | 245 | 130.5 | 378 | 131.6 | 259 | 118.9 | 402 | 123.9 | 327 | 125.6 | 291 | 116.1 | | 246 | 133.7 | 379
380 | 129.1 | 260 | 135.7 | 403 | 123.3 | 329 | 115.3 | 292 | 121.8 | | 247 | 132.4 | 380 | 131.9 | 285
286 | 124.7 | 404 | 123.4 | 330 | 121.9 | 293 | 110.6 | | 249 | | 382 | 126.8 | 287 | 123.1 | 405
406 | 123.9 | 341
346 | 115.4 | 295 | 110.3 | | 251 | 118.1 | 383 | 121.3 | 288 | 121.1 | 408 | 125.9 | 347 | 120.4 | 296 | 153.5 | | 252 | 135.2 | 385 | 122.9 | 290 | 124.6 | 409 | 119.7 | 349 | 115.9 | 297 | 125.6 | | 253 | 123.3 | 385
386 | 126.7 | 291 | 121.1 | 410 | 123.0 | 350 | 120.3 | 299 | 122.0 | | | 135.3 | 387 | 130.5 | 292 | 126.1 | | | 352 | 126.6 | 301 | 118.5 | | 254 | 131.0 | 394 | 127.0 | 293 | 122.3 | | 125'4 | 373 | 121.4 | 310 | 121.3 | | Round | ٨. | Round | Υ." | Round | Λ., | Round | Λ, | Round | Λ̈́ν | Round | Å̈ν | |--------------|----------------|------------|----------------|------------|---------|------------|---------|------------|---------|--------------------|----------------| | 1720 | f. s. | 176 | o f. s. | 180 | o f. s. | 184 | o f. s. | 188 | o f. s. | 194 | o f. s. | | conti | nued. | cont | nucd. | cont | inued. | cont | inued. | cont | inued. | Mean | 106.8 | | 311 | 118.0 | 285 | 118.3 | 258 | 107.9 | 253 | 114.8 | 285 | 112.5 | | | | 315 | 126.8 | 286 | 116.6 | 259 | 112.7 | 255 | 116.1 | 286 | 108.8 | _ | | | 316 | 120'7 | 287
288 | 115.9 |
260
284 | 105'4 | 257
258 | 100.0 | 287
288 | 109.4 | 196 | 0 f. s. | | 320 | 121.7 | 291 | 113.7 | 285 | 110.0 | 259 | 112.7 | 310 | 101.6 | 248 | 103 | | 321 | 122.5 | 293 | 121.1 | 286 | 114.1 | 260 | 97.6 | 311 | 108.0 | 284 | 105 | | 322 | 120.1 | 294 | 117.6 | 287 | 113.6 | 2S4 | 105.4 | 323 | 117.6 | 285
286 | 108. | | 323 | 125.1 | 299
301 | 120°5 | 288 | 111.0 | 285
286 | 114.1 | 394 | 111.0 | 287 | 102. | | 324 | 119.3 | 310 | 116.8 | 293 | 120.6 | 2S7 | 111.2 | 395
396 | 110.0 | 310 | 90. | | 326 | 116.5 | 311 | 115.5 | 294 | 115.8 | 288 | 108.6 | 397 | 107.9 | 311 | 104. | | 327 | 123.4 | 315 | 125.3 | 301 | 111.6 | 291 | 100.1 | 398 | 113.4 | 394 | 106. | | 330 | 150.2 | 316 | 116.1 | 310 | 111.9 | 294 | 113.9 | 399 | 111.4 | 395 | 104 | | 341 | 119.0 | 317 | 122.0 | 311 | 112.5 | 310 | 107.0 | 400 | 110.5 | 396 | 104 | | 373
379 | 126.3 | 320
321 | 110.1 | 315 | 119.6 | 311 | 109.8 | 401 | 1114 | 39 7
398 | 113 | | 380 | 121.0 | 322 | 116.5 | 320 | 117.3 | 321 | 119.1 | 404
406 | 109.0 | 399 | 107 | | 381 | 118.8 | 323 | 123.2 | 321 | 118.1 | 322 | 108.7 | 407 | 107.3 | 400 | 106. | | 394 | 119.7 | 324 | 121.6 | 322 | 112.4 | 323 | 119'4 | 409 | 1096 | 401 | 107 | | 395 | 119.6 | 325 | 116.2 | 323 | 121.3 | 324 | 117.6 | 410 | 112.3 | 407 | 99. | | 396 | 120.6 | 380 | 117'4 | 324 | 119.6 | 325 | 110.9 | 411 | 100.0 | 409
410 | 107 | | 398
399 | 113.6 | 381
394 | 116.3 | 325
380 | 113.8 | 38o | 113.1 | Maan | | 411 | 102. | | 400 | 118.5 | 395 | 116.9 | 381 | 114.0 | 394
395 | 111.8 | Mean | 110.2 | , , , , | .03 | | 401 | 120'0 | 396 | 118.1 | 394 | 112.3 | 396 | 113.3 | l | | Mean | 105. | | 402 | 118.3 | 398 | 113.6 | 395 | 114.3 | 398 | 113.2 | | o f. s. | | | | 403 | 118.1 | 399 | 118.0 | 396 | 112.6 | 399 | 113.2 | _ ′ | • | ١. | _ | | 404 | 118.4 | 400 | 116.1 | 398 | 113.2 | 400 | 112.5 | Mean | 108.9 | 198 | o <i>f. s.</i> | | 406 | 118.3 | 401
402 | 117.7 | 399
400 | 115.7 | 401 | 113.4 | | | Mean | 105 | | sos | 121'3 | 403 | 115.6 | 401 | 115.6 | 402
404 | 111.3 | | _ | | | | 409 | 114.2 | 404 | 116.0 | 402 | 112.0 | 405 | 110.2 | 192 | o f. s. | | | | 410 | 119'4 | 405 | 116.9 | 403 | 113.5 | 406 | 110.3 | 248 | 107.0 | 200 | > <i>f. s.</i> | | 411 | 1169 | 406 | 115.6 | 404 | 113.6 | 407 | 111.3 | 251 | 117.2 | 284 | 105: | | Mean | 119.8 | 408 | 119°2 | 405 | 113.7 | 408 | 115.5 | 284 | 102.3 | 286 | 101. | | | | 410 | 117.6 | 406 | 112.9 | 409 | 114.0 | 285
286 | 110.3 | 287 | 103 | | | | 411 | 114'9 | 408 | 117.2 | 411 | 1100 | 287 | 107.3 | 394 | 104. | | 1740 | f. s. | | | 409 | 111.7 | | | 310 | 96.0 | 395
396 | 104 | | | 118:5 | Mean | 1170 | 410 | 115.8 | Mean | 111.2 | 311 | 106.1 | 397 | 102 | | orcan | 119.5 | | | 411 | 112.0 | | | 394 | 108.9 | 398 | 113: | | | | 0 | | Mean | 114.6 | | | 395 | 106.9 | 399 | 105: | | 1760 | 1.6 | 170 | ⊃ f. s. | | | 1860 | o f. s. | 396
397 | 105.4 | 400 | 105.0 | | | - | Mean | 115'2 | | | Mean | 11174 | 398 | 113.3 | 401 | 105 | | 248 | 121'3 | | | 1820 | o f. s. | | | 399 | 109.3 | 409 | 106 | | 249
251 | 120°0
117°9 | _ | , | | - | | | 400 | 108.2 | 411 | 103.6 | | 253 | 118.8 | 185 | o f. s. | arcan | 113.5 | 188 | o f. s. | 401 | 109.4 | | | | 255 | 1164 | 248 | 117.8 | | | 24S | 110.7 | 407 | 103.2 | Mean | 105.0 | | 257 | 114.2 | 249 | 118.8 | 18. | o f. s. | 249 | 116.6 | 409
410 | 110.7 | | | | 258 | 112-9 | 251 | 1179 | | - | 251 | 117'5 | 411 | 107.2 | 222 | | | 250
200 | 1130 | 253 | 117'0 | 248 | 1143 | 253 | 112'7 | | | 2020 | f. s. | | 284 | 105.3 | 255 | 116:4
108:0 | 249 | 117.7 | 255 | 115.9 | Mean | 107.8 | Mean | 10412 | | # | .~, 3 | 257 | TOULD | 251 | 117:7 | 284 | 105.3 | | - | | | | Round K | Round K _v | Round K_v | Round K | Round K | Round Kv | |---|--|---|--|---|---| | 2040 f. s. 286 98.9 394 102.8 395 99.7 396 102.0 397 100.2 398 113.1 399 103.3 400 103.3 401 105.6 411 102.3 Mean 103.3 2060 f. s. Mean 102.9 | 2080 f. s. 394 100°8 395 97°4 396 99°8 397 98°5 398 113°0 399 101°6 401 101°8 409 103°1 410 104°0 411 100°8 Mean 100°0 | 2120 f. s. 394 99'0 395 95'1 396 97'8 397 96'7 398 113'0* 399 99'4 400 100'1 401 100'0 410 102'4 Mean 98'8 2140 f. s. Mean 97'9 | 2160 f. s. 394 97.1 395 92.8 396 95.7 397 94.9 398 112.9* 399 97.5 400 98.6 401 98.2 Mean 96.4 2180 f. s. Mean 95.5 | 2200 f. s. 395 90°7 396 93°6 397 93°2 398 112°8* 399 95°7 401 96°4 Mean 93°9 2220 f. s. Mean 93°0 2240 f. s. 395 88°5 396 91°6 397 91°4 | 2240 f. s. continued. 398 112:7* 399 93:9 401 94:7 Mean 92:0 2260 f. s. Mean 91:3 2280 f. s. 396 89:7 398 112:6* 401 93:0 Mean 91:4 | # 74. Density of the Air when the following Rounds were fired. | No. of Rounds | Density | No. of Rounds | Density | No. of Rounds | Density | |---------------|---------|----------------|---------|---------------|---------| | | | | | | | | 1- 15 | 1.005 | 225240 | 0.989 | 431-438 | 1.022 | | 16-41 | 110.1 | 241—260 | 0.986 | 439-444 | 1.039 | | 42- 60 | 1.022 | 261—287 | 1.002 | 445—448 | 1.031 | | 61 — 68 | 1.045 | 288312 | 1.012 | 449 - 452 | 1.023 | | 69-84 | 1.042 | 313-325 | 1.002 | 453—460 | 1.024 | | 85— 89 | 1.058 | 32 6340 | 1.035 | 461 | 1.030 | | 90-102 | 1 '020 | 341-352 | 1.037 | 462 | 1 '034 | | 103-117 | 1.022 | 353-364 | 1.019 | 463 | 1'042 | | 118138 | 1.032 | 365-379 | 1.030 | 464—466 | 1.021 | | 139-147 | 1.002 | 380—391 | 1 '002 | 467—477 | 1.039 | | 148-178 | 1.001 | 392-411 | 1.056 | 478—482 | 1.014 | | 179—187 | 1.034 | 412-414 | 1.011 | 483-488 | 1.046 | | 188206 | 1.011 | 415-423 | 1.008 | 489—499 | 1.032 | | 207-224 | 0.986 | 424-430 | 1 '020 | 500-502 | 1.024 | | | | | | | | 75. Corrected mean values of K_v for Spherical Projectiles. (w = 534.22 grains). | z, | Experimental values of | Correc- | Corrected values of | υ | Experimental values of | Correc- | Corrected values o | |-------------|------------------------|---------|---------------------|------|------------------------|---------|--------------------| | f. s. | Λυ | | Α., | f.s. | A v | | | | 720 | 119.2 | | | 1520 | 133.6 | +0.3 | 133.9 | | 740 | 113.5 | | ŀ | 1540 | 132.4 | +0.1 | 132.2 | | 760 | 106.2 | | | 1560 | 131.4 | -0.3 | 131.1 | | 780 | 106.8 | | 1 ' | 1580 | 129.8 | -0.1 | 129.7 | | 800 | 118.5 | | | 1600 | 1 28.1 | +0.5 | 128.3 | | 820 | 128.2 | | | 1620 | 126.7 | +0.5 | 126.9 | | 840 | 133.9 | +6.9 | 140.8 | 1640 | 125.4 | +0.1 | 125.2 | | 860 | 136.4 | +4.4 | 140.8 | 1660 | 124.0 | +0.1 | 124.1 | | SSo | 140.0 | +0.8 | 140.8 | 1680 | 122'4 | +0.3 | 122.7 | | 900 | 141'7 | - 0.9 | 140.8 | 1700 | 121.1 | +0.5 | 121.3 | | 920 | 141.1 | - 0.3 | 140.8 | 1720 | 119.8 | +0.1 | 119.9 | | 940 | 141.0 | -0.5 | 140.8 | 1740 | 118.2 | 0 | 118.5 | | 960 | 140.7 | +0.1 | 140.8 | 1760 | 117.0 | +0.1 | 117.1 | | 9 So | 141.7 | - 0.2 | 141.2 | 1780 | 115.2 | +0.2 | 115.7 | | 0001 | 142.9 | -0.9 | 142'0 | 1800 | 114.6 | -0.5 | 114.4 | | 1020 | 144.0 | 0 | 144'0 | 1820 | 113.2 | -0.1 | 113.1 | | 1040 | 147.5 | 0 | 147.5 | 1840 | 111.4 | +0.5 | 111.0 | | 1060 | 150.5 | 0 | 150.2 | 186o | 111.4 | - 0.6 | 110.8 | | 1080 | 152.9 | -0.3 | 152.6 | 188o | 110.2 | -0.7 | 109.8 | | 1100 | 154.0 | +0.1 | 154.1 | 1900 | 108.9 | 0 | 108.0 | | 1120 | 155'4 | -0.3 | 155.1 | 1920 | 107.8 | +0.3 | 108-1 | | 1140 | 155.3 | +0.4 | 155.7 | 1940 | 106.8 | +0.5 | 107.3 | | 1160 | 156.4 | -0.4 | 156.0 | 1960 | 105.5 | +1.3 | 106.5 | | 1180 | 156.2 | -0.5 | 156.0 | 1980 | 105.8 | -0.1 | 105.4 | | 1200 | 154'9 | +0.6 | 155.5 | 2000 | 105.0 | -0.1 | 104.9 | | 1220 | 154.2 | +0.4 | 154.6 | 2020 | 104.2 | -0.1 | 104.1 | | 1240 | 152.7 | +0.7 | 153'4 | 2040 | 103.3 | -0.1 | 103.5 | | 1260 | 151.4 | +0.6 | 152.0 | 2060 | 102.0 | - 0.2 | 102.5 | | 1280 | 150.1 | +0'4 | 150.2 | 2080 | 102.0 | -0.9 | 101.1 | | 1300 | 148.6 | +0.1 | 148.7 | 2100 | 100.0 | -0.1 | 99.9 | | 1320 | 147.6 | - 0'4 | 147.2 | 2120 | 98.8 | -0.1 | 98.7 | | 1340 | 146.8 | - 0.8 | 146.0 | 2140 | 97.9 | -0.3 | 97.6 | | 1360 | 145.2 | -0.2 | 144'7 | 2160 | 96.4 | +0.1 | 96.5 | | 1380 | 143.2 | -0.1 | 143'4 | 2180 | 95.5 | -0.1 | 95.4 | | 1400 | 142'3 | -0.5 | 142.1 | 2200 | 93.9 | +0.2 | 94'4 | | 1420 | 140.7 | +0.1 | 140.8 | 2220 | 93.0 | +0.1 | 93'4 | | :440 | 139.2 | +0.3 | 139.5 | 2240 | 92.0 | +0.4 | 92.4 | | 1460 | 137.8 | +0.3 | 138.1 | 2260 | 91.3 | +0.1 | 91.4 | | 1480 | 136.4 | +0.3 | 136.7 | 22So | 91.4 | -1.0 | 90'4 | | 1500 | 134.8 | +0.2 | 135.3 | | ' ' | | 354 | Reports dated July 23, 1868, July 8, 1879, and Aug. 31, 1880. 76. | Round Kv | Round K_v | Round K_v | Round K_v | Round K_v | Round K | | |---|--|--|---|---|---|--| | 430 f. s.
455 222·2*
457 126·1 | 540 f. s.
439 107.7
442 116.0 | 575 f. s.
Mean
98.6 | 650 f. s.
436 92.6
437 98.4 | 685 f. s.
Mean 97.5 | 715 f. s.
Mean 80.2 | | | 459 135·1
Mean 130·6 | 452 114.2
453 112.6
Mean 112.6 | 580 f. s.
438 123.2
439 93.0 | Mean 95.5 | 690 f. s. 426 108.8 | 720 f. s.
424 75.0
426 77.6 | | | 435 f. s.
Mean 133.6 | 545 f. s.
Mean 107.2 | 440 99°0
441 93°3
448 90°0
450 160°3* | 655 f. s.
Mean 96.5 | 434 88·7
435 103·2
436 93·9
437 101·7 | 434 94.9
435 103.6
443 78.9
445 71.9 | | | 440 f. s.
455 199.7*
457 126.1 | Mean 99.7 550 f. s. 439 100.4 441 89.0 585 f. s. | | 660 f. s.
433 94.2
436 98.4
437 100.4 | Mean 96.4 | 447 76.4
Mean 82.6 | | | 459 141·1 | 442 116.6
452 105.2
Mean 102.8 | Mean 102.6 | Mean 97.7 | 695 f. s.
Mean 90.7 | 725 f. s.
Mean 81.0 | | | 465 f. s.
Mean 129.9 | 555 f. s.
Mean 101.5 | 590 f. s.
438 139.5
440 88.6
441 94.3 | 665 f. s.
Mean 99.6 | 700 f. s.
426 94·3 | 730 f. s. | | | 470 f. s. 454 171.2* 456 108.1 458 153.1 | 439 94'3
440 104'8
441 89'4 | 448 85.7
449 177.3*
450 169.8*
451 96.2
Mean 100.9 | 670 f. s.
433 94°2
435 101°9
436 103°0
437 100°4 | 432 72.7
433 96.0
434 89.3
435 103.2
72.5
445 79.2
Mean 86.7 | 426 7773
434 96·5
435 105·8
443 70·9
444 70·9
445 69·4
447 76·4 | | | Mean 130.6 | Mean 98·1 | 595 f. s.
Mean 112.9 | Mean 99.9 675 f. s. | 705 f. s. | Mean 81·1 | | | Mean 120·1 | 565 f. s.
Mean 99.5 | 600 f. s.
438 153.9*
448 81.0 | Mean 100·1 680 f. s. | Mean 84.9 710 f. s. | Mean 77'2 | | | 442 117·3
453 123·1
Mean 120·2 | 570 f. s.
438 105.9
439 94.3
440 102.1
441 91.0
442 116.0 | 449 153'3*
450 105'2
451 115'7
Mean 100'6 | 426 120·5
433 96·0
434 87·4
435 101·9
436 98·8
437 101·7 | 426 80·9
432 61·3
434 92·3
435 103·2
443 80·5
445 71·9 | 740 f. s. 424 72·3 425 100·4 428 70·8 443 78·3 444 71·9 | | | 535 f. s.
Mean 118·8 | 448 93.7
 Mean 100.5 | 605 f. s.
Mean 113 ² | 447 83.8
Mean 98.6 | 447 77.7
Mean 81.1 | 446 70.3
Mean 77.3 | | | | | | | | - | |------------------------------|----------------------|-------------------------|----------------------|-------------------------|------------------------| | Round A. | Round Kr | Round K | Round K | Round K | Round K | | 1 | | | | | | | | mmo f c | 20566 | 850 f. s. | eno f a | 2016 | | 745 f. s. | 770 f. s. | 805 f. s. | 1 - | 870 f. s.
continued. | 905 f. s. | | Mean 78'0 | | Mean 61.9 | 28 62.7 | | Mean 79 [.] 8 | | | 428 69.4 | | 31 62.1 | 423 46.3 | | | | 446 68.7 | 810 f. s. | 151 95.9 | | | | 750 J. s. | Mean 84.6 | 427 62.7 | 122 90'4 | Mean 63'1 | 910 f. s. | | 55 S9.7 | Mean 34 0 | 430 59.5 | 177 61·1
423 64·7 | | 178 61.4 | | | i | | 429 74.1 | 875 f. s. | 415 82.1 | | 424 82.6 | 775 f. s. | Mean 61·1 | 430 59.5 | Mean 62.4 | 417 91.5 | | 425 94°2
428 70°8 | Mean S1.9 | | Mean 70'0 | <u>-</u> | 419 80.6 | | 443 83.3 | | 815 f. s. | | 880 <i>f. s</i> . | · · · · — | | 444 70'9 | | Mean 57'9 | | | Mean 81.9 | | 446 70.3 | 780 f. s. | | 855 f. s. | 28 60.3
56 61.9 | | | Mean 830 | 57 78.5 | 820 f. s. | Mean 69.6 | 177 57.3 | | | 1 | 59 : 98.9 | | | 415 85.8 | 915 f.s. | | | 135 91.7 | 429 75°7
430 58°2 | | 421 70·3
422 80·2 | Mean 80.2 | | 755 f. s. | 137 92.1 | 430 30 = | 860 f. s. | 423 40.2 | | | Mean 83.2 | 425 72.1 | Mean 67:0 | 27 46.8 | 429 62.7 | | | | 427 68·7
428 66·1 | | 28 61.7 | Mean 64'9 | 920 f. s. | | | 446 67.8 | 825 f. s. | 30 64.0
30 64.2 | | 178 60.4 | | 760 f. s. | | | 31 61.4 | 90 m f . | 415 76.1 | | 55 89.7 | Mean Sor3 | Mean 74'3 | 32 60.3 | 885 <i>f. s</i> . | 416 80.4 | | 50 86.4 | | | 121 93.6 | Mean 75.3 | 417 84·5
418 93·5 | | 00 95.5 | 785 f. s. | 830 f. s. | 177 58.8 | | 419 75.6 | | 138 95.3 | Mean 75.6 | 122 901 | 421 97.6 | 890 f. s. | Man -8. | | 424 82°9
425 87°2 | 730 | 429 75.4 | 423 45°5
423 58°2 | 26 61.7 | Mean 78.4 | | 428 70.8 | | 430 58.5 | 429 67.6 | 178 63.8 | | | 443 85.8 | 795 f. s. | Mean 74.7 | M (| 415 84.7 | 925 f. s. | | 444 70°9
446 6 9°0 | 137 88.2 | 747 | Mean 67:0 | 418 85·3
421 54·8 | , ., | | | 425 62.2 | | | 422 87.3 | Mean 75.6 | | Mean 83'5 | 427 64.5
428 63.9 | 835 f. s. | 865 f. s. | Maan 7735 | | | 1 | 458 63.0 | Mean 74°9 | Mean 66.1 | Mean 72.9 | 020 f c | | 765 f. s. | Mean 69 7 | | | | 930 f. s. | | | | 840 f. s. | | 895 f. s. | 24 73·2 415 74·1 | | Mean 85'5 | 2006 | | 870 f. s. | Mean 74.1 | 416 74.0 | | | 795 f. s. | 28 64°1
122 90°1 | 26 62.6 | | 417 78.8 | | 770 f. s. | Mean 74'6 | 429 760 | 27 43.6 | 900 f. s. | 418 89.4 | | 55 90'1 | | 430 58.5 | 28 61.0 | 178 62.6 | | | , 56 84'5 | 800 f. s. | Mean 72'2 | 30 60.4 | 415 84.5 | Mean 75.9 | | 57 820 | | | 31 60.8 | 418 90.9 | | | 59 102'0 | 427 61.4 | 9 f . | 32 57·8
121 94·2 | 419 80·6
422 90·8 | | | 137 95.5 | | 845 f. s. | 177 57.3 | | 935 f. s. | | 138 95°3
425 80°1 | Mean 62:1 | Mean 74'5 | 421 84.1 | Mean 819 | Mean 71'1 | | 100 1001 | | | 422 66.3 | | | | • | | | | | | | Round | Κυ | Round | K_v | Round | K_v | Round | K_v | Round | Κ̈υ | Round | K_v | |--|---|---|--|--|--|--|--|---|---|---|--| | 20 24 25 415 416 417 418 419 Mea | f. s. 57.1 72.5 68.3 77.4 68.2 72.8 83.0 60.2 76.9 | 414 416 417 419 Mea | 65.4
63.1
66.3
57.2
n 73.1 | 162 412 413 414 417 Mea | of. s. inued. 92.6 83.4 62.6 63.5 65.0 n 72.9 | 50 51 52 53 54 105 160 161 162 163 412 413 414 | of. s.
inued.
81'3
79'3
73'8
86'6
78'2
75'2
71'7
90'0
63'0
95'8
64'8
75'5 | 1020
23 24 25 49 50 51 52 54 159 160 161 163 175 413 414 | of. s. 77.0 65.1 67.9 68.2 78.1 77.8 74.0 73.5 75.2 71.3 62.1 84.4 68.6 86.2 | Mea 105 14 16 174 175 176 413 Mea | 5 f. s.
n 89.6
of. s.
94.3
97.9
95.4
88.8
85.1
n 90.9
f. s. | | 950
20 24 25 51 223 224 225 227 412 415 416 417 419 Mea | of. s. 56.5 71.9 67.6 82.8 98.1 108.5 107.3 91.5 46.6 81.2 64.3 70.4 58.0 n 77.3 | 20
21
24
25
50
51
53
103
222
223
224
226
412
416
417
Mea | 54.9 57.7 71.2 66.7 92.6 81.4 90.3 66.1 63.2 89.2 95.7 90.7 72.1 63.5 52.4 65.0 73.3 | 20
21
23
24
25
49
50
51
52
53
54
105
160
161
162
412
413 | 53.7
53.7
55.7
78.7
71.7
66.1
68.3
85.8
80.0
72.7
88.6
81.5
71.7
75.2
70.9
91.3
89.3
64.6
68.7
74.6 | 100
Mea | 56.9
77.6
1 71.1
65.6
68.3
75.6
78.6
78.6
78.6
78.7
78.7
78.7 | Mean 73.4 1025 f. s. Mean 75.6 1030 f. s. 23 76.5 49 67.1 51 77.7 52 80.6 54 73.2 159 74.4 163 62.1 175 85.7 413 74.5 414 89.4 Mean 76.1 | | Mean 1060 14 16 174 175 176 413 Mean 1070 Mean | o f. s. 93'8 97'5 95'4 91'1 85'4 89'7 10 92'2 0 f. s. 104'5 0 f. s. 124'1 92'2 126'9 95'6 110'0 | | 960 f. s. 20 55.8 21 57.9 24 71.4 25 67.1 51 82.1 222 68.2 223 92.3 224 102.2 225 107.3 227 81.9 412 58.0 | | 986
20
21
23
24
25
50
51
103
104
105 | 54.2
57.4
79.3
71.1
66.5
90.3
80.7
89.8
69.0
63.0 | 995 f. s. Mean 74.8 1000 f. s. 20 53.2 21 56.9 23 78.1 24 71.1 25 65.8 49 68.3 | | 162
163
175
412
413
414
Mea | 70.9
88.7
62.1
83.8
102.6
66.1
80.7
74.2
5 f. s. | 104
16
23
51
159
175
413
414 | o f. s. 97.9 75.7 77.3 74.4 87.2 80.4 93.3 an 83.7 | 18
169
170
173
174
175
176
232
235
236
237
238
Mear | 96.9
102.8
106.1
99.7
95.7
96.2
86.0
115.7
84.4
124.2
111.5
120.0 | | Rou | net | Κ, | Round | Λ, | Round | ٨٠, | Round | ٨-, | Round | K_v | Round | K_{ν} | | |------------|------------|---------------|------------|------------|------------|----------|----------------|------------|------------|------------|------------|-----------------|--| | 1090 f. s. | | | 1.6 | 1160 f. s. | | | 1180 f. s. | | 1210 f. s. | | 1240 f. s. | | | | 1 | 1 | | 1120 f. s. | | continued. | | | continued. | | Mean 107.0 | | continued. | | | Me | Mean 106.6 | | 172 | 103.5 | 35 | 104.2 | 142 100 | | | | 35 | 105.5 | | | | | | 173 | 98.9 | 36 | 114.9 | 143 | 113.7 | | , | 36 | 112.8 | | | ١, | 100 | o f. s. | 174 | 97.1 | 38 | 110.4 | 208 | 106.5 | 122 | o f. s. | 37
38 | 108.9 | | | | | • | 176 | 86.6 | 61 | 101.3 | 209 | 96.3 | 6 | 144.2 | 43 | 105.4 | | | | 3 | 135.3 | 236 | | 66 | 105.3 | 211 | 125.6 | 7 | 110.0 | 61 | 127.3 | | | 1 | 3 | 122.6 | Mean | 105.7 | 67 | 101.5 | 212 | 87.8 | 10 | 123.2 | 62
63 | 100.0 | | | | 4 | 89.6 | | | 87
88 | 112.8 | Mean | 110.0 | 33 | 130.2 | 64 | 103.2 | | | | 15 | 93.3 | 1,12 | o f. s. | 91 | 94.2 | ca | | 35 | 105.0 | 66 | 98.2 | | | 1 | 7 | 108.2 |
1 | | 93 | 135.9 | | | 36 | 113.8 | 67 | 101.1 | | | 1 | iS | 96.3 | Mean | 107.2 | 124 | 112.6 | | | 37
38 | 109.2 | 94 | 120.4 | | | | 38 | 112.2 | 1 | | 139 | 100.4 | 119 | o f. s. | 43 | 100.0 | 112 | 112.3 | | | |))
70 | 98·8
107·6 | 114 | o f. s. | 141 | 115.8 | Mean | 109.9 | 61 | 127'9 | 124 | 112.0 | | | i; | | 97.9 | 1 | 133.2 | 142 | 101.2 | 1 | - | 64 | 98.7 | 126 | 105.4 | | | 17 | 72 | 104.1 | 2 | 94'7 | 143 | 113.1 | 1 | | 67 | 100.2 | 131 | 107.2 | | | | 73 | 99.7 | 3 | 125.2 | 174
20S | 98·5 | | | 87 | 111.1 | 132 | 104.1 | | | | 74 | 86.6 | 4 | 115.5 | 209 | 97.7 | 120 | 00 f. s. | 94 | 109.9 | 133 | 111.2 | | | | 32 | 118.7 | 16 | 89.7 | 211 | 116.6 | 2 | 104.5 | 112 | 113.4 | 134
148 | 117.5 | | | | 33 | 151.0 | 18 | 94'4 | 212 | 94.1 | 3 | 101.4 | 120 | 112.2 | 149 | 113.3 | | | | 34
35 | 94°4
74°5 | 35
38 | 104.3 | Mean | n 109.9 | 1 5 | 96.1 | 131 | 107.9 | 150 | 102.1 | | | | 30 | 113.0 | 38
61 | 111.1 | | | 35 | 104.8 | 132 | 104.4 | 152 | 107.6 | | | 2 | 37 | 113.1 | 64 | 101.3 | 1 | | 36 | 114.5 | 133
134 | 117.8 | 153
166 | 95.5 | | | 2 | 38 | 111.3 | 66 | 104.5 | 112 | 10 f.s. | 37
38 | 110.0 | | 102.2 | | 97.1 | | | M | Mean 107:3 | | 67 | 102.5 | 1 ' | • | 61 | 128.5 | 141 | 111.0 | | 111.9 | | | | | | S8
91 | 89.2 | Mea | u 110.0 | 0.4 | 102.3 | | 98.4 | | 108.2 | | | | | | 93 | 131.6 | 1 | | 66 | 99.7 | | | | 118 2 | | | | I I I | Df. s. | 139 | 100.0 | | | 67
86 | 100.2 | 140 | 113.5 | 229 | 84.7 | | | N | feat | 107'4 | 141 | 118.0 | 113 | 35 f. s. | S ₇ | 111.1 | 150 | | -33 | 92.0 | | | | | | 143 | 95'4 | 1 | 132.1 | | 112.0 | | | | 91.7 | | | | | | 172 | 103.5 | 2 | 125'3 | | SS-5 | | | | n 110.0 | | | 1 | 112 | 0 1. s. | 173 | 97.3 | | 105.7 | | | 239 | | | | | | | 1 | 1341 | 174 | 97.6 | . 5 | 101. | | | 2 40 | 93.3 | | | | | | 2 | 93.3 | | n 107.0 | 19 | 1141 | | | | n 110.1 | 12 | 50 <i>f. s.</i> | | | | 13 | 124.2 | | | 35
36 | 104'7 | | 1 . | | | | n 110.3 | | | | 15 | 115.0 | | | 38 | 110 | | |) | _ | | | | | | 16 | 91'4 | , | 50 f. s. | 61 | 129'0 | 141 | 113.0 | | 30 f. s. | | | | | | 17
18 | 107.1 | | n 109°3 | 64 | 101 (| | | | an 110 I | 12 | 60 f. s. | | | | 35 | 95'2 | | | 67 | 100. | | | | - | - 6 | 138.2 | | | | 38 | 1117 | 111 | 60 f.s. | 87 | 111. | 1 149 | 112.8 | 3 1.2 | 40 f. s. | | 112.0 | | | | 64 | 101.3 | 3 1 | , | 88 | | | | 1 | | 9 | | | | | 66 | 106.7 | | 97.5 | | | | | | | | 1 2 | | | | 93 | 124.0 | | | 1 24 | 112 | | | | | | | | | | 169 | 31.5 | 4 | 110 | 139 | 100 | 2 | - | - 10 | 119 | 33 | 129.6 | | | | 170 | 10716 | | | | | - | an 1064 | | | | | | | | 171 | 90.0 | 19 | 114" | 141 | 115. | 3 | | 3. | 3 130.0 | 35 | 105.7 | | | Round | Κ̈υ | Round | K_v | Round | K_{v} | Round | K_v | Round | Α̈́υ | Round | K_v | |------------|---------|----------|----------|------------|----------------|------------|----------|------------|---------|------------|-----------------| | | o f. s. | | o f. s. | 130 | o <i>f. s.</i> | 132 | o f. s. | | o f. s. | 137 | of.s. | | conti | inned. | conti | nued. | 6 | 134.4 | 7 | 103.9 | conti | nued. | Mean | 106.2 | | 36 | 111.0 | 10 | 117.8 | 7 | 107.3 | 10 | 116.3 | 40 | 103.8 | | | | 37 | 113.2 | 11 | 120.8 | 9 | 113.4 | 11 | 118.8 | 41 | 104.3 | | | | 37
38 | 108.6 | 12 | 118.4 | 10 | 116.9 | 12 | 114.0 | 43 | 104.2 | | | | 40 | 100.0 | 33 | 129.1 | II | 115.8 | 33 | 128.6 | 44 | 107.2 | 128 | o f. s. | | 43 | 105.2 | 34 | 92.6 | 12 | 116.4 | 35 | 105.4 | 96 | 117.9 | 130 | o <i>j</i> . s. | | 62 | 121.0 | 35 | 105.2 | 33 | 128.9 | 36 | 100.6 | 98 | 110.8 | 40 | 103.3 | | 63 | 105.4 | 36 | 111.5 | 34 | 91.3 | 37 | 113.2 | 99
100 | 102.2 | 41 | 103.6 | | 64
66 | 104.4 | 37
38 | 113.2 | 35
36 | 110.4 | 38
40 | 104.3 | 126 | 111.4 | 43 | 104.3 | | 67 | 97.9 | 40 | 102.3 | 37 | 113.2 | 41 | 104.7 | 127 | 108.3 | 44 | 106.1 | | 94 | 106.3 | 43 | 102.3 | 38 | 107.8 | 43 | 104.7 | 130 | 103.9 | 127 | 108.3 | | 96 | 121.6 | 44 | 109.4 | 40 | 104.2 | 44 | 108.1 | 131 | 104.6 | 130 | 103.8 | | 111 | 119'4 | 62 | 1210 | 41 | 105.1 | 94 | 99.8 | 132 | 103.7 | 132 | 103.2 | | 112 | 111.3 | 66 | 97.5 | 43 | 102.0 | 96 | 118.8 | 133 | 111.5 | 133 | 111.0 | | 124 | 111.6 | 94 | 104.1 | 44 | 108.4 | 97 | 107.9 | 134 | 116.4 | 134 | 116.1 | | 126 | III.I | 96 | 120.6 | 94 | 101.9 | 98 | 114.2 | 148 | 104.2 | 153 | 101.0 | | 130 | 102.1 | 97 | 113.1 | 96 | 119.7 | 99 | 105.0 | 149 | 112.9 | | | | 131 | 106.4 | 98 | 122°I | 97 | 110.0 | 100 | 114.9 | 150 | 100.2 | Mean | 102.9 | | 132 | 103.9 | 101 | 121.8 | 98 | 118.3 | 111 | 123.3 | 151 | 109.6 | | | | 133 | 111.2 | 110 | 118.2 | 99 | 109.1 | 111 | 116.6 | 152 | 101.0 | i | | | 134
148 | 117.2 | 111 | 110.5 | 101 | 118.0 | 124 | 105.2 | 153 | 107.7 | | | | 149 | 113.3 | 124 | 111.5 | 110 | 124.6 | 126 | 111.0 | 104 | | 130 | o f. s. | | 150 | 101.8 | 126 | 110.8 | 111 | 117.5 | 127 | 108.5 | Mean 107:3 | | 1 | | | 151 | 107.5 | 127 | 109.4 | 112 | 108.4 | 130 | 104.5 | | | Mean | 102.6 | | 152 | 107.6 | 130 | 104.8 | 124 | 110.2 | 131 | 105.0 | | | | | | 153 | 102.2 | 131 | 106.5 | 126 | 110.8 | 132 | 103.7 | 1 | o f. s. | | | | 164 | 110.5 | 132 | 103.4 | 127 | 102.8 | 133 | 111.4 | 135 | 07.3. | | | | 165 | 100.5 | 133 | 111.2 | 130 | 104.2 | 134 | 116.2 | Mear | 106.2 | 140 | o f. s. | | 166 | 93.7 | 134 | 116.9 | 131 | 105.6 | 148 | 104.7 | | | 40 | 103.1 | | 167
168 | 101.2 | 148 | 105.4 | 132 | 103.7 | 149 | 113.5 | | | 41 | 103.3 | | 218 | 96.3 | 149 | 101.2 | 133 | 111.2 | 150
151 | 100.7 | 136 | of.s. | 43 | 104.3 | | 219 | 117.0 | 150 | 106.4 | 148 | 102.1 | 152 | 106.9 | | - | 44 | 105.2 | | 220 | 110.0 | 152 | 107.2 | 149 | 113.3 | 153 | 101.0 | 7 | 96.6 | 127 | 102.2 | | 221 | 119.7 | 153 | 101.9 | 150 | 101.1 | 164 | 108.9 | 40
41 | 103.4 | 130 | 103.2 | | 228 | 124'0 | 164 | 110.5 | 151 | 105.2 | 165 | 93.1 | 43 | 104.3 | 131 | 103.4 | | 229 | 84.7 | 165 | 98.8 | 152 | 107.3 | 167 | 98.9 | 44 | 106.8 | 132 | 103.5 | | 239 | 1 84.8 | 166 | 92.1 | 153 | 101.0 | ٠,, | | 99 | 101.6 | 133 | 110.0 | | 3.5 | | 167 | 100.4 | 164 | 110.1 | Mear | 108.9 | 100 | 106.4 | 134
154 | 99.8 | | Mear | 100.6 | 168 | 95.7 | 165
166 | 91.0 | | | 126 | 112.0 | 155 | 110.5 | | | | 218 | 110.5 | 167 | 99:3 | | | 127 | 108.5 | 156 | 107.5 | | | | 220 | 126.3 | 168 | 95.3 | 122 | 30 f. s. | 130 | 103.8 | 157 | 108.6 | | 127 | of.s. | 221 | 110.0 | 221 | 110.0 | | | 131 | 104.5 | 158 | 98.9 | | | | | | | | Mean | 1 108.2 | 132 | 103.7 | | | | Mear | 111.0 | Mear | 110.9 | Mear | 109.9 | | | 133 | 116.3 | Mean | 105.8 | | | | | | | | | | 148 | 104.2 | 1 | | | | | | | 1 | | | of c | 149 | 112.4 | | | | | - 6 - | | | | | 1 34 | 10 f. s. | 152 | 106.3 | | | | 128 | of.s. | | of c | 121 | o f. s. | 7 | 100.5 | 153 | 101.9 | 141 | o f. s. | | 6 | 136.1 | 129 |)o f. s. | | | 12 | 111.3 | | | | - | | 7 | 110.3 | Mean | 1 110.1 | Mear | 1 108.7 | 35
37 | 105.7 | Mear | 100.0 | Mean | 105.6 | | | 114'4 | | | | | | | | | | | | Round | Λ*. | Round | ٨٠, | Round | K_{v} | Round | λ_{v}^{r} | Round | ۲. | Round | Å̈υ | |------------|----------------------|------------|-----------------|----------|---------------|----------|-------------------|------------|--------------|-------|-------------------| | | o f. s. | | o f. s. | _ | o f. s. | | o f. s. | 1 | o f. s. | | o f. s.
inucd. | | 39 | 108.2 | 39 | 107.9 | 39 | 107.6 | 39 | 107.4 | 44 | 100.2 | | | | 40 | 103.0 | 40 | 103.3 | 10 | 1038 | 40 | 104'4 | 113 | 94:3 | 470 | | | 41 | 104.5 | 41 | 104.0 | 41 | 101.0 | 41
44 | 100.5 | 114 | 101.8 | 472 | 87.3 | | 43 | 104.9 | 43
44 | 103.2 | 43
44 | 104.6 | 113 | 96.3 | 115 | 92.8 | Man | n 88·0 | | 116 | 89.6 | 113 | 98.5 | 113 | 97.3 | 114 | 100.2 | 117 | 93.1 | Mea | .11 55 0 | | 127 | 10Š 6 | 114 | 104.8 | 114 | 103.8 | 115 | 104.0 | 145 | 91.3 | | | | 130 | 103'4 | 116 | 90.2 | 116 | 91.5 | 116 | 92.3 | 146 | 88·7 | 163 | o f. s. | | 131 | 103.1 | 127 | 109'4 | 130 | 103.4 | 117 | 95.2 | 147 | 90.4 | | - | | 132 | 102.2 | 129 | 98.9 | 132 | 100.1 | 145 | 92.5 | 154 | 94.9 | Mea | n 83·9 | | 133 | 110.9 | 130 | 103'4 | 145 | 93.5 | 146 | 88.7 | 155 | 86.1 | Į. | | | 134
154 | 98·6 | 132
133 | 101.6 | 147 | 90.9 | 147 | 90.7 | 156 | 87·5
81·8 | .64 | o f. s. | | 155 | 107.3 | 154 | 96.6 | 154 | 95.9 | 154 | 95.3 | 157 | | 104 | o <i>j</i> . s. | | 156 | 102.1 | 155 | 105.0 | 155 | 96.4
95.9 | 155 | 91.4 | 158 | 94.1 | 144 | 73.2 | | 157 | 105.0 | 156 | 100.5 | 157 | 94.4 | 157 | 88.4 | Mea | n 92°5 | 145 | 90.5 | | 158 | 98.3 | 157 | 100.3 | 158 | 96.2 | 158 | 95.1 | 2.200 | | 146 | 88.1 | | | | 158 | 97.2 | | | | | | | 147 | 90.0 | | Mean | 104.3 | l | | Mea | n 98.7 | Mea | n 96 ·2 | 150 | o f. s. | 470 | 75.2 | | | | Mean | 101.9 | | | | | | • | 472 | 87.3 | | | | | | | | | | Mea | n 91.4 | Mea | n S4·1 | | 1 1 2/ | 430 f. s. 1470 f. s. | | a f a | | _ | | | | | | | | | | | o <i>j</i> . s. | 1510 | o f. s. | 155 | o f. s. | 160 | o f. s. | | | | Mean | 103.4 | Mean | 101.1 | Men | n 97°3 | | | | J. J. | 165 | o f. s. | | | | | | | 77 3 | Mea | n 95.2 | 113 | 93.5 | | • | | | | _ | , | | | | | 115 | 100.4 | Mea | n 84·4 | | | 260 | 148 | o f. s. | | | | | 117 | 92.4 | | | | 1440 | \circ $f. s.$ | 39 | 107.7 | 1520 | f.s. | | | 145
146 | 88.6
91.0 | т66 | o f. s. | | 39 | 108.0 | 40 | 103.5 | • | - | 156 | of.s. | 147 | 90.3 | l . | | | 40 | 103.5 | 41 | 101'4 | 39 | 107.2 | 40 | 104.2 | 154 | 94.6 | 144 | 73.2 | | 41 | 102'4 | 43 | 104.0 | 40 | 104.0 | 44 | 101.1 | 155 | 83.4 | 145 | 89.9 | | 43 | 104.1 | 44 | 103.1 | 41 | 100.6 | 113 | 95.2 | 156 | 85.4 | 146 | 87·8
90·0 | | 114 | 104.4 | 113 | 97.8 | 113 | 96.9 | 114 | 99.3 | 157 | 78.4 | 470 | 78.9 | | 116 | 90.1 | 116 | 01.0 | 114 | 101.2 | 115 | 102.0 | 158 | 93.6 | 472 | 87.3 | | 127 | 108.9 | 127 | 100.8 | 116 | 91.9 | 116 | 92.7 | 472 | 87.3 | | | | 130 | 103.4 | 129 | 98.9 | 117 | 96.4 | 117 | 94.0 | Mea | n 89.9 | Mean | n 84.6 | | 131 | 102.9 | 130 | 1034 | 145 | 92.7 | 145 | 91·7
88·7 |
2.1011 | . 09 9 | | | | 132 | 102.5 | 132 | 100.0 | 146 | 88.7 | 146 | 90.4 | | | | _ | | 133 | 11019 | 133 | 110.0 | 1.47 | 90.9 | 154 | 92.1 | 161 | f.s. | 1670 | f. s. | | 154 | 97.6 | 147 | 90.9 | 15.1 | 9 5 .6 | 155 | 88.7 | | | Mean | 84.8 | | 156 | 102.7 | 154 | 96.1 | 156 | 93.8 | 156 | 89.6 | Mean | n 88·9 | | | | 157 | 103.1 | 156 | 99°3
98°1 | 157 | 91.4 | 157 | 85.2 | | | | | | 158 | 97.7 | 157 | 97:3 | 158 | 95.6 | 158 | 94.6 | | | 1680 | f. s. | | | | 158 | 96.7 | | | | | 1620 | f. s. | | | | Mean | 103.0 | ' | | Mear | 1 96.2 | Mear | 94.3 | 115] | 99.6 | 144 | 73.5
89.7 | | - | | Mean | 100 8 | | | | | 145 | 99.7 | 146 | 87.6 | | | | | | | - 1 | | | 146 | 88.3 | 147 | 89.9 | | | [| | | | ı | | - 1 | 147 | 90·1 | 470 | 81.1 | | 1.150 | f. s. | 1.490 | f. s. | 1530 | f. s. | 1570 | f. s. | 154 | 94.4 | 472 | 86.7 | | Mean | 102'5 | Mean | 99.6 | | 96.1 | | 93.0 | 155 | 80.7 | | | | | | | - | | . 50 . | mean | 93.0 | 156 | 83.3 | Mean | 84.8 | | - | | | | | | | - | 158 | 93.5 | | | | Round Xv | Round A. | Round K. | Round Kv | Round A | Round K | |--|---|--|--|--|--| | 1690 f. s.
Mean 84.8 | 1770 f. s.
Mean 80.7 | 1860 f. s.
461 73.5
462 91.1 | 1920 f. s.
continued.
477 67.7 | 1980 f. s. continued. 482 62.2 | 2030 f. s.
Mean 67.8 | | 1700 f. s.
144 73.5
145 89.4
146 87.4 | 1780 f. s.
462 91.3*
463 80.3 | 463 78.6
502 64.4
Mean 76.9 | 477 67.7
502 65.1
Mean 72.8 | 497 74·5
501 59·7
502 64·3
Mean 67·4 | 2040 f. s.
473 73.6
474 70.7
475 74.4 | | 147 89.7
470 83.6
472 84.6
Mean 84.7 | Mean 80.3 | 1870 f. s.
Mean 77.0 | Mean 71.4 ——————————————————————————————————— | 1990 f. s.
Mean 67 [.] 9 | 476 67.7
477 70.1
478 65.2
479 66.7
480 65.9
481 62.6 | | 1710 f. s.
Mean 83.7 | Mean 79.9 1800 f. s. | 1880 f. s.
461 75.6
462 89.8
463 78.6 | 473 69°5
474 71°0
475 70°8
476 68°1 | 2000 f. s.
473 71°4 | 482 63·7
491 67·4
493 68·1
497 75·0
498 71·8 | | 1720 f. s.
145 89.2
146 87.2
470 85.4 | 462 92.0*
463 79.4
Mean 79.4 | Mean 74.9 | 477 68·4
502 65·1
Mean 68·8 | 474 70.7
475 74.3
476 67.9
477 70.1
479 66.8
480 66.1 | 499 66·4
500 72·1
501 59·7
502 62·6 | | 471 71.8
 472 82.7
 Mean 83.3 | 1810 f. s.
Mean 75 ² | 1890 f. s.
Mean 73.8 | 1950 f. s.
Mean 69.4 | 481 61.7
482 62.6
497 74.7
500 73.0
501 59.7 | Mean 68.0 2050 f. s. Mean 68.0 | | 1730 f. s.
Mean 82:4 | 1820 f. s.
461 71'3
462 92'0* | 1900 f. s.
461 78·3
462 88·4
463 77·6 | 1960 f. s.
473 70°2
474 70°7
475 72°1 | Mean 67.9 | 2060 f. s.
473 74.5
474 70.1 | | 1740 f. s.
462 87.6
470 87.7
471 68.5 | 463 78.6
Mean 75.0 | 473 68·2
474 71·8
475 67·8
476 67·7
502 65·1 | 476 68·3
477 68·8
479 66·8
497 74·5
502 65·0 | 2010 f. s.
Mean 67.9 | 475 73.5
476 67.7
477 70.1
478 65.6
479 66.3 | | Mean 81.3 | 1830 f. s.
Mean 75'1 | Mean 73.1 | Mean 69.6 | 2020 f. s.
473 72.5 | 480 66·1
481 63·0
482 64·6 | | 1750 f. s.
Mean 80.2 | 1840 f. s. | 1910 f. s.
Mean 72.5 | 1970 f. s.
Mean 68.7 | 474 70.7
475 74.7
476 67.7
477 70.1
479 66.8 | 491 67·1
493 68·4
497 75·0
498 71·6
499 66·4 | | 1760 f. s. | 462 92.0*
463 78.6
Mean 75:3 | 461 81.6 | 1980 f. s.
473 70.6 | 480 65.7
481 62.2
482 63.0 | 500 71.6
501 59.4
502 62.2 | | 462 89·5
463 81·1
470 90·0
471 65·7 | Mean 75.3 | 462 87.0
463 76.5
473 68.7
474 71.4 | 474 70.7
475 73.3
476 68.3
477 69.5 | 497 74°9
500 72°7
501 59° 7
502 62°9 | Mean 68.0 | | Mean 81.6 | 1850 f. s.
Mean 76.8 | 475 69·1
476 67·7 | 477 69·5
479 66·8
481 61·2 | Mean 68.0 | 2070 f. s. Mean 67.9 | | Round | K_v | Round | Λ, | Round | Κ̈υ | Round | ٨٠, | Round | <i>λ</i> _ν | Round | K_v | Round | ٨-, | |---------------------------------|--------------------------------------|---------------------------------|--------------------------------------|---------------------------------|--------------------------------------|--|--|---------------------------------|-----------------------|---------------------------------|------------------------------|--|---------------------------------------| | 00 | f. s. | 0, | 58.4 | | f. s. | 483 | 51.5 | conti | f. s. | | f. s. | 483 | f. s. | | 2343
485
491 | 51·1
72·1 | 2400
485
486 | 52.5
49.9 | 483
485 | 51.5
54.7 | 485
486
487
488
489
496 | 58·5
50·4
52·4
49·8
48·0
51·8 | 487
488
496
Mean | 51.4
51.4
53.0 | 483
484 | 50.4
54.1 | 484
485
486
487
488
496 | 54°1
70°0*
50°9
50°4
50°4 | | 492
493
494
495
498 | 61.6
70.6
61.3
50.6
68.5 | 487
488
491
492
493 | 54.9
49.5
72.8
61.6
70.2 | 486
487
488
489
496 | 49.9
53.2
49.3
47.7
53.0 | | 51·8
o f. s. | 1 - | 53.1 | 485
486
487
488
496 | 20.9
20.9
20.9
50.9 | Mean 2730 | $\frac{1}{51.3}$ of. s. | | 499
Mean | 62.9 | 494
496 | 53.4 | Mear | 21.3 | Mear | 21.9 | 2600
483 | o f. s. | Mean | 21.2 | | 51.5 | | | | Mean | 58*4 | | o f. s. | 254
483 | 51.5 | 485
486
487 | 63.2
50.9 | | o f. s. | 483
484 | o f. s.
 49.6
 54.2 | | 00 | 62.8 | | o f. s. | | o f. s. | 485
486
487
488 | 59.9
50.4
50.1 | 488
496 | 20.8 | | f. s. | 485
486
487
488 | 50.8
51.0
50.4 | | 485 | o f. s. | | o f. s. | 483
485
486
487 | 51.2
55.7
50.0
52.9 | 489
496 | 48.1 | 2610 | o f. s. | 483
484
485
486 | 50.3
54.1
68.0, | 496 | 21.4 | | 491
492
493
494 | 72.3
61.6
61.1 | 483
485
486
487 | 51.2
53.1
54.3 | 488
489
496 | 49°3
47°7 | | o f. s. | | $\frac{53.3}{5.s.}$ | 487
488
496 | 20.6
20.6
20.6 | | o f. s. | | 495
498
499 | 49°4
68°3
67°5 | 488
493
494
496 | 49.3
70.2
60.3
53.1 | | <u>51.4</u> | | 52.0 | 483
485
486
487 | 50.4
64.2
50.4 | | 51.4 | 276
483 | o f. s. | | Mear | 62.8 | | 25.5 | 1 '' | o f. s.
n 51·5 | 483
485 | o f. s.
 51°2
 61°1 | 488
496 | 21.8 | _ ′ | o f. s. | 484
486
487 | 54.4
50.6
51.5 | | | o f. s. | 1 | o f. s.
n 53°0 | 1 ~ | o f. s. | 486
487
488
489 | 50.3
51.9
50.2 | | 53°3
o f. s. | 270
483 | o f. s. | 496
Mean | 21.4 | | 238 | o f. s. | | | 483
485
486
487 | 21.2
20.3
20.3
21.2 | 496 | 251.4 | Ŭ | 51.0 | 484
485
486 | 54.1
68.9, | | o f. s. | | 485
486
488 | 52.0
49.9
49.9 | 244
483
485 | o f. s.
 51°5
 53°7 | 488
489
496 | 49°4
47°7
52°2 | 257 | o f. s. | 264
483 | o f. s. | 487
488
496 | 50·9
50·4
51·4 | | o f. s. | | 491
492
493 | 72.6
61.6
70.3 | 486
487
488 | 49°9
53°7
49°3 | | n 51.2 | | 52.1 | 485
486
487
488 | 20.8
20.8 | Mear | n 51.3 | 484
486
487 | 20.4 | | 494
498
Mean | n 60.4 | 494
496
Mea | 23.0
23.0 | · I · · | 0 f. s.
n 51·7 | 483 | o f. s.
 50.9
 62.4 | 496 | 21.0 | | o f. s. | 496 | 21.4
21.4 | | Mea | | Mea | 33.0 | Mea | 51 / | 486 | 50.4 | 1.70.0 | | | <u>J- 3</u> | | | 77. Corrected mean values of K_v for Ogival-headed Projectiles. (w = 534.22 grains.) Cubic Law. | t'
f. s. | Experimental
values of
K_{ν} | Correc-
tions | Corrected
values of
K_v | V
f.s. | Experimental
values of
K_v | Correc-
tions | Corrected
values of
K _v | |-------------|--|------------------|---------------------------------|------------|------------------------------------|------------------|--| | 430 | 130.6 | + 10.1 | 140.4 | 775 | 81.9 | - 3.8 | 78.1 | | 435 | 133.6 | +5.2 | 139.1 | 780 | 80.3 | - 2.7 | 77.6 | | 440 | 133.6 | +3.9 | 137.5 | 785 | 75.6 | +1.5 | 77.1 | | 465 | 129.9 | +0.5 | 130.1 | 790 | 69.7 | +6.9 | 76.6 | | 470 | 130.6 | - 1.9 | 128.7 | 795 | 74.6 | +1.5 | 76.1 | | 475 | 120.1 | +7.3 | 127'4 | 800 | 62.1 | +13.2 | 75.6 | | 530 | 120.5 | - 6.0 | 114.5 | 805 | 61.9 | +13.5 | 75.1 | | 535 | 8.811 | - 5.7 | 113.1 | 810 | 61.1 | +13.2 | 74.6 | | 540 | 112.6 | - 0.6 | 112.0 | 815 | 57.9 | +16.3 | 74.2 | | 545 | 107.2 | + 3.8 | 111.0 | 820 | 67.0 | +6.9 | 73'9 | | 550 | 102.8 | +7.2 | 110.0 | 825 | 74.3 | -0.6 | 73.7 | | 555 | 101.2 | +7.5 | 100.0 | 830 | 74.7 | - 1.1 | 73.6 | | 560 | 98.1 | + 9.9 | 108.0 | 835 | 74.9 | - 1.3 | 73.6 | | 565 | 99.2 | +76 | 107.1 | 840 | 72.2 | +1.4 | 73.6 | | 570 | 100.2 | + 5.6 | 100.1 | 845 | 74'5 | -0.9 | 73.6 | | 575 | 98.6 | + 6.6 | 105.5 | 850 | 70.0 | + 3.6 | 73.6 | | 580 | 99.7 | +4.6 | 104.3 | 855 | 69.6 | +4.0 | 73.6 | | 585 | 102.6 | +0.8 | 103.4 | 860 | 67.0 | +6.6 | 73.6 | | 590 | 100.0 | +1.6 | 102.2 | 865 | 66.1 | + 7.5 | 73.6 | | 595
600 | 112.9 | - 11.3 | 101.7 | 870 | 63.1 | + 10.5 | 73.6 | | 605 | 100.6 | +0.5 | 100.8 | 875 | 62.4 | +11.2 | 73.6 | | 650 | 113.2 | - 13.5
- 13.5 | 100.0 | 880
885 | 64.9 | +8.7 | 73.6 | | 655 | 95.2
95.2 | -41 | 93'I | | 75.3 | - 1.7 | 73.6 | | 660 | 97.7 | -6.0 | 91.7 | 890
895 | 72.9 | +0.7 | 73.6 | | 665 | 99.6 | - 8.6 | 91.0 | 900 | 81.0 | -8.3 | 73.6 | | 670 | 99.9 | - 9.6 | 90.3 | 905 | 79.8 | -6.3 | 73 [.] 6
73 [.] 6 | | 675 | 100.1 | - 10.2 | 89.6 | 910 | 81.0 | -8.3 | 73.6 | | 680 | 98.6 | -
9.6 | 89.0 | 915 | 80.2 | - 6.6 | 73.6 | | 685 | 97.5 | - 9.2 | 88.3 | 920 | 78.4 | - 4.8 | 73.6 | | 690 | 96.4 | 8.7 | 87.7 | 925 | 75.6 | - 2.0 | 73.6 | | 695 | 90.7 | - 3.7 | 87·0 | 930 | 75.9 | - 2.3 | 73.6 | | 700 | 86.7 | - 0.3 | 86.4 | 935 | 71.1 | + 2.2 | 73.6 | | 705 | 84.9 | +0.0 | 85.8 | 940 | 69.9 | +3.7 | 73.6 | | 710 | 81.1 | +4.1 | 85.2 | 945 | 75'9 | - 2.3 | 73.6 | | 715 | 80°2
82°6 | +4'4 | 84.6 | 950 | 77'3 | - 3.7 | 73.6 | | 720 | 81.0 | +1'4 | 84.0 | 955 | 75'9 | - 2.3 | 73.6 | | 725
730 | 81.1 | + 2.4 | 83.4 | 960 | 73°I | +0.2 | 73.6 | | 735 | 77:2 | +1.8 | 82.9 | 965 | 75.5 | - 1.9 | 73.6 | | 740 | 77.3 | + 5.1 | 82·3
81·8 | 970 | 73'3 | +0.3 | 73.6 | | 745 | 78 0 | + 4°5
+ 3°2 | 81.5 | 975 | 73.9 | -0.3 | 73.6 | | 750 | 83.0 | - 2.3 | So:7 | 980
985 | 72.9 | +0.7 | 73.6 | | 755 | 83.2 | - 3.1 | 80.1 | | 72.9 | +0.4 | 73.6 | | 700 | 83.5 | - 3.9 | 79.6 | 990 | 74.6 | - 1.0 | 73.6 | | 765 | 85.5 | - 6.4 | 79.1 | 1000 | 74·8
74·5 | - 1.5 | 73.6 | | 770 | 84.6 | - 6.0 | 78.6 | 1005 | 73.8 | -0.5 | 73·6
73·6 | ## Corrected mean values of K_v for Ogival-headed Projectiles—(cont.). | | Corrected values of K_v 104'6 104'0 103'4 102'8 102'1 101'4 100'7 99'9 99'2 98'4 97'7 96'8 96'1 | |---|---| | 1010 | 104.6
104.0
103.4
102.8
102.1
101.4
100.7
99.9
99.2
98.4
97.7
96.8 | | 1015 | 104·0
103·4
102·8
102·1
101·4
100·7
99·9
99·2
98·4
97·7
96·8 | | 1015 | 104·0
103·4
102·8
102·1
101·4
100·7
99·9
99·2
98·4
97·7
96·8 | | 1015 | 104·0
103·4
102·8
102·1
101·4
100·7
99·9
99·2
98·4
97·7
96·8 | | 1020 | 103.4
102.8
102.1
101.4
100.7
99.9
99.2
98.4
97.7
96.8 | | 1025 | 102·8
102·1
101·4
100·7
99·9
99·2
98·4
97·7
96·8 | | 1030 | 102·1
101·4
100·7
99·9
99·2
98·4
97·7
96·8 | | 1035 | 101·4
100·7
99·9
99·2
98·4
97·7
96·8 | | 1040 | 99.9
99.2
98.4
97.7
96.8 | | 1045 89.6 -5.8 83.8 1480 100.8 -0.9 1050 90.9 -3.6 87.3 1490 99.6 -0.4 1055 91.6 -0.8 90.8 1500 98.7 -0.3 1060 92.2 +1.8 94.0 1510 97.3 +0.4 1065 92.5 +4.1 96.6 1520 96.5 +0.3 1070 104.5 -5.8 98.7 1530 96.1 0 1080 105.2 -3.0 102.2 1540 96.2 -0.9 1090 106.6 -1.7 104.9 1550 95.5 -1.0 1100 107.3 -0.4 106.9 1560 94.3 -0.6 1110 107.4 +1.0 108.4 1570 93.0 -0.1 1120 105.7 +3.5 109.2 1580 92.5 -0.4 1130 107.2 +2.4 109.6 1600 <td< td=""><td>99°9
99°2
98°4
97°7
96°8</td></td<> | 99°9
99°2
98°4
97°7
96°8 | | 1050 | 99°2
98°4
97°7
96°8 | | 1055 | 98·4
97·7
96·8 | | 1066 92·2 +1·8 94·0 1510 97·3 +0·4 1065 92·5 +4·1 96·6 1520 96·5 +0·3 1070 104·5 -5·8 98·7 1530 96·1 0 1080 105·2 -3·0 102·2 1540 96·2 -0·9 1090 106·6 -1·7 104·9 1550 95·5 -1·0 1100 107·3 -0·4 106·9 1560 94·3 -0·6 1110 107·4 +1·0 108·4 1570 93·0 -0·1 1120 105·7 +3·5 109·2 1580 92·5 -0·4 1130 107·2 +2·4 109·6 1590 91·4 -0·1 1140 107·6 +2·0 109·6 1600 88·9 +0·9 1150 109·3 +0·3 109·6 1610 88·9 +0·9 1150 109·9 -0·3 109·6 1630 83·9 +4·5 1180 1100 -0·4 109·6 1640 84·1 +3·6 1190 109·9 -0·3 109·6 1640 84·1 +3·6 1200 106·9 +2·7 109·6 1660 84·6 +1·7 | 97·7
96·8 | | 1065 92.5 +4.1 96.6 1520 96.5 +0.3 1070 104.5 -5.8 98.7 1530 96.1 0 1080 105.2 -3.0 102.2 1540 96.2 -0.9 1090 106.6 -1.7 104.9 1550 95.5 -1.0 1100 107.3 -0.4 106.9 1560 94.3 -0.6 1110 107.4 +1.0 108.4 1570 93.0 -0.1 1120 105.7 +3.5 109.2 1580 92.5 -0.4 1130 107.2 +2.4 109.6 1590 91.4 -0.1 1140 107.6 +2.0 109.6 1600 89.9 +0.6 1150 109.3 +0.3 109.6 1610 88.9 +0.9 1160 109.9 -0.3 109.6 1620 88.0 +1.1 1170 110.0 -0.4 109.6 1630 | 96.8 | | 1070 104·5 -5·8 98·7 1530 96·1 0 1080 105·2 -3·0 102·2 1540 96·2 -0·9 1090 106·6 -1·7 106·9 1550 95·5 -1·0 1100 107·3 -0·4 106·9 1560 94·3 -0·6 1110 107·4 +1·0 108·4 1570 93·0 -0·1 1120 105·7 +3·5 109·2 1580 92·5 -0·4 1130 107·2 +2·4 109·6 1590 91·4 -0·1 1140 107·6 +2·0 109·6 1600 89·9 +0·6 1150 109·3 +0·3 109·6 1600 89·9 +0·6 1160 109·9 -0·3 109·6 1620 88·0 +1·1 1170 110·0 -0·4 109·6 1630 83·9 +4·5 1180 110·0 -0·3 109·6 1650 | | | 1080 | | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 95.3 | | 1100 | 94.2 | | 1110 | 93.7 | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 92.9 | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 92.1 | | 1140 | 91.3 | | 1150 | 90.2 | | 1160 | 89.8 | | 1180 110.0 -0.4 r09.6 1640 84.1 +3.6 1190 109.9 -0.3 109.6 1650 84.4 +2.6 1200 106.9 +2.7 109.6 1660 84.6 +1.7 | 89.1 | | 1180 110.0 -0.4 r09.6 1640 84.1 +3.6 1190 109.9 -0.3 109.6 1650 84.4 +2.6 1200 106.9 +2.7 109.6 1660 84.6 +1.7 | 88.4 | | 1200 106.9 +2.7 109.6 1660 84.6 +1.7 | 87.7 | | | 87.0 | | 1210 107.0 +2.6 109.6 1670 84.8 +0.8 | 86.3 | | | 85.6 | | 1220 110.1 -0.2 100.6 1680 84.8 +0.1 | 84.9 | | 1230 110.1 -0.2 100.6 1000 84.8 -0.9 | 84.3 | | 1240 110.0 -0.4 100.6 1200 84.2 -1.5 | 83·5
82·8 | | 1250 110.5 -0.6 100.6 1210 83.7 -0.0 | | | 1260 109.6 0 109.6 1720 83.3 -1.2 | 82.1 | | 1270 111.0 -1.4 109.6 1730 82.4 -0.9 | 81.2 | | 1280 110.9 -1.3 109.6 1740 81.2 -0.3 | 80.9 | | 1290 110.1 -0.2 100.6 1220 80.5 +0.1 | 80.3 | | 1300 109.9 -0.5 109.4 1760 81.6 -1.9 | 79.7 | | 1310 108·7 +0·4 109·1 1770 80·7 -1·5 1320 108·9 -0·1 108·8 1780 80·3 -1·7 | 79 ·2
78·6 | | | 78·o | | | | | 1340 107·3 +0·8 108·1 1800 79·4 -2·0 +1·6 | | | 1360 106.0 +1.5 104.7 1850 42.5 +1.5 1360 136.0 +1.5 | 77°4
76°8 | | 1370 106·5 +0·3 106·8 1830 75·1 +0·6 | 76.8 | | 1380 102.3 +0.4 102.3 1840 22.3 -0.1 | 76·8
76·2 | | 1390 105.6 +0.5 105.8 1850 76.8 -2.1 | 76·8
76·2
75·7 | | 1400 105.8 -0.6 105.2 1860 76.9 -2.6 | 76·8
76·2
75·7
75·2 | | 15,5 | 76·8
76·2
75·7 | # Corrected mean values of K_v for Ogival-headed Projectiles—(cont.). | 7' | Experimental values of | Correc- | Corrected
values of | v | Experimental values of | Correc-
tions | Corrected
values of | |-------|------------------------|---------|------------------------|-------|------------------------|------------------|------------------------| | f.s. | Α̈́υ | | Κυ | f. s. | Κ, | | Κυ | | 1870 | 77.0 | - 3.5 | 73.8 | 2330 | 62.8 | - 2.1 | 60.7 | | 1880 | 74'9 | - 1.6 | 73.3 | 2340 | 62.9 | - 0.7 | 60.2 | | 1890 | 73.8 | - 1.0 | 72.8 | 2350 | 62.8 | - 3.1 | 59.7 | | 1900 | 73.1 | -0.0 | 72.2 | 2360 | 62.8 | - 3.7 | 29.1 | | 1910 | 72.2 | - o·8 | 71.7 | 2370 | 60.2 | - 1.9 | 58.6 | | 1920 | 72.8 | - 1.6 | 71.2 | 2380 | 60.7 | - 2.7 | 58·0 | | 1930 | 7114 | - 0.6 | 70.8 | 2390 | 58.4 | -0.9 | 57.5 | | 1940 | 68.8 | +1.6 | 70.4 | 2400 | 58.4 | -1.4 | 57.0 | | 1950 | 69.4 | +0.6 | 70.0 | 2410 | 57.8 | - 1.3 | 56.5 | | 1960 | 69.6 | 0 | 69.6 | 2420 | 55.5 | +0.8 | 56.0 | | 1970 | 68.7 | +0.6 | 69.3 | 2430 | 53·o | +2.6 | 55.6 | | 1980 | 67.4 | +1.6 | 69.0 | 2440 | 53.0 | +2.1 | 22.1 | | 1990 | 67.9 | +0.0 | 68.8 | 2450 | 51.9 | +2.8 | 54.7 | | 2000 | 67.9 | +0.6 | €8.5 | 2460 | 51.3 | + 3.0 | 54.3 | | 2010 | 67.9 | +0.3 | 68.2 | 2470 | 51.4 | +25 | 53.9 | | 2020 | 68.0 | 0 | 68·o | 2480 | 51.4 | + 2.2 | 53.6 | | 2030 | 67.8 | 0 | 67.8 | 2490 | 51.2 | +1.7 | 53.2 | | 20.10 | 68.0 | - 0.3 | 67.7 | 2500 | 51.2 | +1.4 | 52.9 | | 2050 | 68.0 | -0.2 | 67.5 | 2510 | 51.7 | +1.0 | 52.7 | | 2060 | 68.0 | -0.6 | 67.4 | 2520 | 51.8 | +0.7 | 52.5 | | 2070 | 67.9 | - 0.6 | 67.3 | 2530 | 51.9 | +0'4 | 52.3 | | 2080 | 67.1 | +0.1 | 67.2 | 2540 | 52.0 | +0.5 | 52.2 | | 2090 | 67.1 | 0 | 67.1 | 2550 | 52.0 | 0 | 52.0 | | 2100 | 66.7 | +0.3 | 67.0 | 2560 | 52.0 | - o.1 | 51.9 | | 2110 | 66.6 | +0.3 | 66.9 | 2570 | 52.1 | -0.3 | 51.8 | | 2120 | 66.9 | -0.1 | 66.8 | 2580 | 53.0 | -1.3 | 51.7 | | 2130 | 66.3 | +0.4 | 66.7 | 2590 | 53.1 | - 1.2 | 51.6 | | 2140 | 66.3 | +0.3 | 66.6 | 2600 | 53.5 | - 1.7 | 51.2 | | 2150 | 66.3 | +0.5 | 66.5 | 2610 | 53.3 | - 1.9 | 51.4 | | 2160 | 66.0 | +0.4 | 66.4 | 2620 | 53.3 | - 1.9 | 51'4 | | 2170 | 65.9 | +0.4 | 66.3 | 2630 | 21.0 | +0.4 | 51.4 | | 2180 | 65.8 | +0.3 | 66.1 | 2640 | 21.0 | + 0.4 | 51.4 | | 2150 | 65.9 | +0.1 | 66.0 | 2650 | 51.2 | -0.1 | 51.4 | | 2200 | 65.9 | -0.1 | 65.8 | 2660 | 51.2 | - 0.I | 51.4 | | 2210 | 65.9 | -0.3 | 65.6 | 2670 | 51.4 | 0 | 51.4 | | 2220 | 65.9 | -0.0 | 65.3 | 2680 | 51.4 | 0 | 51.4 | | 2230 | 65.8 | - 0.2 | 65.1 | 2690 | 51.3 | 0 | 21.3 | | 2240 | 65.8 | -0.0 | 64.9 | 2700 | 51.3 | 0 | 51.3 | | 2250 | 65.8 | -1.5 | 64.6 | 2710 | 21.3 | 0 | 51.3 | | 2260 | 65.9 | - 1.7 | 64.2 | 2720 | 51.3 | 0 | 21.3 | | 2270 | 65.5 | - 1.8 | 63.7 | 2730 | 21.5 | 0 | 51.5 | | 2280 | 66.3 | - 3.1 | 63.5 | 2740 | 51.5 | 0 | 51.2 | | 2290 | 65.5 | - 2.8 | 62.7 | 2750 | 21.3 | 0 | 51.5 | | 2300 | 65'4 | - 3.2 | 62.2 | 2760 | 51.4 | -0.3 | 51.2 | | 2310 | 65.4 | - 3.7 | 61.7 | 2770 | 52.0 | ~- o·8 | 51.5 | | 2320 | 64.4 | ~ 3'2 | 61.5 | 27So | 52.0 | -0.8 | 51.2 | 78. Report
dated July 8, 1879. | Round K | Round Kv | Round K | Round K | Round K_v | Round K | |---|---|---|---|---|--| | 1640 f. s. | 1680 f. s. | 1720 f. s. | 1760 f. s. | 1800 f. s. | 1840 f. s. | | 467 106·4
468 127·2
469 113·1 | 467 106·4
468 123·6
469 114·2 | 467 106·4
468 119·4
469 113·9 | 464 106·4
468 112·0
469 113·9 | 467 106·4
468 100·8
469 113·4 | 467 105.9
468 89.0
469 113.1 | | Mean 115.6 | Mean 114.7 | Mean 113.2 | Mean 110.8 | Mean 106.9 | Mean 102.7 | | 1650 f. s. | 1690 f. s. | 1730 f. s. | 1770 f. s. | 1810 f. s. | 1850 f. s. | | Mean 115'3 | Mean 114'3 | Mean 112.7 | Mean 109.9 | Mean 106.0 | Mean 101.6 | | 1660 f. s. | 1700 f. s. | 1740 f. s. | 1780 f. s. | 1820 f. s. | 1860 f. s. | | 467 106·4
468 125·4
469 113·1 | 467 106·4
468 121·7
469 113·9 | 467 106·4
468 116·0
469 113·9 | 467 106·4
468 107·0
469 113·9 | 467 106·4
468 94·8
469 113·4 | 467 105.6
468 83.4
469 113.1 | | Mean 115.0 | Mean 114.0 | Mean 112.1 | Mean 109.1 | Mean 104'9 | Mean 100'7 | | 1670 f. s. | 1710 f. s. | 1750 f.s. | 1790 f. s. | 1830 <i>f. s.</i> | 1870 f. s. | | Mean 115'1 | Mean 113.6 | Mean 111.5 | Mean 108.0 | Mean 103:7 | Mean 99.6 | 79. Corrected mean values of K_v for Projectiles with Hemispherical Heads. ($\omega = 534.22$ grains.) | Vel.
f. s. | Mean
K _v | Correc-
tion | Corrected K _v | Vel.
f. s. | Mean
Kv | Correc-
tion | Corrected | |---------------|------------------------|-----------------|---------------------------|----------------------|------------|-----------------|-------------------------------------| | 1110 | 132.6 | +0.4 | 133.0 | 1730
1740 | 112.1 | 0 | 112.16 | | 1120 | 133.7 | - o'7 | 133.0 | 1750 | 111.2 | + .1 | 111.47 | | 1140 | 134'9 | -1.9 | 133.0 | 1760
1770
1780 | 100.1 | 0
O
I. – | 109.0 - 1.0
108.08
108.08 | | 1160 | 130.5 | +28 | 115.6 | 1790 | 108.0 | 0 + 1 | 108.0 - 1.0 | | 1650
1660 | 112.0 | + 'I
+ '2 | 112.45 | 1810 | 106.0 | 0 | 100.0 - 1.1 | | 1670
1680 | 115.1 | 0
I. – | 115.0 | 1820
1830
1840 | 104'9 | 0
1.+
0 | 104.4
103.8 - 1.1
105.4 - 1.1 | | 1690 | 114.3 | O
+ .I | 114.44 | 1850
1860 | 101.6 | I
0 | 101.6 - 1.0 | | 1710 | 113.9 | 0 | 113.6 - 4 | 1870 | 99.6 | 0 | 99.6 - 1.0 | 80. Report dated July 8, 1879. | Round | K_{ν} | Round | K_{v} | Round | Κ̈υ | Round | λ*υ | Round | Λ, | Round | Kv | |--------------------------------|------------------------------------|-------------------|------------------------------------|-------------------|--|-------------------|--|-------------------|----------------------------------|-------------------|------------------------------------| | 1530
Mean | - | | o f. s. | _ | o f. s. | · · | o f. s. | | o f. s. | ٠, | o f. s. | | 1540
465
466
Mean | 186·0
162·1 | 464
465
466 | 165.4
182.9
170.0 | 464
465
466 | 165.4
178.9
175.8 | 464
465
466 | 165.4
174.6
177.7
172.6 | 464
465
466 | 166.0
171.9
175.0 | 464
465
466 | o f. s.
166·2
170·0
166·5 | | 1550
Mean | 174°5 | Mean | 10 f. s.
n 173'0 | Mea | 70 f. s.
n_173·3 | Mea | 30 f. s.
172.4 | Mean | 00 f. s. | Mear | o f. s. | | 1566
465
466
Mean | o f. s.
185°t
164°6
174°9 | 464
465
466 | 165.4
181.5
172.5
n 173.1 | 464
465
466 | 80 f. s.
165.4
177.2
177.0
n 173.2 | 464
465
466 | 165.4
173.5
177.3
172.1 | 464
465
466 | 166·2
171·2
172·4 | 464
465
466 | 166.2
169.7
161.2 | | 1570
Mean | o f. s. | 1 | 30 f. s.
n_173 ² | 1 | 90 f. s.
n 173·1 | | 50 f. s.
n 171.8 | 1 | 10 f. s.
n 169 [.] 4 | | | | 465 | 0 f. s.
184'2
167'1
175'7 | 464
465
466 | 165.4
180.3
174.2
n 173.3 | 464
465
466 | 165.4
175.7
177.7
177.7 | 464
465
466 | 50 f. s.
165.6
172.7
176.2
m 171.5 | 464
465
466 | 166·2
170·5
169·9 | | | 81. Corrected mean values of K_v for Projectiles with Flat Heads. ($\omega = 534.22$ grains.) | Vel.
f.s. | Mean
K _v | Correc-
tion | Corrected K_v | Vel.
f. s. | Mean | Correc-
tion | Corrected
K_v | |----------------------|-------------------------|-------------------------|--|----------------------|-------------------------|-------------------|-------------------------------------| | 1530
1540
1550 | 173.7
174.1
174.5 | +0.9
+0.3
+0.9 | 174'3+1
174'4+1
174'4+1 | 1710
1720
1730 | 172°7
172°6
172°4 | 0 0 | 172.7 - 1
172.6 - 2
172.4 - 3 | | 1560
1570
1580 | 174.9
175.3
175.7 | -0.4
-0.8
-1.3 | 174.5 o
174.5 - I
174.4 - I | 1740
1750
1760 | 172'1
171'8
171'5 | 0
0
0 | 172.1
121.8 - 3
121.2 - 3 | | 1590
1600
1610 | 176°1
172°8
173°0 | - 1.8
+ 1.4
+ 1.8 | 174'3 - I
174'2 - I
174'I - I | 1770
1780
1790 | 171°2
171°0
170°5 | 0
-0.1
0 | 171'2
170'9 - 3
170'5 - 4 | | 1620
1630
1640 | 173'1
173'2
173'3 | +0.4
+0.4
+0.4 | 174.0
173.9 - 1
173.7 - 1 | 1800
1810
1820 | 169'9
168'9 | 0
+0,1
+0,1 | 170°0
169°5 - 6
168°9 - 6 | | 1650
1660
1670 | 173'4
173'4
173'3 | +0.1
+0.1 | 173.6 - 1
173.5 - 2
173.3 - 1 | 1830
1840
1850 | 168.4
167.6
166.7 | +0.1
0
-0.1 | 168·3
167·6 - 8
166·8 - 9 | | 1680
1690
1700 | 173'2
173'1
172'9 | 0
+0,1
0 | 173 ² - 2
173 ⁰ - 1
172 ⁹ - 2 | 1860 | 165.7 | +0'2 | 165'9 | ### CHAPTER IV. DESCRIPTION AND USE OF THE GENERAL TABLES S_v AND T_v . 82. It will be found sufficient for many practical purposes to neglect the effect of gravity and treat the motion of a projectile as if its path was a straight line. This will suffice for experimental purposes when it is desired to find the loss of velocity, or the time of flight over a limited range, the muzzle velocity being high and the elevation of the gun being small. In calculating these general tables, for convenience the action of the air upon the projectile has been treated as an accelerating force, instead of a retarding force, because the results derived from the use of the Tables are the same in both cases, and the use of proportional parts is more simple in the case of an accelerating force, for then the time, space, and velocity all increase or decrease together. 83. The equation of motion when the accelerating force varies as the *square* of the velocity, is $$v\frac{dv}{ds}=2cv^2,$$ or, integrating, $$\log_{\epsilon} v = 2cs + C,$$ and supposing, when $$v=0$$, $t=0$, $v=V$, then $$\log_* \frac{v}{V} = 2cs,$$ or $$\frac{d^2}{w} s = \frac{1}{2c} \frac{d^2}{w} \log_e \frac{v}{V} = \frac{(1000)^2}{k} \log_e \frac{v}{V} \dots (1),$$ for $$2c = 2bv = K \frac{d^2}{w} \frac{v}{(1000)^3} = \left(K \frac{v}{1000}\right) \frac{d^2}{w} \left(\frac{1}{1000}\right)^2$$ = $k \frac{d^2}{w} \left(\frac{1}{1000}\right)^2$ suppose. For velocities of ogival-headed shot below 820 f. s., k = 60.5, which gives $$\frac{d^2}{w}s = 38059 \log_{10}\left(\frac{v}{V}\right),$$ and for velocities of spherical shot below 840 f. s., $k = 118 \cdot 3$, which gives $$\frac{d^2}{w}s = 19464 \log_{10}\left(\frac{v}{V}\right).$$ 84. Again $$\frac{d^2s}{dt^2} = \frac{dv}{dt} = 2cv^2,$$ and integrating $$\frac{1}{V} - \frac{1}{v} = 2ct,$$ or $$\frac{d^2}{w} t = \frac{1}{2c} \frac{d^2}{w} \left(\frac{1}{V} - \frac{1}{v} \right) = \frac{1000}{k} \left(\frac{1000}{V} - \frac{1000}{v} \right) \dots (2).$$ 85. The equation of motion, when the accelerating force varies as the *cube* of the velocity, is $$v\frac{dv}{ds}=2bv^3,$$ and integrating $$\frac{1}{V} - \frac{1}{v} = 2bs,$$ or $$\frac{d^2}{w} s = \frac{1}{2b} \frac{d^2}{w} \left(\frac{1}{V} - \frac{1}{v} \right) = \frac{(1000)^2}{K} \left\{ \left(\frac{1000}{V} \right) - \left(\frac{1000}{v} \right) \right\} \dots (3).$$ 86. Again $$\frac{d^2s}{dt^2} = \frac{dv}{dt} = 2bv^3.$$ Integrating $$\frac{1}{2V^2} - \frac{1}{2v^2} = 2bt$$ or $$\frac{d^2}{w}t = \frac{1}{4b}\frac{d^2}{w}\left(\frac{1}{V^2} - \frac{1}{v^2}\right) = \frac{500}{K}\left\{\left(\frac{1000}{V}\right)^2 - \left(\frac{1000}{v}\right)^2\right\} \dots (4).$$ Also, since $$\frac{1}{V} - \frac{1}{v} = 2bs,$$ therefore $$\frac{dt}{ds} = \frac{1}{V} - 2bs,$$ and integrating $$t = \frac{s}{V} - bs^{2}.$$ (5). In calculating general tables formulæ (1) and (2), or (3) and (4) may be used so long as k or K respectively remain constant. But when k, or K varies with the velocity, its value will require to be often changed, so that k_v or K_v may be supposed to remain constant through a change of velocity, say from (v-5) to (v+5) f.s. Intermediate values can afterward be found by interpolation. In this way General Tables XXIII. to XXVI. have been calculated. 87. The velocity of a projectile is generally found by measuring the time t in seconds occupied by the projectile in passing over a range of s feet, and dividing the number of feet by the number of seconds, the velocity in feet per second at the middle point of the range is approximately found in general. But where the accelerating or retarding force varies as the *cube* of the velocity, this is exactly true. For $$\frac{1}{v} = \frac{1}{V} - 2bs,$$ and if v' be the velocity of the projectile at the distance $\frac{1}{2}s$, then $$\frac{1}{v'} = \frac{1}{V} - bs.$$ But the measured velocity $$= \frac{\text{space in feet}}{\text{time in seconds}}$$ $$= \frac{s}{V} - bs^{2} = \frac{1}{V} - bs$$ = the velocity at the middle
point of the range s. 88. Special tables of remaining velocities were given for clongated projectiles with various forms of heads in my Report of 1866¹; also for 7, 8 and 9-inch ogival-headed projectiles in the Report of 1868²; and for all the service spherical projectiles in the Report of 1869³; and also for ogival-headed projectiles fired from all the Service guns⁴. 89. Suppose we have two projectiles of similar external forms, whose diameters are d, d'; and weights w, w' respectively. Then by equation (3), we have $$\frac{d^2}{w}s = (1000)^3 \int_0^v \frac{dv}{Kv^2} = \frac{d^2}{w'}s',$$ for K, v, and V are the same for both projectiles. Hence if we have calculated a table of ranges s', in which a projectile (d', w') loses any given velocity, from this table we can calculate the range s, in which another $similarly \ shaped$ projectile (d, w) will lose the same given velocity, for then $$s = s' \frac{d'^2}{w'} + \frac{d^2}{w}$$. This led me in the first instance to calculate general tables where $\frac{d^{\prime 2}}{w^{\prime}} = 1$, which were first published in 1871 for both spherical and ogival-headed projectiles⁵. In the same way it may be shown that $$t = t' \frac{d'^2}{w'} \div \frac{d^2}{w}.$$ The corresponding General Tables were first published in 1872. 90. The variation in the density of the air must greatly affect the motion of projectiles, as the resistance of the air is assumed to vary as its density. As already explained the coefficients for both elongated and spherical projectiles have now been calculated for such a density that one cubic foot of dry air would weigh 534.22 grains. This change has had the effect of increasing the values of K given in the Report of 1868 by about 0.7 per cent. It is evident that, when any calculation of an experiment has to be made by the tables and methods given in this work, it will be ¹ Reports, &c. 1865—1870, p. 15. ² Ib. pp. 49, 50. ³ Ib. p. 116. ⁴ Remaining velocities, &c. 1871, and Proceedings of the R. A. Inst. vii. p. 337. ⁵ Remaining velocities, pp. 47, 48, and Proceedings of the R. A. Inst. vii. pp. 391, 392. ⁶ Ib. viii. p. 4. necessary to introduce corrections in order to adapt the results obtained to the density of the air on the day of that experiment. - 91. Those who use French measures generally adopt as their standard, such a density of the air that one cubic metre of dry air would weigh 1.206 kil., which gives the weight of a cubic foot of air 526.94 grains, or nearly 527 grains. Hence it appears that the English coefficients ought to be numerically 1.37 per cent. greater than the French coefficients; while the English coefficients of 1868 would exceed the French by about 0.7 per cent. But when a proper correction has been introduced to adapt the tables to the density of the air on any particular day then the results arrived at ought to be the same, whatever be the table made use of. - 92. The corrections of the coefficients k and K, for the density of the air, are applied as follows. On any particular day, the weight of a cubic foot of air is easily found from Glaisher's Tables, when observations have been made with the Barometer and with the dry and wet bulb Thermometers. Suppose that τ denotes the weight in grains of a cubic foot of air on that day, divided by 53 ± 22 the standard weight in grains, then τ will be a constant for that round, provided the shot does not rise high enough to have its resistance sensibly affected by the diminishing density of the air. As k and K vary as the density of the air, they will have the values τk and τK adapted to the density of air on that particular day. By formula (4) we have or $$\frac{dt}{dv} = \frac{1}{2bv^3},$$ $$\frac{d^2}{v}t = (1000)^3 \int_{-\infty}^{v} \frac{dv}{K_v v^3} = T_v - T_V$$ = difference of two tabular numbers. But on the day above referred to every value of K_v must be replaced by τK_v , where τ is constant, and K_v is generally variable, then $$\frac{d^2}{w}t = (1000)^3 \int_0^V \frac{dv}{\tau K_v v^3} = \frac{(1000)^3}{\tau} \int_0^V \frac{dv}{K_v v^3},$$ or $$\tau \frac{d^2}{w}t = (1000)^3 \int_0^V \frac{dv}{K_v v^3} = T_v - T_V$$ = difference of the same tabular numbers as before. And in the same way it may be proved that $$\tau \frac{d^2}{w} s = \text{difference of tabular numbers}$$ $$= S_v - S_V.$$ 93. Suppose now a change to be made in the form of the head of an elongated shot, and that it is found by experiment that it is necessary for this particular form of head to change the values of K obtained from experiments made with ogival-headed shot struck with a radius of one diameter and a half to κK , where κ is constant. Further, suppose that we are experimenting with a gun that gives a degree of steadiness different from that of the average of the experimental guns, so as to require coefficients σK to be used instead of K, where σ is a constant. Then as before, we shall find $$au\kappa\sigma rac{d^2}{w}t=T_v-T_V,$$ and $$\tau\kappa\sigma\frac{d^2}{w}s=S_v-S_V.$$ In order to introduce these corrections into the results obtained by the use of the General Tables, or into the calculation of trajectories, we have only to find the value of $\tau\kappa\sigma\frac{d^2}{w}$ and use that value instead of $\frac{d^2}{dv}$. 94. A table has been calculated so that, on referring to it with the readings of the Barometer and Thermometer, the value of $\log \tau$ can be obtained directly on the supposition that the air is $\frac{2}{3}$ ds saturated with moisture with sufficient exactness for all practical purposes. In calculating this Table xx., the weight in grains of a cubic foot of air $\frac{2}{3}$ ds saturated with moisture, under a pressure of 29 inches of mercury, was found by Glaisher's Tables for each degree of temperature. Each of these numbers was divided by 534·22 the number of grains in the weight of the standard cubic foot of air, ¹ Proceedings of the R. A. Inst. xIII, p. 348. and the resulting values of τ were adapted to heights 15 to 31 inches of the barometer. 95. Table XXI. gives the values of $\log \tau$ corresponding to various heights. In calculating this table the simple formula $$z = c' \log \frac{h}{h'}$$ was made use of, where h denotes the height of the barometer in inches at the lower station, h' that at the upper station, and z the difference in feet of the vertical heights of the two stations. Here the force of gravity, and the temperature of the air are supposed constant. The table has been calculated in the following manner. $$\begin{split} \log \tau &= \log \frac{h'}{h} = -\frac{z}{c'} \\ &= N - \frac{100 \times n}{c'} = 0.0729 - \frac{100 \times n}{64110} = 0.0729 - 0.00156n; \\ n &= 0, \ \log \tau = 0.0729; \ n = 1, \ \log \tau = 0.0729 - 0.00156 = 0.07134; \\ n &= 2, \ \log \tau = 0.0729 - 0.00156 \times 2 = 0.06978, \ \&c., \ \&c. \end{split}$$ - 96. From readings of the barometer, &c. the value of $\log \tau$ is found by Table xx. at the place of observation. On referring to Table xxi. suppose this value of $\log \tau$ is found opposite the height H feet; then the tabular number found opposite H+z feet, will be the approximate value of $\log \tau$ at a place z feet higher than the place of observation. Table xxi. may be used when French measures are employed, if the heights expressed in feet in the table are converted into metres. - 97. The resistance of the air to a projectile of weight w and d inches in diameter moving with the velocity v is equal to $$2b\,\frac{w}{g}\,v^{\mathrm{s}} = \frac{K}{g}\,d^{\mathrm{s}} \left(\frac{v}{1000}\right)^{\mathrm{s}}.$$ In this way Table XXII, has been calculated for spherical and ogival-headed projectiles. 98. General tables have been calculated to connect velocity and range, and velocity and time of flight for both spherical and ogival-headed projectiles. See Tables XXIII. to XXVI. Similar tables for French measures have also been given. See Tables xxx. to xxxIII. In the latter case we denote the diameter of the shot in centimetres by a; its weight in kilogrammes by p, and the force of gravity by g metres per second. ## EXAMPLES OF THE USE OF THE GENERAL TABLES. 99. (1) Suppose it was asked in what range and time an 11.52-inch ogival-headed shot weighing 600 lbs. would have its velocity reduced from 1420 to 1250 f.s. Here $$d^2 \div w = (11.52)^2 \div 600 = 0.2212.$$ Let s denote the required range, and t the time of flight, then $$(\omega = 534.22 \text{ grains})$$ $$\frac{d^2}{u}s = 0.2212s = S_{1420} - S_{1250} = 41638.4 - 40750.8 = 887.6,$$ and therefore $s = 887.6 \div 0.2212 = 4013 \text{ feet},$ and $$\frac{d^2}{w}t = 0.2212t = 160.9015 - 160.2344 = 0.6671,$$ and therefore $t = 0.6671 \div 0.2212 = 3''.016$. (2) Calculate the same example with the tables adapted for French measures. Here a = 11·52 in. = 29·26 cm.; p = 600 lbs. = 272·16 kgs. 1420 f. s. = 432·81 m. s., 1250 f. s. = 381·0 m. s., and a² ÷ p = 3·146 ($$\omega$$ = 527 grains), then $\frac{a^2}{p}s' = \mathfrak{F}_{432'81} - \mathfrak{F}_{381} = 183042 - 179141 = 3901$, or $s' = 3901 \div 3·146 = 1240$ metres = 4068 feet, and $\frac{a^2}{p}t' = \mathfrak{T}_{432'81} - \mathfrak{T}_{381} = 2320·54 - 2310·90 = 9·64$, or $t' = 9·64 \div 3·146 = 3''·065$. As we have used the standard density for which each table was adapted, in order to make the results comparable, by (91) we must reduce the French results by 1.37 per cent. Then the corrected value of s' = 4068 - 55 = 4013 feet; and the corrected value of t' $$=3''\cdot065-0''\cdot041=3''\cdot024.$$ (3) Suppose we wish to find the time of flight of a spherical projectile (w = 163.5 lbs., d = 10.4 in.) over a range of 5000 feet, the muzzle velocity being 1988 f.s. and $\omega = 534.22$ grains. Here $d^2 \div w = 0.6615$. In the first place we must find the velocity v at the end of the range of 5000 feet. Here by Table XXIII. $$S_{\rm v} = S_{\rm 1988} - \frac{d^2}{w} 5000 = 11383 \cdot 5 - 3307 \cdot 5 = 8076 \cdot 0 =
S_{\rm 10457}.$$ Therefore the terminal velocity $$v = 1045.7 \text{ f. s.}$$ We must now find in what time the velocity of the same shot would be reduced from 1988 f.s. to 1045.7. By Table xxiv. $$\frac{d^2}{w}t = 0.6615t = T_{\tiny{1986}} - T_{\tiny{19467}} = 19.4388 - 17.0755 = 2.3633.$$ Therefore $t = 2.3633 \div 0.6615 = 3''.572$ the required time of flight. (4) We will now solve the same problem using French measures: a = diameter of spherical projectile = 10.4 in. = 26.42 c.m.; $$p = its weight = 163.5 lbs. = 74.16 kgs.;$$ 5000 feet = 1524 metres; $$1988 f. s. = 605.93 \text{ m. s.},$$ and $$\omega = 527.0$$ grains. This gives $$\tau = 1.0137$$. By Table xxx, we find $$\mathfrak{S}_{\mathfrak{b}} = \mathfrak{S}_{\text{ess}} - \frac{a^{2}}{p} \tau s = 50043 - \frac{(26 \cdot 42)^{2}}{74 \cdot 16} \times 1.0137 \times 1524 \\ = 50043 - 14540 = 35503 = \mathfrak{S}_{\text{aley}}, \\ \therefore \quad \mathfrak{b} = 318.7 \text{ m. s.} = 1045.6 \text{ f.s.},$$ Next to find in what time t the velocity of the given spherical shot would be reduced from 605.93 to 318.7 m.s. By Table $$rac{{{ m{a}}^{2}}}{{ m{p}}} au t = { m{$ rac{a^{2}}{{ m{p}}^{2}}}} - { m{$ rac{a^{2}}{{ m{p}}}}} = 280^{\prime\prime} \cdot 343 - 246^{\prime\prime} \cdot 27 = 34^{\prime\prime} \cdot 073,$$ $$t = \frac{34'' \cdot 073}{1 \cdot 0137} \times \frac{74 \cdot 16}{(26 \cdot 42)^2} = 3'' \cdot 571$$ very nearly as before where $\omega = 534.22$ grs. 100. The General Tables calculated for ogival-headed projectiles may be used to calculate range and time of flight for elongated projectiles having other forms of head, provided κ the ratio of their coefficients of resistance be known. In this case we shall have by (93) $$\frac{d^2}{w}\kappa s = S_v - S_V \text{ and } \frac{d^2}{w}\kappa t = T_v - T_V.$$ As an example we will take the three rounds (70) of flatheaded projectiles: Rounds 464—6, where $w = 70 \, \text{lbs.}$, $d = 6 \, \text{ins.}$; Barometer 30.4 ins.; Dry bulb thermometer 42° F., Wet do. These observations give the weight of a cubic foot of air by Glaisher's Tables 561.2 grains on the day of experiment, so that $\tau = 561.2 \div 534.22 = 1.051$. Or, using the Table XX., we find directly $\log \tau = 0.0160 + .0057 = 0.0217$ which gives $\tau = 1.051$. The screens were 150 feet apart. The average of the times at which the three shots passed the third screen was 0".16011; and the ninth screen was 0":69015. Thus the mean time occupied by the shot in passing from the third to the ninth screen, or over 900 feet, was found by experiment to be 0".5300. The third screen was passed with a mean velocity 1827.7 f.s., and the ninth screen with a mean velocity of 1585 f.s. Referring to the Table XIV. of values of K for flat-headed shot we may assume $\kappa_2 = 2.06$ for the above range of velocity. Then $$\frac{d^2}{w} \kappa_2 \tau = \frac{36}{70} \times 2.06 \times 1.051 = 1.1134,$$ and by Table XXVI. $$\frac{d^{2}}{w}\kappa_{\rm 2}\tau t = T_{\rm 18.7'7} - T_{\rm 1585} = 161^{\prime\prime} \cdot 9892 - 116^{\prime\prime} \cdot 3993 = 0^{\prime\prime} \cdot 5899,$$ therefore $$t = \frac{0^{\prime\prime} \cdot 5899}{1 \cdot 1134} = 0^{\prime\prime} \cdot 530,$$ which agrees with experiment. Again, by Table xxv., $$\frac{d^2}{w} \kappa_{\rm 2} \tau s = S_{\rm 18277} - S_{\rm 1585} = 43388.7 - 42384.8 = 1003.9,$$ therefore $$s = \frac{1003.9}{1.1134} = 901.6$$ feet instead of 900 feet. 101. We will next take the three rounds 467-9 of hemispherical-headed projectiles (70), fired on a day when the height of the barometer was $30\cdot25$ inches; dry-bulb thermometer 45° F., and the wet ditto 42° F. These give $\tau = 1\cdot039$. The mean times of the shot passing the third and ninth screens were $0''\cdot15923$ and $0''\cdot66713$ respectively, giving $0''\cdot5079$ as the mean time, found by experiment, occupied by the projectiles in passing from the third to the ninth screen, or over 900 feet. Also the mean velocity at the third screen was $1856 \ f.s.$; and $1692 \ f.s.$ at the ninth screen. Referring to the Table XIII. of values of K for hemispherical-headed projectiles, it will be found that $\kappa_1 = 1\cdot38$ between the above specified velocities. Then $$\frac{d^2}{w} \kappa_i \tau = \frac{36}{70} \times 1.38 \times 1.039 = 0.7374,$$ and, by Table XXVI., $$\frac{d^2}{w} \kappa_1 \tau t = T_{1856} - T_{1692} = 162'' \cdot 0495 - 161'' \cdot 6766 = 0'' \cdot 3729,$$ therefore $$t = \frac{0^{\prime\prime} \cdot 3729}{0 \cdot 7374} = 0^{\prime\prime} \cdot 506.$$ Again, by Table xxv. $$\frac{d^2}{w} \, \kappa_{\rm 1} \tau s = S_{\rm 1850} - S_{\rm 1852} = 43499 \cdot 7 - 42838 \cdot 9 = 660 \cdot 8.$$ Therefore $$s = \frac{660.8}{0.7374} = 896.1$$ feet instead of 900 feet. In the above two cases we have the advantage of using the values of κ_1 and κ_2 derived from the examples we have calculated. But the tables used in the calculations were derived from experiments made with ogival-headed projectiles. - 102. In order to show clearly in what way the results of experiments were made available for the public service, it seems advisable to give, not only references, but *specimens* as well, of the useful ballistic tables adapted for practical use, which were published by me from time to time. - 103. In the report of the results obtained by the employment of elongated projectiles with various forms of heads (1866), tables of remaining velocities were given for each form of projectile for intervals of 100 feet in range¹. The following is an abridgment of the two tables for solid ogival-headed experimental projectiles struck with radii of one and of two diameters, compared with similar tables calculated by the accompanying general tables (1889) derived from experiments made with ogival-headed shot struck with a radius of one diameter and a half. | | $\frac{d^2}{\tau v} = 0$ | 5584 | | $\frac{d^2}{v} = 0.238$ | | | | | |--|--|---|---|---|---|---|--|--| | Distance | 1 diam.
1866 | 1½ diam.
1889 | Diff. | 2 diam.
1866 | 1½ diam.
1889 | Diff. | | | | feet
0
500
1000
1500
2000
2500
3500
4000
4500 | f. s.
1500 to
1434 t3
1374 t2
1318 t9
1267 t9
1220 t7
1176 t9
1136 t1
1098 t1 | f. s.
1500'0
1439'3
1381'2
1326'2
1274'7
1226'8
1182'4
1141'2
1102'8
1068'8 | 0
+5.0
+7.0
+7.3
+6.8
+6.1
+5.5
+5.1
+4.7
+6.2 | f. s.
1500 to
1435 f6
1376 f4
1322 to
1271 f7
1225 f1
1181 f8
1144 f4
1103 f7
1068 f4 | f. s.
1500'0
1437'7
1378'1
1321'9
1269'2
1220'5
1175'4
1133'5
1094'9
1061'2 | 0
+2'I
+1'7
-0'I
-2'6
-4'6
-6'4
-7'9
-8'8
-7'3 | | | This comparison exhibits the value of the early experiments, for the calculated velocities of the ogival-headed projectiles struck with a radius of one diameter and a half, are generally less than those given for heads struck with a radius of two diameters, and greater than those given by a head struck with a radius of one diameter, as they ought to be. 104. In the Report on the resistance of the air to the motion of ogival-headed projectiles (July 23, 1868), tables were given of the remaining velocities of ogival-headed service shot when fired from 7, 8 and 9-inch M. L. guns², the projectiles being supposed to move under the action of the resistance of the air only. These tables were shortly afterwards reprinted in the *Proceedings* of the R. A. Institution³, and in Colonel Owen's *Modern Artillery*⁴. These are the tables referred to by General Mayevski in his Treatise on *Balistique Extérieure*, which matter will require to ¹ Reports, &c. 1865—1870, p. 15. ³ Notes, 1868, p. 69. ² Ib. p. 49. ^{4 1871,} p. 430. be noticed hereafter. The following is a copy of the complete table for the 7-inch gun, omitting decimals, where | d = 6.92 in. = 17.58 e. m.; | w = 115 lbs. = 52.2 kil. | $d^2 \div w = 0.4164.$ | |-------------------------------|----------------------------|------------------------| |-------------------------------|----------------------------|------------------------| | Distance | 0 | 100 | 200 | 300 | 400 | 500 | 600 | 700 | 800 | 900 | |---|--|--|--|---|---|---|--|--|--|--| | feet
0
1000
2000
3000
4000
5000
6000
7000
8000 | f.s.
1717
1613
1518
1428
1344
1266
1196
1134
1081 |
f.s.
1706
1603
1509
1419
1336
1259
1189
1129
1076 | f.s.
1695
1593
1499
1410
1328
1252
1183
1123
1071 | f. s.
1685
1584
1490
1402
1320
1244
1176
1118
1066
1028 | f. s.
1674
1575
1481
1393
1312
1237
1170
1113
1061 | /: s.
1663
1565
1472
1385
1304
1230
1164
1107
1056 | f.s.
1653
1556
1463
1377
1296
1223
1157
1102
1052
1018 | f.s.
1643
1546
1455
1368
1288
1216
1151
1097
1048 | f.s.
1633
1537
1446
1360
1281
1209
1145
1091
1045 | f.s.
1623
1527
1437
1352
1273
1203
1140
1086
1041
1008 | | 10000 | 1005 | 1002 | 999 | 996 | 992 | 989 | 986 | 983 | 980 | 977 | 105. Here it must be pointed out that the coefficients, by which the above table was calculated in 1868, were revised in the following year, as explained at the conclusion of the report on the experiments made with spherical projectiles as follows: "In order, however, to obtain a more satisfactory table of values of $2000b\frac{w}{d^2}$ " (for ogival-headed projectiles) "we have commenced the recalculation of the times of passing each screen expressed to five places of decimals of a second. In this manner we shall obtain a table of average values of $2000b'\frac{w}{d^2}$ derived from all the rounds of elongated shot fired, just as we have obtained a table of values of $2000b'\frac{w}{d^2}$ for spherical shot." These results were printed shortly afterwards and they entirely superseded the first table of coefficients², although the alteration was not great. Also in the Report on experiments made with spherical projectiles, the coefficients obtained by experiment were used in a manner similar to the above to calculate the remaining velocities of spherical projectiles fired from the service guns³. The same were reprinted in Tables of Remaining Velocities⁴, &c.: in Colonel Owen's Modern Artillery⁵; and in the Proceedings of the R.A. Institution⁶. The following is an abridgment of this Table. ¹ Reports, &c., 1865-1870, p. 65. ³ Ib. p. 116. ⁸ 1871, p. 432. ² Ib. pp. 123—152. ^{4 1871,} p. 35. ^{6 1871,} p. 379. "Table showing the Velocities of Spherical Solid Shot for the "undermentioned Guns at intervals of 100 feet, supposing the "Shot to move in a straight line, subject only to the Resistance of "the Air." Report, dated Feb. 13, 1869. | Gun | $d^2 \div \tau v$ | Gun | $d^2 \div \imath v$ | Gun | $d^2 \div w$ | |---------|-------------------|--------|---------------------|-------|--------------| | 15-in. | ·4898 | 32-pr. | 1.5161 | 9-pr. | 1.8422 | | 150-pr. | .6615 | 24-pr. | 1.3373 | 6-pr. | 2.1518 | | 100-pr. | .7766 | 18-pr. | 1.4648 | 3 pr. | 2.6564 | | 68-pr. | .9487 | 12-pr. | 1.6696 | | | | Dis-
tance | 15-in. | 150-pr. | 100-pr. | 68-pr. | 32-pr. | 24-pr. | 18-pr. | 12-pr. | 9-pr. | 6-pr. | 3-pr. | |---------------|--------|---------|---------|--------|--------|--------|--------|--------|-------|-------|-------| | feet | f.s. | f.s. | f. s. | f.s. | f. s. | f. s. | f. s. | f. s. | f.s. | f. s. | f.s. | | 0 | 2100 | 2100 | 2100 | 2100 | 2100 | 2100 | 2100 | 2100 | 2100 | 2100 | 2100 | | 100 | 2079 | 2072 | 2067 | 2059 | 2048 | 2043 | 2038 | 2030 | 2022 | 2011 | 1990 | | 200 | 2058 | 2044 | 2033 | 2019 | 1998 | 1988 | 1978 | 1962 | 1947 | 1926 | 1886 | | 300 | 2037 | 2016 | 2001 | 1980 | 1948 | 1935 | 1920 | 1896 | 1875 | 1845 | 1788 | | 400 | 2017 | 1988 | 1970 | 1942 | 1900 | 1883 | 1863 | 1833 | 1806 | 1768 | 1696 | | 1500 | 1805 | 1714 | 1654 | 1571 | 1449 | 1402 | 1349 | 1272 | 1215 | 1126 | 994 | | 1600 | 1787 | 1691 | 1628 | 1541 | 1415 | 1366 | 1311 | 1233 | 1175 | 1086 | 957 | | 1700 | 1769 | 1668 | 1603 | 1512 | 1381 | 1331 | .1275 | 1196 | 1137 | 1049 | 925 | | 1800 | 1752 | 1645 | 1578 | 1484 | 1349 | 1297 | 1241 | 1161 | 1101 | 1015 | 897 | | 1900 | 1735 | 1623 | 1553 | 1456 | 1318 | 1265 | 1208 | 1128 | 1068 | 984 | 873 | | 2000 | 1717 | 1601 | 1529 | 1429 | 1288 | 1234 | 1176 | 1097 | 1036 | 956 | | | 2100 | 1700 | 1580 | 1505 | 1403 | 1258 | 1204 | 1146 | 1068 | 1007 | 930 | | | 2200 | 1683 | 1559 | 1482 | 1377 | 1230 | 1175 | 1117 | 1040 | 980 | 906 | | | 2300 | 1667 | 1538 | 1459 | 1352 | 1203 | 1147 | 1090 | 1014 | 955 | 884 | | | 2400 | 1650 | 1518 | 1437 | 1327 | 1176 | 1121 | 1065 | 990 | 932 | | | | 2500 | 1633 | 1498 | 1415 | 1303 | 1151 | 1096 | 1041 | 968 | 911 | | | | 2600 | 1617 | 1479 | 1394 | 1280 | 1127 | 1072 | 1018 | 946 | 892 | | | | 2700 | 1601 | 1459 | 1373 | 1257 | 1104 | 1050 | 997 | 926 | - | 1 | | | 2800 | 1585 | 1440 | 1352 | 1235 | 1082 | 1029 | 977 | 907 | | , | | | 2900 | 1570 | 1422 | 1331 | 1214 | 1061 | 1009 | 958 | 889 | | | | | 3000 | 1554 | 1403 | 1311 | 1193 | 1041 | 99ó | 940 | 871 | | | | | | | | | | | | | | | | | | 3500 | 1479 | 1316 | 1219 | 1097 | 955 | 906 | 857 | | | | | | | | | | | | | | | | | | | 4000 | 1409 | 1235 | 1136 | 1019 | 884 | | | • | | | | | | | | | | | | | | | | | | 4500 | 1343 | 1163 | 1065 | 954 | | • | 5000 | 1281 | 1098 | 1005 | 898 | | | | | | | | | | | l | | _ | | | | | | | | | 5500 | 1223 | 1042 | 952 | | J | 6000 | 1170 | 993 | 906 | | | | | | | | | | | | | " | | | | | | | | | | 6500 | 1120 | 950 | | 1 | 7000 | 1076 | 910 | 7500 | 1036 | | • | 8000 | 999 | | | | | | | | | | | 106. By the help of the Table given for the 7-inch gun, where $d'^2 \div w' = 0.4164$, we may find in what range the velocity of a 10-inch ogival-headed projectile where $d^2 \div w = 0.2424$, will be reduced from 1700 to 1300 f. s. and from 1300 to 1100 f. s. Referring to the Table (104), it is found that the 7-inch shot has its velocity reduced from 1700 to 1300 f. s. in a range $$4550 - 155$$ feet = 4395 feet: therefore the 10-inch shot would by (88) have its velocity reduced in like manner in a range $$4395 \times (d^2 \div w') \div (d^2 \div w) = 4395 \times 0.4164 \div 0.2424$$ = 7550 feet = 2517 yards. In the same way it is found from the Table that the velocity of the 7-inch shot is reduced from 1300 to 1100 f.s. in a range 7640-4550=3090 feet; therefore the 10-inch shot would suffer the same reduction of velocity in a range $$3090 \times 0.4164 \div 0.2424 = 5307 \text{ feet} = 1769 \text{ yards};$$ where $\omega = 530.6$ grains. The same law holds good for spherical projectiles. From the Table, (105), it appears that the 15-inch spherical projectile has its velocity reduced from 2100 to 1409 f. s. in a range of 4000 feet, where $d'^2 \div w' = 0.4898$. From this, we find that the velocity of the 100-pr. projectile, where $d^2 \div w = 0.7766$, would have its velocity reduced in like manner from 2100 to 1409 f. s. in a range $$4000 \times 0.4898 \div 0.7766 = 2523$$ feet. From the Special Table for the 100-pr. we find 2528 feet. 107. The following are specimens of my earliest General Tables for spherical and ogival-headed projectiles, which connect velocity and space, and velocity and time. "A General Table for facilitating the Calculation of the Range "corresponding to a given loss of Velocity of any Spherical "Shot"." 1871. | Dis-
tance | 0 | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90 | |--|----------------------------|---|---|--------|--------|---|--------------------------------------|---|--|--| | feet
0
100
200
300
400 | | 2052·5
2010·2
1968·9 | f. s.
2091·3
2048·2
2006·0
1964·8
1924·5 | 2043.9 | 1956.7 | f.s.
2078·3
2035·5
1993·6
1952·6 | 2031·2
1989·4 | f. s.
2069·6
2027·0
1985·3
1944·6
1904·7 | f.s.
2065·3
2022·8
1981·2
1940·5 | f.s.
2061.0
2018.6
1977.1
1936.5
1896.9 | | 1600
1700
1800
1900
2000

4800
4900 | 1451.9
1423.2
1395.3 | 1478·3
1449·0
1420·4
1392·6

888·3 | 1475·3
1446·1
1417·6
1389·8 | 1472.3 | 1469.4 | 1466·4
1437·5
1409·2
1381·6

883·9 | 1463·5
1434·6
1406·4
1378·9 | 1376·2

881·8 | 1487·2
1457·7
1428·9
1400·8
1373·5

880·7
870·1 | 1484.2
1454.8
1426.1
1398.1
1370.8

879.7
869.1 | 108. "A General Table for facilitating the Calculation of "the Range corresponding to a given loss of Velocity of any "Elongated Shot (Ogival Head)²." 1871. | Dis-
tance | 0 | -10 | 20 | 30 | 40 | 50 | 60 | 70 | 85 | 90 | |---------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------| | | | | | | | | | | | | | feet | f.s. f. s. | f.s. | | 0 | 1700'0 | 1697.5 | | 1692.7 | | | | | | 1678.4 | | 100 | 1676.0 | 1673.7 | 1671.3 | 1668.9 | 1666.6 | 1664.5 | 1661.9 | 1659.5 | 1657.2 | 1654.8 | | 200 | 1652.2 | 1650.2 | | 1645.6 | | | 1638.6 | | | 1631.4 | | 300 | 1629.4 | 1627.1 | 1624.8 | 1622.2 | 1620.5 | 1617.9 | 1615.6 | 1613.3 | 1911.1 | 1608.8 | | 400 | 1606.2 | 1604.5 | 1601.0 | 1599.7 | 1597.4 | 1595.1 | 1592.8 | 1590.6 | 1588.3 | 1586.0 | | | | | | | | | | | | | | 2000 | 1275.9 | 1274'1 | 1272'3 | 1270.6 | 1268.8 | 1267.1 | 1265.3 | 1263.6 | 1261.9 | 1260.1 | | 2100 | 1258.4 | 1256.7 | 1255.0 | 1253.3 | | 1249.9 | 1248.2 | 1246.5 | 1244.8 | 1243.1 | | 2200 | 1241.2 | 1239.8 | 1238.1 | 1236.4 | 1234.8 | 1233.1 | | 1229.8 | 1228.5 | 1226.2 | | 2300 | 1224.9 | 1223.3 | 1221.6 | 1220.0 | 1218.4 | 1216.8 | 1215.2 | 1213.6 | 1212.0 | 1210.4 | | 2400 | 1208-8 | 1207'2 | 1205.6 | 1204.0 | 1202'4 |
1200.0 | 1199.3 | 1197.7 | 1196.5 | 1194.6 | | | | | | | | | | | | | | 5400 | 921.7 | 921.1 | 920.6 | 920.0 | 919.2 | 918.9 | 918.3 | 917.8 | 917.2 | 916.7 | | 5700 | 905.4 | 904.8 | 904.3 | 903.8 | 903.3 | 902.7 | 902.2 | 901.2 | 901.1 | 900.7 | | | | | | | | | | | | | The above Tables were to be used as follows. "Let an "elongated projectile of 400 lbs. be fired from a 10-inch gun with ¹ Remaining Velocity, &c. 1871, p. 47; and Proceedings of the R. A. Inst. vii. p. 391. ² Remaining Velocity, &c. 1871, p. 48; and Proceedings of the R. A. Inst. vii. p. 392. "an initial velocity of 1270 f. s., and let it be required to find what "would be the velocity at a distance of 1000 yards = 3000 feet. "Here $d^* \div w = 0.246$ and the reduced range $= 3000 \times 0.246 = 738$ "feet. Referring to General Table, the initial velocity 1270 f. s. is "found corresponding to a distance 2033 feet, to which, adding "the reduced range 738 feet, we get 2771 feet, and at this distance "the velocity = 1152.6 f. s., which is the velocity which the 400-lb. "shot would have at 1000 yards from the gun"." 109. "A General Table for facilitating the Calculation of the "Time corresponding to a given loss of Velocity of any Spherical "Shot*." 1872. | T' | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | I | 0 | |-------|--------|-------|-------|-------|--------|-------|-------|-------|-------|-------| | f. s. | " | | ,, | ,, | " | ** | " | 0 | ,, | " | | 189 | 0.0013 | .0022 | '0040 | '0054 | .0062 | 1800. | 10094 | 8010 | '0121 | .0132 | | 188 | .0148 | '0162 | .0175 | .0189 | .0503 | .0216 | .0230 | .0244 | '0257 | '0271 | | | | | | | | ••••• | | | | | | 123 | 1.4056 | 4090 | 4125 | .4160 | 4195 | 4230 | .4265 | *4300 | 4336 | 4371 | | 122 | '4407 | 4442 | 4478 | 4513 | 4549 | *4585 | 4620 | 4656 | 4692 | 4728 | | 121 | .4764 | 4800 | 4836 | 4873 | '4909 | '4945 | 4982 | .2018 | .5055 | 5092 | | 120 | .2129 | .2166 | .203 | .240 | .5277 | .2312 | .2325 | .2390 | .5428 | .5465 | | | | | | | ****** | | | •••• | | | | 90 | 3.3280 | 3377 | 3474 | 3571 | '366S | .3766 | *3864 | .3962 | '4060 | 4159 | 110. "A General Table for facilitating the Calculation of the "Time corresponding to a given loss of Velocity of any Elongated "Shot (Ogival Head)." 1872. | 7' | 9 | S | 1 7 | 6 | 5 | 4 | 3 | 2 | I | 0 | |---------|---------|-------|---------------|-------|---------------|-------|-------|-------|--------|-------| | 1.8. | " | ** | | ,, | ,,, | ,, | " | " | ,, | " | | 169 | 0.0024 | '0049 | .0023 | .0098 | '0122 | .0146 | 10171 | .0195 | '0220 | '024 | | 168 | 10209 | '0294 | '0318 | '0343 | .0368 | .0393 | .0418 | .0443 | .0468 | .049 | | 167 | .0218 | .0543 | .0269 | 0594 | .0619 | .0644 | .0669 | 10695 | .0720 | .074 | | 136 | 9861 | 9898 | 10005 | | | | | | | | | | | | 19935 | 19972 | .0 009 | .0047 | ·00S4 | .0121 | .0159 | .019 | | 35 | 1'0234 | '0272 | .0309 | *0347 | .0382 | .0423 | .0461 | .0499 | .0537 | '057 | | 134 | .0614 | .0025 | '0690 | 0729 | 0707 | .0800 | 0844 | .0883 | 10922 | .0960 | | • • • • | | 0 | · · · · · · · | 1 | | | | | ****** | | | 113 | 2.0827 | '0890 | .0953 | .1019 | 1079 | 11143 | 1207 | 1271 | .1332 | 1399 | | 112 | 1464 | 1528 | 1593 | 1658 | 1723 | 1789 | 1855 | 1921 | 1987 | 205 | | 11 | '2120 | 2187 | '2254 | .5351 | ·2388 | 2456 | 2524 | .2592 | 2661 | 2729 | | | | | | | | | | | | | | 70 | 10.8975 | '9412 | .9850 | *0290 | .0732 | 1176 | .1622 | 2070 | 2520 | 2972 | ¹ Remaining Velocity, &c., p. 31; and Proceedings of the R. A. Inst. vii. p. 375, 1871. ² Proceedings of the R. A. Inst. viii. p. 4. ³ Ib. p. 6. The following instructions were given for the use of the above Tables, 1872. EXAMPLE. "Suppose it was required to find by the help "of the General Table in what time the velocity of a 700-lb. "elongated shot would be reduced from 1344 to 1129 f. s. "Here d=11.52 inches and $d^2 \div w=1896$. By Table we find "1"·0806 corresponding to a velocity 1344 f. s., and 2"·1464 "to a velocity 1129 f. s. Hence (time required) $\times d^2 \div w$ "= 2"·1464-1"·0806=1"·0658, which gives the required time "=1"·0658 \div ·1896=5"·621." - 111. My mathematical Treatise On the Motion of Projectiles under the Action of Gravity and the Resistance of the Air, published in 1873, contained General Tables of values of $(d^2 \div w) s$ and $(d^2 \div w) t$, connecting velocity and space, and velocity and time, which were recalculated for both spherical and ogival-headed projectiles. The Tables for spherical projectiles extended from velocity 500 to 1900 f. s. (Tables x. and xi.), and those for ogival-headed projectiles from 540 to 1700 f. s. (Tables viii. and ix.). These four Tables were reprinted in the Government Treatise on the Construction of Ordnance¹, 1877. The two Tables for ogival-headed shot were reprinted in the Proceedings of the R.A. Institution², 1878; also in the R.A. Handbook for Field Service³, 1878; and in Major Sladen's Principles of Gunnery⁴, 1879. - 112. Professor Niven communicated a paper to the Royal Society⁵ in 1877 on the approximate calculation of Trajectories of Projectiles, in which he made use of my two General Tables $$\frac{d^2}{w}$$ s, and $\frac{d^2}{w}$ t, or S_v and T_v as he named them, for space and time, and gave a third Table D_v of his own. 113. The experiments of 1878, 9 extended the coefficients of resistance to ogival-headed projectiles to all velocities between 400 and 2500 f.s. New General Tables for S_v and T_v were calculated by the help of these coefficients, and for the above men- ¹ pp. 359--366. ² x. pp. 250-253. ³ pp. 292-301. ⁴ pp. 55—58. ⁵ Proceedings, No. 181. tioned limits of velocity which were printed as an Appendix to the Report on those experiments made with my Chronograph 1. Immediately afterwards these two Tables were reprinted in the Manual of Gunnery for H.M. Fleet, 1880; and also in an abridged form in the article "Gunnery" in the new edition of the Encyclopædia Britannica, 1880. - 114. Lastly, the coefficients given in the Final Report of 1880, enabled me to extend my General Tables for ogival-headed projectiles to all velocities between 100 and 2800 f.s. These General Tables were first printed as an Appendix to the "Final Report," 1880. They were subsequently reprinted in the Manual of Gunnery for H.M. Fleet, 1880; also in the Text Book of Gunnery by Major Mackinlay, R.A., 1883 and 1887; and in the Treatise on Small Arms by Colonel Bond, R.A., 1884 and 1888. - 115. Although my coefficients of resistance were derived from experiments made with guns of 3 to 9-inch calibre, Major McClintock, R.A., has found by careful experiment that they hold good for small-arm bullets, for he remarks "The accuracy of rifle-"bullet trajectories calculated by means of Professor Bashforth's "Tables has been tested by firing a large number of rounds through "paper screens placed at different points along the range....The "screens were erected at intervals along a 500 yards and a "1000 yards range. The result of the experiments was most "satisfactory, the mean heights of the bullet-holes in the screens "agreeing closely with the heights found by calculation?." Report, &c. Part 11, 1879, pp. 51-58. ² Proceedings of the R. A. Inst. xII. p. 569. ## CHAPTER V. #### CALCULATION OF TRAJECTORIES OF PROJECTILES. 116. The following is an explanation of the principal symbols used—g denotes the accelerating force of gravity and equals 32·191 f. s. in the Latitude of Greenwich. g (French measure) = 9·809 m.s., w the weight of the shot in pounds, p the weight in kilogrammes, d the diameter of the shot in inches, a the diameter in centimetres. f the retarding effect of the air for a velocity of v feet per second = $-2bv^3$ when supposed to vary as the cube of the velocity; or = $-2cv^2$ when supposed to vary as the square of the velocity; or = $-2ev^n$ when supposed to vary as the n^{th} power of the velocity of the projectile. $$K = 2b \frac{w}{d^2} (1000)^3; \ k = 2c \frac{w}{d^2} (1000)^2; \ k = K \frac{v}{1000}.$$ x, y are the horizontal and vertical coordinates of the centre of gravity of the projectile, at the time t, when the shot has described an arc s. ϕ is the inclination to the horizon of the tangent to the trajectory at the point x, y. v_{ϕ} denotes the velocity of the shot in the ascending branch of the trajectory, when moving in a direction inclined to the horizon at an angle ϕ , and u_{ϕ} is corresponding horizontal velocity so that $u_{\phi} = v_{\phi} \cos \phi$. v_{ϕ}' and u_{ϕ}' denote similar quantities in the descending branch of the trajectory. ω denotes the weight of a cubic foot of air in grains. Π denotes the weight of a cubic metre of air in kilogrammes. When ogival-headed shot are mentioned in this treatise without any further particulars, it may be assumed that the heads are struck with a radius of one diameter and a half, which was the form used in the chief experiments. Elongated projectiles are all supposed to have a right-hand rotation about their own axes. 117. Suppose a projectile to be fired in a direction inclined at an angle α above the horizontal plane through the muzzle, to be acted upon by gravity g in parallel lines, and by a retarding force 2e (velocity)ⁿ acting at every point in the direction of the tangent to the trajectory of the projectile at that point which is assumed to pass through the centre of gravity of the shot, then there will be no force tending to draw the projectile out of the vertical plane of projection. Let the point of projection be taken for the origin, and let the axes of coordinates x and y be respectively horizontal and vertical, and in the vertical plane of projection. Let x, y be the coordinates of the centre of gravity of the shot at the time t, when the shot has described an arc s of its trajectory. The equations of motion are $$-\frac{1}{nu^n} = C + \frac{2e}{g} \int (1+p^2)^{\frac{n-1}{2}} dp.$$ At the vertex, let $u = u_0$. Then we have $$\frac{1}{u^{n}} =
\frac{1}{u_{0}^{n}} - \frac{2e}{g} n \int (1+p^{2})^{\frac{n-1}{2}} dp \qquad (2);$$ $$= \frac{1}{u_{0}^{n}} \left\{ 1 - \frac{2eu_{0}^{n}}{g} n \int (1+p^{2})^{\frac{n-1}{2}} dp \right\},$$ therefore $$v = u \sec \phi = \frac{u_0 \sec \phi}{\left\{1 - \frac{2eu_0^n}{g} n \int (1 + p^2)^{\frac{n-1}{2}} dp\right\}^{\frac{1}{n}}} \dots (3).$$ From (1) we have $$\frac{dt}{dp} = -\frac{u}{g} = -\frac{u_0}{g} \cdot \frac{1}{\left\{1 - \frac{2eu_0^n}{g} n \int (1+p^2)^{\frac{n-1}{2}} dp\right\}^{\frac{1}{n}}} \dots (4).$$ Now $$\frac{2eu_0^n}{g} = \frac{\dot{M} \times 2eu_0^n}{Mg}$$ $= \frac{\text{Resistance of the air at the vertex to the shot}}{\text{weight of the shot}} \dots (5);$ $$\therefore t = -\frac{u_0}{g} \oint_{\phi}^{\phi'} \frac{(1+p^2) d\phi}{\left\{1 - \frac{2eu_0^n}{g} n \int_{\phi}^{1} (1+p^2)^{\frac{n-1}{2}} dp\right\}^{\frac{1}{n}}} \dots (6),$$ since $$dp = d \tan \phi = \sec^2 \phi d\phi = (1 + p^2) d\phi.$$ Again by (1) we have $$\frac{dx}{dp} = -\frac{u^2}{g} = -\frac{u_0^2}{g} \frac{1}{\left\{1 - \frac{2eu_0^n}{g}n\int(1+p^2)^{\frac{n-1}{2}}dp\right\}^{\frac{2}{n}}},$$ $$x = -\frac{u_0^2}{g} \oint \oint \frac{(1+p^2)d\phi}{\left\{1 - \frac{2eu_0^n}{g}n\int(1+p^2)^{\frac{n-1}{2}}dp\right\}^{\frac{2}{n}}}....(7)$$ and since or $$\frac{dy}{dx} = p, \quad \frac{dy}{dp} = p\frac{dx}{dp}.$$ Hence $$y = -\frac{u_0^2 \phi}{g} \oint \frac{(p+p^3) d\phi}{\left(1 - \frac{2eu_0^n}{g} n \int (1+p^2)^{\frac{n-1}{2}} dp\right)^{\frac{2}{n}}} \dots (8).$$ So also $$s = -\frac{u_0^2}{g} \oint \int d^{\phi} \frac{(1+p^2)^{\frac{3}{2}} d\phi}{\left\{1 - \frac{2eu_0^n}{g} n \int (1+p^2)^{\frac{n-1}{2}} dp\right\}^{\frac{2}{n}}} \dots (9).$$ 119. Suppose that the retarding force varies as the square of the velocity, then $$n=2$$; $2e=2c=k\frac{d^2}{w}\frac{1}{(1000)^2}$; and by (5) $$\frac{2eu_0^n}{g} = \frac{2cu_0^2}{g} = \frac{k}{g} \frac{d^2}{w} \left(\frac{u_0}{1000}\right)^2 = \lambda \text{ suppose}.....(10),$$ also $$\begin{split} n\int &(1+p^2)^{\frac{n-1}{2}}dp = 2\int &(1+p^2)^{\frac{1}{2}}dp \\ &= \tan\phi\sec\phi + \log_\epsilon\tan\left(\frac{\pi}{4} + \frac{\phi}{2}\right) = Q_\phi \ \ \text{(see Table VII.),} \end{split}$$ and by (2) $$\left(\frac{1000}{u}\right)^2 = \left(\frac{1000}{u_0}\right)^2 - \frac{k}{g} \frac{d^2}{w} Q_{\phi} \dots (11).$$ Therefore by (3) $$\frac{v}{u_0} = \frac{\sec \phi}{\{1 - \lambda Q_a\}^{\frac{1}{2}}} = \frac{1}{10^3}(v)....(12),$$ by (6) $$t = -\frac{u_0}{g} \int_0^{\phi'} \frac{(1+p^2) d\phi}{[1-\lambda Q_{\phi}]^{\frac{1}{2}}} = -\frac{u_0}{10^4 g} (\phi t_{\lambda}^{\phi'}) \dots (13),$$ by (7) $$x = -\frac{u_0^2 \phi}{g} \int_{-\frac{1}{4} - \lambda Q_{\phi}}^{\phi'} \frac{(1 + p^2) d\phi}{[1 - \lambda Q_{\phi}]} = -\frac{u_0^2}{10^4 g} (\phi x_{\lambda} \phi') \dots (14),$$ by (8) $$y = -\frac{u_0^2}{g} \int_{\phi}^{\phi'} \frac{(p+p^3)}{\{1-\lambda Q_{\phi}\}} d\phi = -\frac{u_0^2}{10^4 g} (\phi y_{\lambda} \phi') \dots (15),$$ by (9) $$s = -\frac{u_0^{2} \phi}{g} \int_{-\frac{1}{2}}^{\phi'} \frac{(1+p^2)^{\frac{3}{2}} d\phi}{\{1-\lambda Q_{\phi}\}}$$ $$= -\frac{u_0^{2} p}{g} \int_{-\frac{1}{2}}^{p'} \frac{(1+p^2)^{\frac{1}{2}} dp}{\{1-\lambda Q_{\phi}\}}$$ $$= \frac{u_0^{2} \phi}{2\lambda g} \int_{-\frac{1}{2}}^{\phi'} \frac{d\{1-\lambda Q_{\phi}\}}{\{1-\lambda Q_{\phi}\}} = \frac{u_0^{2}}{2\lambda g} \log_{\epsilon} \left\{\frac{1-\lambda Q_{\phi'}}{1-\lambda Q_{\phi}}\right\}.....(16).$$ Here s the length of the arc of the trajectory is the only quantity that can be found by integration. The values of (t), (x) and (y) calculated by quadratures and also of (v), for useful values of λ and ϕ , will be found in Table IX. 120. Suppose next that the retarding force varies as the cube of the velocity, then $$n = 3; \ 2e = 2b = K \frac{d^2}{w} \left(\frac{1}{1000}\right)^3,$$ and by (5) $$\frac{2eu_0^n}{g} = \frac{2bu_0^3}{g} = \frac{K}{g} \frac{d^2}{w} \left(\frac{u_0}{1000}\right)^3 = \gamma \text{ suppose (17)},$$ where $w = \sqrt{(1 + w^2)^{\frac{n-1}{2}}} dv = 3 \int (1 + w^2) dw$ also $$n \int (1+p^2)^{\frac{n-1}{2}} dp = 3 \int (1+p^2) dp$$ = $3 \tan \phi + \tan^3 \phi = P_{\phi}$ (see Table xv.). By (2) $$\left(\frac{1000}{u}\right)^3 = \left(\frac{1000}{u_0}\right)^3 - \frac{K}{g}\frac{d^2}{w}P_{\phi}....(18),$$ by (3) $$\frac{v}{u_0} = \frac{\sec \phi}{\{1 - \gamma P_{\phi}\}^{\frac{1}{3}}} = \frac{1}{10^3} (v).....(19),$$ by (6) $$t = -\frac{u_0}{g} \int_{-\frac{1}{2}}^{\phi} \frac{(1+p^2) d\phi}{\{1-\gamma P_{\phi}\}^{\frac{1}{3}}} = -\frac{u_0}{10^4 g} \left({}^{\phi} \Gamma_{\gamma}^{\phi'}\right) \dots (20),$$ by (7) $$x = -\frac{u_0^2 \phi}{g} \int_{\{1 - \gamma P_0\}^{\frac{3}{2}}} d\phi = -\frac{u_0^2}{10^4 g} (\phi X_{\gamma}^{\phi'}) \dots (21),$$ by (8) $$y = -\frac{u_0^2 \phi}{g} \int_{0}^{\phi'} \frac{(p+p^3) d\phi}{\{1 - \gamma P_{\phi}\}^{\frac{3}{2}}} = -\frac{u_0^2}{10^4 g} (\phi Y_{\gamma}^{\phi'}) \dots (22);$$ (x), (Y) and (T) have been calculated by quadratures for useful values of γ and ϕ . These results and corresponding values of (V) will be found in Table xVI. Intermediate values of these quantities must be found by proportional parts or, where greater accuracy is required, by interpolation. 121. Lastly, suppose that the retarding force arising from the resistance of the air varies as the 6th power of the velocity, then and $$n \int (1+p^2)^{\frac{n-1}{2}} dp = 6 \int (1+p^2)^{\frac{5}{2}} dp$$ $$= \tan \phi \left\{ \sec^5 \phi + \frac{5}{4} \sec^3 \phi + \frac{15}{8} \sec \phi \right\} + \frac{15}{8} \log_{\epsilon} \tan \left(\frac{\pi}{4} + \frac{\phi}{2} \right)$$ $$= W_{\phi} \left(\sec \text{ Table XVIII.} \right) \tag{23},$$ and by (2) $\left(\frac{1000}{u} \right)^6 = \left(\frac{1000}{u_0} \right)^6 - \frac{2e'}{g} (1000)^6 W_{\phi}$ $$= \left(\frac{1000}{u} \right)^6 - \frac{L}{g} \frac{d^2}{w} W_{\phi} \tag{24}.$$ Tables for calculating the values of x, y and t have not been prepared for this case. Hence it will be necessary to use those prepared for the cubic or Newtonian Law or the General Tables after the velocity has been calculated. Professor Greenhill has published some elaborate papers on the Motion of a Projectile in a resisting medium¹. He also effects a complete solution when the resistance is supposed to vary as the cube of the velocity². Professor Greenhill has also published papers on the Rotation required for the stability of an elongated projectile³, and on "Drift⁴." #### EXAMPLES OF THE CALCULATION OF TRAJECTORIES. 122. We now proceed to give various examples of the use of this treatise in calculating trajectories of projectiles. For the purpose of testing my coefficients we will make use of Range Tables, which have been carefully derived from actual experiment and where the muzzle velocity and "jump" have been measured. One of these Range Tables is that for the 63-inch Howitzer where the muzzle velocity is 751 f.s. These Range Tables were originally sent to me to show that my coefficients of 1879 did not give satisfactory results when tested by them. Certainly my general Tables could not be expected to apply to trajectories so much curved. But when the trajectory was broken up into short arcs and so properly calculated, the results agreed ¹ Proceedings of the R. A. Inst. xi. pp. 113, 589; xii. p. 17. ³ Ib. xiv. p. 373. ³ Ib. x. p. 589. ⁴ Ib. xi. p. 124. extremely well with the Range Tables. For examples of heavy shot I have used the Range Table recently prepared with great care by Captain H. J. May, R.N., for 12-inch shot fired at elevations of 0° to 4° . Further, I have used the Range Table of the 4-inch B.L. gun, in order to secure great variation of velocity. After the publication of Krupp's Tables this was the gun selected by Government in 1887 to be used in testing my coefficients of Resistance (K) on a long range, when they were found to be quite satisfactory, although originally obtained from experiments on short ranges. 6·3-inch Howitzer. Ranges calculated on a horizontal plane 6·5 feet below the muzzle, d=6.27 inches, w=70 lbs., no allowance for "jump." Angles of departure 5°, 10°, 15°, 20°, 25°, 30° and 35°. Muzzle velocity 751 f. s. Range Table derived from instructions for the service of field guns, 1879. (1) $$\alpha = 5^{\circ}$$, $V \cos 5^{\circ} = 748 \cdot 1$. By (11) we have $\left(\frac{1000}{u_0}\right)^2 = \left(\frac{1000}{748 \cdot 1}\right)^2 + \frac{k}{g} \frac{d^2}{w} Q_5$. $\log \frac{k}{g} = 0.27402$ Table IV. $\log \frac{d^2}{w} = 9.74944$ $\log \frac{k}{g} \frac{d^2}{w} = 0.02346$ $\log Q_5 = 9.24353$ 9.26699 therefore $\frac{k}{g} \frac{d^2}{w} Q_5 = 0.1849$ and $\left(\frac{1000}{u_0}\right)^2 = 1.7868 + 0.1849 = 1.9717$. By Table X. $u_0 = 712.16$ f. s. By (10) $\lambda = \frac{k}{g} \frac{d^2}{w} \left(\frac{u_0}{1000}\right)^2 = 0.5353$. ¹ Final Report, p. 45. ² Proceedings of the R. A. Inst. xiv. p. 356. Now $$\log \frac{1}{g} = 8.49227$$ and $$\log u_0 = 2.85258$$ therefore $$\log \frac{u_0}{g} = 1.34485$$ and $$\log \frac{u_0^2}{g} = 4.19743$$ From Table 1x., we obtain $$\begin{split} {}_{{}_{5}}x_{{}_{0}} &= 919 \times \frac{{u_{{}_{0}}}^{2}}{10^{4}g} \; ; \; {}_{{}_{5}}y_{{}_{0}} = 40 \cdot 9 \times \frac{{u_{{}_{0}}}^{2}}{10^{4}g} \; ; \; {}_{{}_{5}}t_{{}_{0}} = 896 \times \frac{{u_{{}_{0}}}}{10^{4}g} \; ; \; {v_{{}_{5}}} = 751 \cdot 0 \; \text{f.s.} \\ &= 1448 \; \text{feet} \; ; \qquad = 64 \cdot 4 \; \text{feet} \; ; \qquad = 1'' \cdot 982. \end{split}$$ We have to limit the descending branch by the consideration that the shot has to fall 6.5 feet more than it rose. Or the value of (y') for the descending branch must be as before 40.9, increased by $$10^4 \times 6.5 \div \frac{u_0^2}{q} = 4.13$$, or the value of (y') for the descending branch must be $$40.9 + 4.1 = 45.0$$ On referring to Table 1x. for $\lambda = 0.5$ and $\lambda = 0.6$ it will be found that (y') = 45.0 for some value of ϕ between -5° and -6° . Hence we must calculate the values of (x'), (y'), (t') and (v')
for -5° and -6° for $\lambda = 0.5353$; and then by proportional parts we can find the value of ϕ , (x'), (t') and (v') corresponding to $$(y') = 45.0,$$ gives, $_{0}x_{5^{\circ}58} = 1464 \; { m feet} \; ; \; _{0}y_{5^{\circ}58} = -70^{\circ}9 \; { m feet} \; ; \; _{0}t_{5^{\circ}78} = 2^{\prime\prime}\cdot 108 \; ; \; v'_{5^{\circ}58} = 680\cdot 8 \; { m f.s.}$ But $$\underline{}_{5}x_{0} = \underline{1448} \quad , \quad {}_{5}y_{0} = + \underline{64\cdot 4} \quad , \quad {}_{5}t_{0} = \underline{1''\cdot 982}$$ therefore $$_{5}X_{5'58} = 971 \text{ yards}; _{5}Y_{5'58} = - 6:5 ,, _{5}T_{5'58} = 4'' \cdot 09$$ By Range Table $$X = 978 \text{ yards}; Y = -6.5 , T = 4'' \cdot 29$$ difference $$-\frac{7}{20}$$ yards $0 -0^{\prime\prime} \cdot 20$ $$\frac{-7}{2} \text{ yards} \qquad \underbrace{0}_{-0.00} = \frac{0.00}{20}$$ (2) $\alpha = 10^{\circ}$; $\left(\frac{1000}{u_0}\right)^2 = 1.8281 + 0.3742 = 2.2023$. By Table x., $u_0 = 673.85 \text{ f. s.}$ and $\lambda = 0.4793$. For the ascending branch by Table 1x., which give $${}_{10}x_{\scriptscriptstyle 0} = 2725 \cdot 3 \; {\rm feet} \; ; \quad {}_{10}y_{\scriptscriptstyle 0} = 247 \cdot 7 \; {\rm feet} \; ; \quad {}_{10}t_{\scriptscriptstyle 0} = 3^{\prime\prime} \cdot 862 \; ; \quad v_{\scriptscriptstyle 10} = 751 \cdot 3 \; {\rm f. \; s.}$$ For the descending branch $$\phi'$$ λ (x') (y') (t') (v') $-11^{\circ}\cdot 39$ 0.4793 $+1841$ $-180\cdot 2$ 1925 $933\cdot 7$ which give $$_{0}x_{_{11'39}} = 2596 \cdot 9 \text{ ft.}; \ _{0}y_{_{11'39}} = -254 \cdot 2 \text{ ft.}; \ _{0}t_{_{11'39}} = 4^{\prime\prime} \cdot 030; v'_{_{11'39}} = 629 \cdot 2 \text{ f.s.}$$ But and by Range Table $$X = 1789 \text{ yards}; \quad Y = -6.5 \text{ ft.}; \quad T = 8''.040$$ Difference (3) $$\alpha = 15^{\circ}; \ \left(\frac{1000}{u_0}\right)^2 = 1.9004 + 0.5724 = 2.4728$$ and by Table x. $u_0 = 635.92 \text{ f. s.},$ and hence $\lambda = 0.4269$. And by Table IX., $$X = \underline{2467}$$ yards; $Y = -\underline{6.5}$ ft.; $T = \underline{11''.700}$ Difference $$- 11 \text{ yards} \qquad 0 , \qquad - 0'' \cdot 143$$ (4) $$\alpha = 20^{\circ}$$; $\left(\frac{1000}{u_0}\right)^2 = 2.0077 + 0.7850 = 2.7927.$ Hence $$u_0 = 598.39$$ f. s., and $$\lambda = 0.378.$$ $$X = 3000 \text{ yards}; Y = -6.5 \text{ ft.}; T = 15''.20$$ Difference $$\frac{+15 \text{ yards}}{} \qquad \qquad 0 \qquad \qquad \frac{-0^{"\cdot}14}{}$$ (5) $$\alpha = 25^{\circ}$$; $\left(\frac{1000}{u_0}\right)^2 = 2.1585 + 1.0190 = 3.1775$. Hence $u_0 = 561.0$ f. s. and $\lambda = 0.332$. $_{25}X_{30.74} = 3456 \,\text{yards};_{25}Y_{30.74} = -6.5 \,\text{ft.};_{25}T_{30.74} = 18''.383;\,\,v'_{30.74} = 549 \,\text{f. s.}$ By Range Table $$X = 3467 \text{ yards}; \quad Y = -6.5 \text{ ft.}; \quad T = 18''.530$$ Difference $$\frac{-11 \text{ yards}}{2} \qquad \frac{0}{2} \qquad \frac{-0^{\prime\prime} \cdot 147}{2}$$ (6) $$\alpha = 30^{\circ}$$; $\left(\frac{1000}{u_0}\right)^2 = 2.3641 + 1.2834 = 3.6475$. Hence $\dot{u_0} = 523.6$ f. s.; and $\lambda = 0.2894$. ϕ λ (x) (y) (t) (v') 30° 0.2894 7.083 2192.0 6381 therefore $-37^{\circ}.05$ $$_{\rm so}X_{\rm sr\cdot 05}\!=\!3778\,{\rm yards};\,_{\rm so}Y_{\rm sr\cdot 05}\!=\!-6.5\,{\rm ft.};\,_{\rm so}T_{\rm sr\cdot 05}\!=\!21^{\prime\prime}\cdot511;v'_{\rm sr\cdot 05}\!=\!540.4\,{\rm f.s.}$$ By Range Table 6226 - 2199.6 6845 8429 1032 1107.5 $$X = 3813 \text{ yards}; Y = -6.5 \text{ ft.}; T = 21''.750$$ Difference $$\frac{-35 \text{ yards;}}{\alpha = 35^{\circ};} \frac{0}{\left(\frac{1000}{u_0}\right)^2} = 2.6424 + 1.5913 = 4.2337.$$ Hence $$u_0 = 486.0 \text{ f. s.}$$; and $\lambda = 0.2493$. ϕ λ (x) (y) (t) (v') 35° 0.2493 8744 3305.8 7802 therefore - 43°·14 $$_{35}X_{43'14} = 3999 \,\mathrm{yards}; \ _{35}Y_{43'14} = -6.5 \,\mathrm{ft.}; \ _{35}T_{43'14} = 24''.505; \ v'_{43'14} = 538 \,\mathrm{f.s.}$$ By Range Table 7607 - 3314.9 $$X = 4000 \, \text{yards}; \quad Y = -6.5 \, \text{ft.}; \quad T = 24''.90$$ Difference $$-1$$ yard; 0 $-0^{\prime\prime}395$ 123. We will now give some examples with heavy shot and high muzzle velocities, and for comparison of results we will use the Range Table¹ of Captain H. J. May, R.N., as already stated for elevations up to 4° , the limit of the table. Here the "jump" was found to be 6 minutes. Hence the results obtained by calculation for elevations of 1° , 2° , 3° and 4° must be compared with similar results derived from the Range Table for elevations of 0° 54′, 1° 54′, 2° 54′ and 3° 54′. Here d=12 inches, w=714 lbs., ¹ Proceedings of the R. A. Inst. 1886, p. 356. and muzzle velocity = 1892 f.s. The Newtonian Law holds approximately between this velocity and 1300 f.s., where $$\log \frac{k}{g} = 0.64211.$$ The Range &c. are calculated for the horizontal plane passing through the muzzle of the gun. (1) $$\alpha = 1^{\circ}; \left(\frac{1000}{u_0}\right)^2 = \left(\frac{1000}{1891.7}\right)^2 + \frac{k}{g} \frac{d^2}{w} Q_1$$ by (11) $$= 0.27945 + 0.03088 = 0.31033.$$ Hence $u_0 = 1795.1$ f.s., and $\lambda = 2.851$. and by Range Table $$X = \underline{1200} \text{ yards}; \qquad Y = \underline{0}; \qquad T = \underline{2'' \cdot 01};$$ Difference $\underline{-5}$ yards $\underline{0}$ $\underline{-0'' \cdot 02}$ $$(2) \quad \alpha = 2^{\circ}; \ \left(\frac{1000}{u_0}\right)^2 = 0.27968 + 0.06180 = 0.34148.$$ Hence $u_0 = 1711.28 \text{ f.s.}$; and $\lambda = 2.591$. $_{z}X_{zzz} = 2249 \text{ yards};$ $_{z}Y_{zzz} = 0;$ $_{z}T_{zzz} = 3^{\prime\prime}\cdot939;$ $v'_{zzz} = 1561\cdot5 \text{ f.s.}$ and by Range Table $$X = 2267 \text{ yards}; \quad Y = \underline{0}; \quad T = 3^{\circ}.977$$ Difference $\underline{-18}$ yards $\underline{0} \quad -0^{\circ}.038$ $$(3) \quad \alpha = 3^{\circ}; \quad \left(\frac{1000}{u_{0}}\right)^{2} = 0.28012 + 0.09277 = 0.37289.$$ Hence $u_0 = 1637.6$ f.s.; and $\lambda = 2.372$. and by Range Table $$X = 3200 \text{ yards}; Y = 0; T = 5'' \cdot 86$$ Difference $\underline{-8}$ yards $\underline{0}$ $\underline{-0'' \cdot 033}$ $$(4) \alpha = 4^{\circ}; \left(\frac{1000}{u_0}\right)^2 = 0.28072 + 0.12382 = 0.40454.$$ Hence $u_0 = 1572.2 \text{ f. s.}$; and $\lambda = 2.187$. $_4X_{\text{5v2}} = 4039 \text{ yards}; \quad _4Y_{\text{5v2}} = 0; \quad _4T_{\text{5v2}} = 7^{\prime\prime} \cdot 667; \quad v{'}_{\text{5v2}} = 1341 \cdot 6 \text{ f. s.}$ and by Range Table $$X = \underline{4057} \text{ yards};$$ $Y = \underline{0};$ $T = 7''.742$ Difference $\underline{-18} \text{ yards}$ $\underline{0}$ $\underline{-0''.075}$ The calculated time of flight over $$4057 \text{ yds.} = \text{time over } 4039 + \text{time over } 18 \text{ yards}$$ = $7'' \cdot 667 + 0'' \cdot 040 = 7'' \cdot 707$ which is 0".035 less than 7".742 the time given by the Range Table. 124. Using the horizontal muzzle velocities, the following have been found to be the times of flight by the General Tables, for the distances and elevations specified for the 12-inch B. L. gun. 125. Next we will calculate several rounds for shot fired from the 4-inch B. L. gun and compare the results with those given in the Range Table. Here d=4 inches; w=25 lbs.; muzzle velocity = 1900 f.s. The "jump" is 6 minutes. The range is calculated on the horizontal plane passing through the muzzle, as we have no information on this point. (1) $$\alpha = 1^{\circ}; \left(\frac{1000}{u_0}\right)^2 = \left(\frac{1000}{u_1}\right)^2 + \frac{k}{g}\frac{d^2}{w}Q_1$$ = $0.27709 + 0.09801 = 0.37510.$ Hence $u_0 = 1632.8 \text{ f.s.}$ and $\lambda = 7.484 = 7.5 \text{ nearly.}$ and $_{1}X_{1:184} = 1049 \text{ yards}; _{1}Y_{1:184} = 0; _{1}T_{1:184} = 1^{"}\cdot 927; \quad v'_{1:184} = 1429 \text{ f.s.}$ and by the Range Table $$X = 1083 \text{ yards}; \quad Y = 0; \quad T = 1^{".970}$$ Difference $$\underline{-34 \text{ yards}} \quad \underline{0} \quad -\underline{0^{".043}}$$ Where the tabular values of (v) or (v) change rapidly it will be necessary to use formula (19) or (12) when precision is required. (2) $$\alpha = 2^{\circ}$$; $\left(\frac{1000}{u_0}\right)^2 = 0.27735 + 0.19611 = 0.47346$. Hence $u_0 = 1453.3$ f. s. and $\lambda = 5.929$. and $_2X_{2764} = 1817 \text{ yards}; \ _2Y_{2764} = 0; \ _2T_{2764} = 3^{\prime\prime}\cdot714; \ v^{\prime}_{2764} = 1162 \text{ f. s.}$ By Range Table $$X = \underline{1811} \text{ yards}; \qquad Y = \underline{0}; \qquad T = \underline{3''\cdot72}$$ Difference $\underline{+6} \text{ yards}$ $\underline{\underline{0}}$ $\underline{-0''\cdot006}$ (3) $$\alpha = 3^{\circ}$$; $\left(\frac{1000}{u_0}\right)^2 = 0.27777 + 0.29439 = 0.57216$. Hence $u_0 = 1322.0$ f.s. and $\lambda = 4.906 = 4.9$ nearly. $$\phi$$ λ (x) (y) (t) 3° 4.9 735 21.6 61.7 or $$_{_3}v_{_0} = 3991 \text{ feet};$$ $_{_3}y_{_0} = 117 \cdot 3 \text{ feet};$ $_{_3}t_{_0} = 2'' \cdot 534.$ As the law changes from the Newtonian to the cubic at a velocity of about 1300 f.s. it will be convenient to change the law at the vertex; then $$\begin{split} \gamma &= \frac{K}{g} \frac{d^2}{w} \left(\frac{u_{_0}}{1000}\right)^{_3} = 3 \cdot 3891 \times 0 \cdot 64 \times (1 \cdot 322)^{_3} = 5 \cdot 012 = 5 \cdot 0 \text{ nearly.} \\ \phi & \gamma & (\mathbf{x}) & (\mathbf{y}) & (\mathbf{T}) & (\mathbf{v}') \\ -4^{\circ} \cdot 512 & 5 \cdot 0 & 59 \cdot 4 & -21 \cdot 6 & 68 \cdot 3 & 773 \cdot 9 \end{split}$$ and $$_{0}x_{4:53} = 3227.5 \text{ feet}; \ _{0}y_{4:53} = -117.3 \text{ feet}; \ _{0}t_{4:53} = 2''.805.$$ But $$\frac{{}_{3}X_{0}}{{}_{3}X_{433}} = \frac{3991 \text{ feet; }}{2406 \text{ yards; }} \frac{{}_{3}Y_{0}}{{}_{3}Y_{433}} = \frac{+117\cdot3 \text{ feet; }}{0} \frac{{}_{3}T_{433}}{{}_{3}T_{433}} = \frac{2''\cdot534}{5''\cdot339}; \ \ v'_{433} = 1023 \text{ f.s.}$$ By Range Table $$X = 2400 \text{ yards}; \quad Y = 0 \quad T = 5^{"\cdot}340$$ Difference $+6 \text{ yards}; \quad 0 \quad
-0^{"\cdot}001$ The same example may be solved by the use of French Measures, $\mathfrak{b} = 1900 \text{ f. s.} = 579 \cdot 11 \text{ m. s.};$ $$\mathbf{u} = \mathbf{b} \cos \phi = 578.3 \text{ m. s.};$$ $$d = 4 \text{ in.} = 10.16 \text{ c. m.}$$ $$g = 9.809$$ m, s.; $p = 11.34$ kgs. $$\text{Log}\,\frac{a^2}{p} = 0.95917;$$ $$\text{Log } \tau = \text{Log} \frac{534.22}{5.27} = 0.00591 ;$$ $$\operatorname{Log} \frac{k}{g} = 0.51518$$ (Table XXIX.). $$\lambda = \frac{k}{g} \frac{a^2}{p} \tau \left(\frac{u_0}{1000}\right)^2 = 4.906 = 4.9 \text{ nearly.} \qquad \text{Log} \frac{u_0^2}{g} = 4.21888$$ gives $$_{s}x_{o} = 1216.6 \text{ m.}; \ _{s}y_{o} = 35.76 \text{ m.}; \ _{s}t_{o} = 2''.535.$$ The law of Resistance changes to the cubic law at the vertex, and $$\gamma = 5.011 = 5.0$$ nearly. $$\phi$$ γ (x) (y) (T) (v') $-4^{\circ}\cdot51$ 5·0 594 $-21\cdot6$ 682·5 774·2 gives $$_{0}x_{4:51} = 983\cdot3 \text{ m.}; \quad _{0}y_{4:51} = -35\cdot76 \text{ m.}; \quad _{0}t_{4:51} = 2^{\prime\prime}\cdot804; \quad v_{4:51}^{\prime} = 312 \text{ m.s.}$$ But By Range Table $$X = 2400 \text{ yards}; Y = 0 T = 5'':340$$ Difference $$\underbrace{\frac{+6 \text{ yards;}}{\alpha = 4^{\circ};}}_{\text{(4)}} \underbrace{\frac{0}{\alpha = 4^{\circ};}}_{\text{(4)}} \underbrace{\frac{1000}{u_{\phi}}}^{2} = 0.27836 + 0.39293 = 0.67129.$$ Hence $u_0 = 1220.6$ and $\lambda = 4.182$. The Newtonian Law holds up to a velocity of 1300 f.s. To find the value of ϕ corresponding approximately to this velocity we have $(v) = 10^3 v \div u_0 = 1300 \div 1.22056 = 1064$. From the table it will be found that $\phi = +1^\circ$. Hence $u_1 = 1320.7$ f. s. We must now use the cubic law $$\left(\frac{1000}{u_0}\right)^3 = \left(\frac{1000}{u_1}\right)^3 + \frac{K}{g}\frac{d^2}{w}P_1$$ $$= 0.4341 + 0.1136 = 0.5477.$$ Hence $u_0 = 1222.3$ f. s. and $\gamma = 3.961 = 4.0$ nearly. This law is to continue till the velocity is reduced to 1050 f.s. Now $$(v) = 10^3 \times 1050 \div 1222.3 = 859,$$ which on referring to the table for $\gamma = 4.0$ will give $\phi = -3^{\circ}$. The law still remains the cubic as before but with reduced coefficient of resistance. The shot has to fall $$187.0 - 42.72 = 144.28$$ ft. vertically. $$\left(\frac{1000}{u_{\rm 0}}\right)^{\rm s} = \left(\frac{1000}{u_{\rm 3}'}\right)^{\rm s} - \frac{K}{g}\frac{d^{\rm s}}{w}\,P_{\rm s} = 0.8890 - 0.2303 = 0.6587,$$ which gives $$u_0 = 1149.3$$ and $\gamma = 2.221$. The required value of (y) is $$\begin{array}{l} {}_{\rm s}x_{\rm 6.9}=1782~{\rm ft.}; \quad {}_{\rm s}y_{\rm 6.9}=-144\cdot 22~{\rm ft.}; \quad {}_{\rm s}t_{\rm 6.9}=1^{\prime\prime\prime}786; \quad v^{\prime}_{\rm 6.9}=962~{\rm f.~s.} \\ {}_{\rm s}x_{\rm s}=2924~{\rm ft.}; \quad {}_{\rm s}y_{\rm s}=-42\cdot 72~{\rm ft.}; \quad {}_{\rm s}t_{\rm s}=2^{\prime\prime\prime}\cdot 514 \\ {}_{\rm s}x_{\rm s}=3997~{\rm ft.}; \quad {}_{\rm s}y_{\rm s}=+\frac{187\cdot 00}{0.06}~{\rm ft.}; \quad {}_{\rm s}t_{\rm s}=\frac{2^{\prime\prime\prime}\cdot 537}{6^{\prime\prime\prime}\cdot 837} \\ {}_{\rm s}x_{\rm s}=\frac{8703}{2901}~{\rm ft.}; \quad {}_{\rm s}Y_{\rm 6.9}=+\frac{1}{0.06}~{\rm ft.}; \quad {}_{\rm s}Y_{\rm 6.9}=\frac{6^{\prime\prime\prime}\cdot 837}{6^{\prime\prime\prime}\cdot 837} \\ =2901~{\rm yards} \end{array}$$ By Range Table $$X = \underline{2917} \text{ yards}; \qquad Y = \underline{0}; \qquad T = \underline{6}^{"\cdot 93}$$ Difference $$\frac{-16 \text{ yards}}{\left(\frac{1000}{u'_{6:29}}\right)^3} = 0.6587 + 0.4858 = 1.1445$$ gives $$u'_{629} = 956.0 \text{ f. s.} = 318.7 \text{ y. s.}$$ (5) $$\alpha = 5^{\circ}$$; $\left(\frac{1000}{u_0}\right)^2 = 0.27915 + 0.49184 = 0.77099$. Hence $$u_0 = 1138.88 \,\text{f. s.}$$ and $\lambda = 3.641$. To find where this law must be discontinued, we have $$(v) = 10^3 v_{\phi} \div u_{o} = 1300 \div 1.13888 = 1140,$$ which gives $\phi = +2^{\circ}$ nearly. $_{\rm s}x_{\rm s}=3993\,{ m ft.}; \quad _{\rm s}y_{\rm s}=256.8\,{ m ft.}; \quad _{\rm s}t_{\rm s}=2^{\prime\prime}.539\;; \quad v_{\rm s}=1320\,{ m f. s.}$ $$\left(\frac{1000}{u_{_{2}}}\right)^{_{2}} = \left(\frac{1000}{u_{_{0}}}\right)^{_{2}} - \frac{k}{g}\frac{d^{_{2}}}{w}Q_{_{2}} = 0.77099 - 0.19611 = 0.57488.$$ Hence $$u_2 = 1319.0$$ f. s. Here we change to the cubic law. $$\left(\frac{1000}{u_0}\right)^3 = \left(\frac{1000}{u_2}\right)^3 + \frac{K}{g} \frac{d^2}{w} P_2$$ by equation (18) = 0.4358 + 0.2273 = 0.6631 by Table xVII. Hence $u_0 = 1146.8$ f. s., and $\gamma = 3.271$ by equation (17). $$\phi$$ γ (X) (Y) (T) 2° 3·271 399 7·3 373 by Table XVI. which give $$_{2}x_{0} = 1632.0 \text{ feet}; \quad _{2}y_{0} = 29.8 \text{ feet}; \quad _{2}t_{0} = 1.329$$ But $$_5x_2 = 3993.0$$,, ; $_5y_2 = 256.8$,, ; $_5t_2 = 2''.539$ Therefore $$_{5}x_{0} = 5625.0$$,, ; $_{5}y_{0} = 286.6$,, ; $_{5}t_{0} = 3''.868$. The cubic law ends when $$(v) = 10^{3}v_{\phi} \div u_{0} = 1100 \div 1.147 = 959$$, which gives $\phi = -1^{\circ}$. $$_{0}x_{1} = 676.5 \text{ feet}; \quad _{0}y_{1} = -5.72 \text{ feet}; \quad _{0}t_{1} = 0.05.5; \quad v_{1}' = 1088.1.$$ To find u'_1 more correctly, we have $$\left(\frac{1000}{u_1'}\right)^3 = 0.6631 + 0.1136 = 0.7767.$$ Hence $$u'_{1} = 1087.9 \text{ f. s.}$$ To find ϕ where the velocity is approximately 1000 f.s., we have $$(v') = 10^3 v_{\phi} \div u_{\phi} = 1000 \div 1.1468 = 872,$$ and the Table for $\gamma = 3.271$ gives $\phi = -3^{\circ}$. The resistance of the air $\propto v^6$ for velocities 1100 to 1000 f.s. $$\left(\frac{1000}{u'_{3}}\right)^{6} = \left(\frac{1000}{u'_{1}}\right)^{6} + \frac{L}{g} \frac{d^{2}}{w} (W_{3} - W_{1}) \text{ by equation (24)}$$ $$= 0.6031 + 0.3221 = 0.9252 \text{ by Table XIX.}$$ which gives $u'_3 = 1013.0$ f. s. As we have no Tables calculated to give the values of x, y, and t for a resistance varying as the 6th power of the velocity, we must use the Tables already calculated. We will use the Cubic Law and then we have 106 EXAMPLES OF THE CALCULATION OF TRAJECTORIES. $$\frac{K}{g} \frac{d^2}{w} (P_s - P_1) = \left(\frac{1000}{u'_s}\right)^s - \left(\frac{1000}{u'_1}\right)^s = \left(\frac{1000}{1013 \cdot 0}\right)^s - \left(\frac{1000}{1087 \cdot 9}\right)^s,$$ which gives $$\frac{K}{g} \frac{d^2}{w} = \frac{1854}{1050}.$$ Therefore $$u_0 = 1134.9$$ and $\gamma = 2.581$. give $$_{1}x_{3} = 1196.4 \text{ ft.}; \quad _{1}y_{3} = -41.21 \text{ ft.}; \quad _{1}t_{3} = 1^{\prime\prime}\cdot139; \quad v'_{3} = 1014.6 \text{ f. s.}$$ The cubic law with a reduced coefficient holds now to the end of the range $$\left(\frac{1000}{u_{\rm o}}\right)^{\rm s} = \left(\frac{1000}{u_{\rm o}'}\right)^{\rm s} - \frac{K}{g} \frac{d^{\rm o}}{w} P_{\rm o} = 0.9620 - 0.2303 = 0.7317.$$ This gives $u_0 = 1109.8 \text{ f. s.}$ and $\gamma = 2.0$. The shot has to fall a vertical height $$=286.6 - 5.72 - 41.21 = 239.67$$ feet, and $$10^4 \times 239.67 \div \frac{u_0^2}{g} = 62.66.$$ $$_{s}x_{s o 4} = 2517 \cdot 3 \text{ ft.}; \quad _{s}y_{s o 4} = -239 \cdot 7 \text{ ft.}; \quad _{s}t_{s o 4} = 2'' \cdot 634; \quad v'_{s o 4} = 912 \cdot 6 \text{ f.s.}$$ $_{1}x_{3}^{+} = 1196 \cdot 4 \text{ ,} \quad _{1}y_{s}^{-} = -41 \cdot 2 \text{ ft.}; \quad _{1}t_{3}^{-} = 1'' \cdot 139$ $$_{0}^{1/3}$$ $_{0}^{1/3}$ $_{1$ $$_{0}x_{804} = 4390.2$$, $_{0}y_{804} = -286.6$ ft.; $_{0}t_{804} = 4".378$ $$_{b}^{c}x_{0} = 5623.0$$, $_{b}y_{0} = +286.6$ ft.; $_{b}t_{0} = 3''.865$ $$_{5}^{8}N_{804} = 3338 \text{ yds.}; _{5}^{8}V_{804} = 0$$ $_{5}^{8}V_{804} = 8^{\circ}.243$ By Range Table $$X = 3392 \text{ yds.}; \quad Y = 0 \quad T = 8''\cdot 440$$ Difference In this descending branch we might have neglected to introduce the law of resistance $\propto v^6$ from v = 1100 to 1000 f.s. and instead of that changed the coefficient of the cubic law at the velocity 1050 f.s. We must on this supposition make the change at $\phi = -2^\circ$. gives $_{0}x_{2} = 1288 \text{ ft.}; \ _{0}y_{2} = -21.9 \text{ ft.}; \ _{0}t_{2} = 1''.181; \ v_{2}' = 1040.1.$
$$\left(\frac{1000}{u'_2}\right)^2 = \left(\frac{1000}{u_0}\right)^3 + \frac{K}{g} \frac{d^2}{w} P_2 = 0.6631 + 0.2273 = 0.8904$$ gives $$u'_2 = 1039.5$$ f. s. For the remainder of the trajectory we use $$\log \frac{K}{g} = 0.35915,$$ $$\left(\frac{1000}{u_0}\right)^3 = \left(\frac{1000}{u_2'}\right)^3 - \frac{K}{g} \frac{d^2}{w} P_2 = 0.8904 - 0.1534 = 0.7370$$ gives $u_0 = 1107.1 \text{ f. s.}$ and $\gamma = 1.985 = 2.0 \text{ nearly.}$ The vertical height of the shot when $\phi = -2^{\circ}$ is $$286.6 - 21.9 = 264.7$$ feet, which gives $$(y') = 10^4 \times 264 \cdot 7 \div \frac{u_0^2}{g} = 69 \cdot 5.$$ $$\begin{array}{ccccc} \phi & \gamma & (x) & (y) & (T) & (V') \\ -2^\circ & 2^\circ 0 & 327 & -5 \cdot 6 & 338 \\ -8^\circ \cdot 06 & ,, & \underline{1137} & -\underline{75 \cdot 1} & \underline{1267} & 822 \end{array}$$ give $$\begin{array}{lll} & _{2}x_{8:6}=3084 \cdot 0 \text{ ft.}; & _{2}y_{8:6}=-264 \cdot 61 \text{ ft.}; & _{2}t_{8:6}=3'' \cdot 195; & v_{8:6}=910 \cdot 0 \text{ f. s.} \\ & _{0}x_{2}=\underbrace{1288}_{0}\text{ ft.}; & _{0}y_{2}=-\underbrace{21 \cdot 9}_{0}\text{ ft.}; & _{0}t_{2}=\underbrace{1'' \cdot 181}_{0}\\ & _{0}x_{8:6}=4372 \text{ ft.}; & _{0}y_{8:6}=-286 \cdot 5 \text{ ft.}; & _{0}t_{8:6}=4'' \cdot 376\\ & _{5}x_{0}=\underline{5625}_{0}\text{ ft.}; & _{5}y_{0}=+\underline{286 \cdot 6}_{0}\text{ ft.}; & _{5}t_{0}=\underbrace{3'' \cdot 865}_{8'' \cdot 243}\\ & _{4}X_{8:6}=3332 \text{ yards}; _{5}Y_{8:6}=+\underbrace{0 \cdot 1}_{0}\text{ ft.}; & _{5}T_{8:6}=8'' \cdot 243 \end{array}$$ By Range Table $$X = 3392 \text{ yards}; Y = 0.0 \text{ ft.}; T = 8'' \cdot 44$$ Difference = -60 yards = + 0.1 ft. $-0''\cdot197$ 126. The General Tables have also been used to calculate the times of flight over the ranges given by the Range Table for the following elevations of the 4-inch B.L. gun. The close agreement between calculation and experiment for ranges up to near two miles affords conclusive evidence of the correctness of the coefficients of resistance adopted. 127. Taking now the 4-inch B.L. gun of $13\frac{1}{2}$ ewt. fired at an elevation of 10° with a muzzle-velocity of 1180 f. s. $$d=4$$ inches; $w=25$ lbs.; "jump" = 6 minutes, $$\left(\frac{1000}{u_0}\right)^3 = \left(\frac{1000}{u_{10}}\right)^3 + \frac{K}{g}\frac{d^2}{w}P_{10}$$ $$= 0.6372 + 1.1593 = 1.7965.$$ Hence $u_0 = 822.6 \text{ f. s. and } \gamma = 1.207.$ We will neglect the consideration of the resistance varying as v^s between the velocities 1100 and 1000 f.s., and suppose that a sudden change takes place at 1050 f.s. at which velocity the value of $\log \frac{K}{g}$ falls from 0.53009 to 0.35915, but the cubic law holds on both above and below that velocity. Here $$10^3 v_{\phi} \div u_{0} = 10^3 \times 1050 \div 822 \cdot 6 = 1276$$, which gives $\phi = 8^{\circ}$, $\phi = 8^{\circ}$, $\phi = 7$ (x) (y) (T) (v) 10° $1 \cdot 207$ 2391 $234 \cdot 5$ 2043 8° , 1750 $132 \cdot 7$ 1565 1283 or 10° to 8° $\frac{1750}{641}$ $\frac{132 \cdot 7}{101 \cdot 8}$ $\frac{1565}{478}$ $\frac{1283}{10^{\circ} r_{8}} = 1347 \cdot 4 \text{ ft.}$; $_{10}y_{8} = 214 \cdot 0 \text{ ft.}$; $_{10}t_{8} = 1^{\prime\prime\prime} \cdot 222$; $v_{8} = 1055 \cdot 4 \text{ f. s.}$ ($\frac{1000}{u_{8}}$) $^{3} = 1 \cdot 7965 - 0 \cdot 9206 = 0 \cdot 8759$. Hence $u_{8} = 1045 \cdot 16 \text{ f. s.}$ We now use the value $$\frac{K}{g} = 0.35915,$$ $$\left(\frac{1000}{u_0}\right)^{3} = 0.8759 + 0.6210 = 1.4969.$$ Hence $u_0 = 874.18 \text{ f. s.}$ and $\gamma = 0.9775$. But $$_{10}x_8 = \underline{1347.4}$$,, $_{10}y_8 = 214.0$,, $_{10}t_8 = \underline{1''.222}$ therefore $$_{10}x_0 = 5292.9$$, $_{10}y_0 = 507.7$, $_{10}t_0 = 5".366$ The law changes at the velocity 820 f. s. Now $$10^3 \times v_{\phi} \div u_{\phi} = 10^3 \times 820 \div 874.18 = 938 = (Y),$$ which gives $\phi = -4^{\circ}$. We must therefore continue the same law to -4° . therefore $$_{o}x_{4} = 1557 \cdot 3 \text{ ft.}; \quad _{o}y_{4} = 53 \cdot 3 \text{ ft.}; \quad _{o}t_{4} = 1'' \cdot 840; \quad v'_{4} = 823 \cdot 5 \text{ f. s.}$$ $$\left(\frac{1000}{u'_{4}}\right)^{3} = 1 \cdot 4969 + 0 \cdot 3075 = 1 \cdot 8044,$$ which gives $$u_4' = 821.42 \text{ f. s.}$$ We now pass to the Newtonian Law. $$\begin{split} \left(\frac{1000}{u_0}\right)^2 &= \left(\frac{1000}{u_4'}\right)^2 - \frac{k}{g} \frac{d^2}{w} Q_4 \\ &= 1.4821 - 0.1684 = 1.3137. \end{split}$$ Hence $u_0 = 872.47 \text{ f. s.}$ and $\lambda = 0.9156$. $$\begin{array}{lll} {}_{4}x_{{}_{13^{\circ}19}}{=}\,3052^{\circ}8~{\rm ft.}; & {}_{4}y_{{}_{13^{\circ}19}}{=}\,-454^{\circ}5~{\rm ft.}\;; & {}_{4}t_{{}_{13^{\circ}19}}{=}\,3^{\prime\prime}\cdot946\;;\;v^{'}_{{}_{13^{\circ}19}}{=}748~{\rm f.s.}\\ {}_{0}x_{4} & =1557^{\circ}3\;, & {}_{0}y_{4} & =-\underline{53^{\circ}3}\;, & {}_{0}t_{4} & =\underline{1}^{\prime\prime}\cdot840 \end{array}$$ therefore $$_{o}r_{_{13.19}} \! = \! 4610^{\circ}1$$,, $_{o}y_{_{13.19}} \! = \! -507^{\circ}8$,, $_{o}t_{_{13.19}} \! = \! 5^{\prime\prime\prime}786$. But $$_{10}x_{0} = 5292.9$$, $_{10}y_{0} = +507.7$, $_{10}t_{0} = 5.366$ Hence $$_{_{10}}X_{_{13^{\circ}19}}{=}3301\,\mathrm{yards};_{_{10}}Y_{_{13^{\circ}19}}{=}-~0^{\circ}1~~,_{_{10}}T_{_{13^{\circ}19}}{=}11''{\cdot}152$$ by Range Table $$X = 3414 \, \text{yards}; \quad Y = 0.0; \quad T = 11''.43$$ Difference $$-\underline{113}$$ yards $-\underline{0\cdot1}$, $\underline{-0''\cdot278}$ 128. We will now calculate the range, &c. of the 4-inch B.L. gun fired at an elevation of 15°, taking into account the variation in the density of the air, supposing that at the gun the readings of the barometer and thermometer were respectively 30 inches and 67° F. Referring to Table xx, we find the corresponding value of $\log \tau$ to be 9.9935. This corresponds to a height 5100 feet in Table xxi. It will be found by trial that the rise for the arc 1900 to 1300 f.s. is about 1000 feet, or the mean height would be 500 feet, which added to 5100 feet equals 5600 feet, which gives $\log \tau = 9.9856$ by Table xxi. Muzzle velocity 1900 f. s. as before. $$\left(\frac{1000}{u_0}\right)^2 = \left(\frac{1000}{1835 \cdot 2}\right)^2 + \frac{k}{g} \frac{d^2}{w} \tau Q_{15} = 0.2969 + 1.4726 = 1.7695,$$ which gives $u_0 = 751.75 \text{ f.s.}$ and $\lambda = 1.535$. The law of resistance changes at the velocity 1300 f.s. To find the corresponding value of ϕ we have $(v) = 1000v_{\phi} \div u_{\phi} = 1730$, which gives $\phi = 12^{\circ}$. We will omit the law of resistance varying as v^s and suppose the cubic law extends from 1300 to 1050 f.s. Using the above law we may find approximately the value of ϕ corresponding to 1050 f.s. for $(v) = 1000 \times 1050 \div 751.75 = 1396$, which gives $\phi = 8^{\circ}$. Then $\binom{12}{9} = 432.2 - 141.5$ gives approximately $\binom{12}{12} y_s = 510$ feet. And $5100 + 979 + \frac{1}{2}510 = 6334$ feet gives $\log \tau = 9.9741$ by Table XXI. From $\phi = 12^{\circ}$ to $\phi = 8^{\circ}$ the cubic law holds and $\log \frac{K}{g} = 0.53009$ by Table IV. And $$\left(\frac{1000}{u_{\rm 0}}\right)^{\rm 3} = \left(\frac{1000}{u_{\rm 12}}\right)^{\rm 3} + \frac{K}{g}\frac{d^{\rm 2}}{w}\tau P_{\rm 12} = 0.4722 + 1.3227 = 1.7949,$$ which gives $u_0 = 822.82 \text{ f. s.}$ and $\gamma = 1.139$. $\begin{aligned} &_{_{12}}x_{_{8}} = 2905 \text{ feet}; \ _{_{12}}y_{_{8}} = 520 \cdot 8 \text{ feet}; \ _{_{12}}t_{_{8}} = 2'' \cdot 543; \ v_{_{8}} = 1036 \text{ f. s.,} \\ & \left(\frac{1000}{u_{_{8}}}\right)^{_{3}} = \left(\frac{1000}{u_{_{0}}}\right)^{_{3}} - \frac{K}{g} \frac{d^{_{2}}}{w} \, \tau P_{_{8}} = 1 \cdot 7949 - 0 \cdot 8672 = 0 \cdot 9277, \end{aligned}$ which gives $$u_{\rm s} = 1025.4 \text{ f. s.}$$ Suppose the above law to hold up to $\phi = 0$, the shot has to rise $129.9 \times 10^{-4} \times (u_0^2 \div g) = 273$ feet. Now $$5100 + 979 + 521 + \frac{1}{2}273 = 6737$$ feet, which gives $\log \tau = 9.9678$ approximately for next arc. The cubic law of resistance still holds but the coefficient is reduced to $\log \frac{K}{g} = 0.35915$. $$\left(\frac{1000}{u_{\rm o}}\right)^{\rm s} = \left(\frac{1000}{u_{\rm s}}\right)^{\rm s} + \frac{K}{g}\,\frac{d^{\rm s}}{w}\,\tau P_{\rm s} = 0.9277\,+\,0.5766 = 1.5043,$$ $u_0 = 872.75 \text{ f. s.}$ and $\gamma = 0.9032 = 0.9 \text{ nearly.}$ or $$_8x_0 = 3869 \text{ ft.}; \ _8y_0 = 286.3 \text{ ft.}; \ _8t_0 = 4''\cdot105, \ v_8 = 1035\cdot1 \text{ f. s.}$$ $_{12}x_8 = 2905 \text{ ft.}; \ _{12}y_8 = 520.8 \text{ ft.}; \ _{12}t_8 = 2''\cdot543$ $_{15}x_{12} = 4018 \text{ ft.}; \ _{15}y_{12} = 978.9 \text{ ft.}; \ _{18}t_{12} = 2''\cdot611$ $_{15}x_0 = 10792 \text{ ft.}; \ _{15}y_0 = 1786\cdot0 \text{ ft.}; \ _{15}t_0 = 9''\cdot259$ The law changes at the velocity 820 f. s. and $$1000 \times 820 \div u_0 = 940$$, which gives $\phi = -5^{\circ}$ and (y) = 34.8, so that $34.8 \div 10^4 \times u_0^2 \div g = 82.35$ feet. So that the mean height for the next arc will approximately be $5100 + 1786 - \frac{1}{2}82 = 6845$ feet, which gives $\log \tau = 9.9661$. This gives $\gamma = 0.900$. $$\phi \qquad \gamma \qquad (x) \qquad (y) \qquad (t) \qquad (v) -5^{\circ} \qquad 0.9 \qquad 814 \qquad -34.8 \qquad 844 \qquad 935$$ $$\therefore {}_{0}x_{5} = 1926 \text{ ft.}, {}_{0}y_{5} = -82.3 \text{ ft.}, {}_{0}t_{5} = 2''.288, \ v'_{5} = 816 \text{ f. s.},$$ $$\left(\frac{1000}{1000}\right)^{3} = \left(\frac{1000}{1000}\right)^{3} + \frac{K}{2} \frac{d^{2}}{2} \tau P = 1.5043 + 0.3561 = 1.8604.$$ $$\left(\frac{1000}{u_{b}'}\right)^{3} = \left(\frac{1000}{u_{b}}\right)^{3} + \frac{K}{g} \frac{d^{2}}{w} \tau P_{b} = 1.5043 + 0.3561 = 1.8604,$$ $$\therefore u_{b}' = 813.07 \text{ f. s.}$$ The law now changes to the Newtonian, where $\log \frac{k}{a} = 0.27402$, and the mean height of the shot is $5100 + \frac{1}{2}(1716 - 82) = 5952$ which gives $\log \tau = 9.9801$. $$\left(\frac{1000}{u_{\scriptscriptstyle 0}}\right)^{\! 2} = \left(\frac{1000}{u_{\scriptscriptstyle
5}'}\right)^{\! 2} + \frac{k}{g} \frac{d^{\! 2}}{w} \tau Q_{\scriptscriptstyle 5} = 1.5126 - 0.2013 = 1.3113,$$ $$u_0 = 873.27 \text{ f. s. and } \lambda = 0.8762.$$ I have calculated the preceding example according to the laws of resistance given in Table IV, from which I obtained the following results. ## Ascending Branch. # Descending Branch. I have also calculated the above example for an ogival head struck with a radius of two diameters, using $\kappa \frac{d^2}{w} = 0.97 \frac{d^2}{w}$ instead of $\frac{d^2}{w}$ throughout, from which I obtained a range 6448 yards. Where the coefficients of resistance, &c. are correct, the calculated times of flight and range ought to agree with experiment, when the air is still. But a wind might not affect the time of flight sensibly, and yet disturb the range considerably. See a paper by Colonel Maitland, R.A., "On the influence of the wind on the motion of projectiles." My calculated angles of descent and terminal velocities have not been compared with those given in the Range Tables, because as these latter were not measured quantities they afforded no test of the accuracy of my coefficients. ¹ Proceedings of the R. A. Inst. viii. p. 343. ## The Jubilee Rounds. 130. When the "Jubilee" experiment was first spoken of a rough calculation was made by me, neglecting the variation of the density of the air, which gave a range of 16,709 yards for an elevation of 40°, and I then expressed an opinion that the actual range would probably be a mile or two more. But when it was resolved to carry out the experiment, I decided to calculate the range and time of flight by Bernoulli's method, using the values of the coefficients of resistance given in Table 1v, and allowing for the variation in the density of the air. The muzzle velocity was supposed to be 2360 f.s.; the diameter of the shot 9.2 inches; its weight 380 lbs.; and the elevation 40°. The atmosphere was supposed to be undisturbed, and the force of gravity and the temperature of the air were assumed to be constant. This calculation was made with very great care, and to secure accuracy steps of a single degree were taken from 40° to 30°, and steps of two degrees from 30° to 18°. The range on a horizontal plane passing through the muzzle was thus found to be 19,436 yards and the time of flight 62".15. These results were communicated to the Ordnance Committee, March 31, 1888. In the following month two rounds were fired at an elevation of 40°, and the ranges obtained were 21,048 and 21,358 yards with a "fresh favorable wind1." On this I expressed an opinion to the Ordnance Committee that "the calculated range falls so much below the experimental range that there must be some error either in the calculation or in the measurements." The nature of the error was apparent when in the following July two more rounds were fired at an elevation of 40°, which gave ranges of 20,236 and 20,210 yards, being about 1000 yards less than those obtained before. It was also found that the actual muzzle velocity was 2375 f.s. instead of 2360 f.s. which was used in the calculation. The long range obtained in April appeared to be due chiefly to the "fresh favorable wind" which had a much greater effect than was expected. Proceedings of the R. A. Inst. xvi. p. 491. But it should be remembered that in the case of a steady wind, its velocity at a height of 16,000 feet would be at least three times its velocity on the surface of the earth, and that the wind would be acting upon the shot for at least sixty seconds. The wind, at the time the experiments were made, was generally favourable, but in no case unfavourable to a long range. 131. Afterwards the same data were used with muzzle velocity 2360 f.s. to calculate a complete Range Table for all elevations up to 45°; but the Range, Time of Flight, &c. were calculated for a horizontal plane 27 feet below the muzzle of the gun. The air was supposed to be at rest. This Range Table was communicated to the Ordnance Committee, Aug. 7, 1888; and it was published in "Nature" as follows, with the exception of some small corrections for elevations 1° to 4°. | Eleva-
tion | Range | Height
of
Vertex | Time
of
Flight | Angle
of
Descent | Striking
Velocity | Horizontal
Striking
Velocity | |---------------------------------------|---|------------------------------|-------------------------|-----------------------------|---|------------------------------------| | ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° | Yards
969
2,108
3,419
4,574 | Feet
0
25
94
201 | Seconds 1.3 3.2 5.1 7.3 | ° 4
1 35
2 47
4 14 | f. s.
2,154
1,931
1,708
1,534 | y.s.
718
643
569
508 | | 4 | 5,586 | 343 | 9'4 | 5 53 | 1,399 | 464 | | 5 | 6,475 | 517 | 11'4 | 7 38 | 1,291 | 426 | | 6 | 7,271 | 716 | 13'4 | 9 30 | 1,200 | 395 | | 7 | 7,999 | 937 | 15·3 | 11 28 | 1,128 | 368 | | 8 | 8,669 | 1,180 | 17·1 | 13 28 | 1,075 | 349 | | 9 | 9,291 | 1,445 | 18·9 | 15 28 | 1,040 | 334 | | 10 | 9,876 | 1,731 | 20.6 | 17 23 | 1,022 | 325 | | 11 | 10,430 | 2,036 | 22.3 | 19 9 | 1,015 | 320 | | 12 | 10,952 | 2,360 | 23.9 | 20 54 | 1,009 | 314 | | 13 | 11,448 | 2,703 | 25.2 | 22 38 | 1,003 | 309 | | 14 | 11,922 | 3,065 | 27.0 | 24 21 | 998 | 303 | | 15 | 12,379 | 3,443 | 28.2 | 26 2 | 993 | 297 | | 16 | 12,804 | 3,835 | 33.0 | 27 40 | 990 | 292 | | 17 | 13,217 | 4,242 | 31.2 | 29 15 | 987 | 287 | | 18 | 13,618 | 4,663 | 30.0 | 30 48 | 985 | 282 | | 19 | 14,007 | 5,099 | 34°4 | 32 19 | 984 | 277 | | 20 | 14,385 | 5,550 | 35°9 | 33 48 | 984 | 273 | | 21 | 14,750 | 6,015 | 37°3 | 35 15 | 985 | 268 | | 22 | 15,103 | 6,489 | 38·8 | 36 40 | 987 | 264 | | 23 | 15,445 | 6,970 | 40·2 | 38 3 | 990 | 260 | | 24 | 15,775 | 7,459 | 41·6 | 39 24 | 993 | 256 | | 25 | 16,092 | 7,956 | 43°0 | 40 41 | 996 | 252 | | 26 | 16,398 | 8,461 | 44°4 | 41 54 | 1,000 | 248 | | 27 | 16,691 | 8,974 | 45°7 | 43 2 | 1,004 | 245 | | 28 | 16,973 | 9.494 | 47°1 | 44 6 | 1,009 | 242 | | 29 | 17,242 | 10,022 | 48°4 | 45 7 | 1,014 | 239 | | 30 | 17,501 | 10,558 | 49°7 | 46 5 | 1,019 | 236 | | 31 | 17,747 | 11,102 | 51.0 | 47 I | 1,025 | 233 | | 32 | 17,981 | 11,654 | 52.2 | 47 56 | 1,031 | 230 | | 33 | 18,203 | 12,214 | 53.5 | 48 50 | 1,037 | 228 | | 34 | 18,413 | 12,782 | 54.7 | 49 43 | 1,044 | 225 | | 35 | 18,612 | 13,357 | 56.0 | 50 35 | 1,051 | 222 | | 36 | 18,799 | 13,941 | 57.2 | 51 27 | 1,058 | 220 | | 37 | 18,973 | 14,534 | 58·5 | 52 18 | 1,065 | 217 | | 38 | 19,136 | 15,136 | 59·7 | 53 8 | 1,072 | 214 | | 39 | 19,287 | 15,747 | 61·0 | 53 58 | 1,079 | 212 | | 40 | 19,426 | 16,368 | 62·2 | 54 47 | 1,086 | 209 | | 41 | 19,553 | 17,001 | 63·4 | 55 36 | 1,092 | 206 | | 42 | 19,668 | 17,646 | 64·7 | 56 24 | 1,099 | 203 | | 43 | 19,772 | 18,302 | 65·9 | 57 11 | 1,105 | 200 | | 44 | 19,864 | 18,969 | 67·1 | 57 57 | | 197 | | 45 | 19,944 | 19,648 | 68·3 | 58 43 | | 193 | [&]quot;It will be seen that the ranges go on increasing up to an- "elevation of 45°, and would probably go on beyond an elevation "of 50° before reaching a maximum."—"Nature," Sept. 13, 1888, p. 468. 132. In July, 1888, two rounds were fired at an elevation of 30° which gave ranges of 17,500 and 18,344 yards, differing by 844 yards, although the wind appears to have been the same in both cases'. Again two rounds fired at an elevation of 35° gave ranges of 18,936 and 19,420 yards, which differ by 484 yards. Four rounds in all were fired at an elevation of 40° which gave ranges of 20,210, 20,236, 21,048 and 21,358 yards; so that the extreme difference of the ranges fired at this elevation was 1148 yards, fully justifying my suspicion of an error in range. A single round was fired at an elevation of 45° which gave a range of 21,800 yards, with a "favorable moderate" wind. This range is plainly far too great. In order to carry out experiments of this kind in a satisfactory manner it would be necessary to select a time when the atmosphere was at rest, and also to test the state of affairs in the upper regions of the air by sending up trial balloons2. Other experiments might be made to test the effect of the wind blowing both up and down the range. It is clear that no theoretical calculations could agree with the above discordant results of experiment. 133. Taking rounds fired in July, 18883, we have | | - | _ | | | |----------------------|--|--------------|--------------|----------------| | Elevation | 30° | 35° | 40° | 45° | | Ranges | 17,500 | 19,420 | 20,236 | 21,800 yards | | ,, | 18,344 | 18,936 | 20,210 | ,, | | Mean Ranges | 17,922 | 19,178 | 20,223 | 21,800 | | Difference of Ranges | $\left\{\begin{array}{c} 1,25 \end{array}\right\}$ | 6 1,048 | 5 1,5' | 77 yards. | We are tolerably certain that as the elevation of the gun approaches 45°, the range must be approaching a maximum in a still atmosphere, and therefore that the difference of ranges corre- ¹ Proceedings of the R. A. Inst. xvi. p. 491. ² From experiments on the velocity of the wind on the Eiffel Tower 994 feet above the ground and at the Paris Meteorological Office 66 feet above the ground, the average *velocity* on the tower was found to be 16 miles an hour and that at the Office only 5 miles an hour. *Nature*, Vol. 41, p. 67. ³ Proceedings of the R. A. Inst. xvi. p. 491. sponding to every increment of 5° in the elevation must be a decreasing quantity, and very different from the results stated above. In order to bring these results into something like order it will be necessary to apply corrections say of -200 and -1200 yds. respectively to the above mean ranges for elevations of 40° and 45° to allow for the effect of wind. | Elevations Observed Mean Ranges | 30° 17,922 | 35°
19,178 | 40°
20,223 | 45°
21,800 yds. | | |--|---------------------
---------------|---------------|-----------------------------------|--| | Corrections) for Wind | 0? | 0 ? | - 200 | - 1,200° | | | | 17,922 | 19,178 | 20,023 | 20,600 | | | Differences of Corrected Ranges 1,256 845 577 yds. | | | | | | | Calculated Ra
(m.v. 2360 f | | 1 18,612 | 19,42 | 6 19,944 | | | Correction for | m.v. $+17$ | + 185 | + 19 | $\frac{3}{100} + \frac{198}{100}$ | | | Ranges (m. v. 2375 f. | s.) } 17,67 | 5 18,797 | 19,61 | 9 20,142 | | | • | | 1,122 | 822 | 523 | | | Differences of
or Difference | - | es 247
1·4 | | 04 458 yds.
00 2.2 | | | • | - | | | | | These deficiencies in the calculated ranges will be accounted for by the "jump", vertical "drift", wind, more pointed form of shot used in experiment, and perhaps a slight increase of the muzzle velocity due to increased elevation. 134. The calculation of the Range Table for the 9·2-inch wire gun up to an elevation of 45° with a muzzle velocity of 2360 f.s. was undertaken with a view to show the exact results given by the coefficients of resistance derived from my experiments with ogival-headed projectiles struck with a radius of 1½ diameter. Any needful allowance can afterwards be made for wind, a more pointed form of projectile, "jump", vertical "drift", &c.; but I have failed to obtain any evidence that my coefficients of resistance require to be reduced, as before explained. I much regret that the times of flight have not been published, because they are not nearly so much affected by the wind as ranges are. All things considered I submit my calculated range table when there is no wind as a document far more instructive than the results of actual experiment made in windy weather, which was generally favourable to a long range. 135. The following is given as an example of the improved method pursued in the calculation of the Jubilee rounds, but in this case the muzzle velocity is 2375 instead of 2360 f.s., and the diameter of the shot is supposed to be 9·15 instead of 9·2 inches. The elevation of the gun is 40°. Although the resistance of the air varies as the square of the velocity from 2375 to 1300 f.s., it seems desirable to divide the corresponding trajectory into two arcs at least, in order to take account of the decreasing density of the air. Suppose that at the gun the Barometer stands at 30 inches and the Thermometer at 60° F. Table xx. gives $Log \tau = 9.9998$. This value is found corresponding to a height 4680 feet in Table xxi. We will suppose that the first arc rises to a height of 7800 feet above the gun. w = 380 lbs. Then We must now find the value of ϕ for the upper end of the arc when the shot has risen a height of 7800 feet. Here $$\{(^{40}y^0) - (^{\phi}y^0)\} \frac{{u_0}^2}{10^4 g} = 7800,$$ $$(^{\phi}y^0) = 4751,$$ or which gives $\phi = 35^{\circ}$ nearly by the Table. $$\phi$$ λ (x) (y) (t) (v) 35° 0.4509 11499 4767 8857 2159 ¹ Proceedings of the R. A. Inst. xvi. p. 492. and therefore $$\begin{aligned} u_{ab}x_{as} &= 9996 \text{ ft.}; \ \ _{40}y_{as} &= 7773.6 \text{ ft.}; \ \ _{40}t_{as} = 6^{\prime\prime}.530; \ v_{as} = 1581.8 \text{ f.s.}; \\ \text{or} \quad \left(\frac{1000}{u_{as}}\right)^2 &= \left(\frac{1000}{u_{0}}\right)^2 - \frac{k}{g}\frac{d^2}{w}\tau Q_{as} = 1.8630 - 1.2664 = 0.5966; \\ & \therefore \quad u_{as} = 1294.7 \text{ f.s.} \end{aligned}$$ The next arc of the trajectory must be made to terminate where the velocity is about 1300 f.s. In order to obtain an approximate value of ϕ for this point, we may use the same value of $\log \tau$ as before, then $(v_{\phi}) = 10^3 \times 1300 \div u_0 = 1774$ and we obtain $\phi = 30^\circ$, and $\binom{35}{9}^0 - \binom{30}{9}^0 = 2063$, which gives $_{35}y_{30} = 3440$ feet. But as τ will be really less than we have supposed we may assume that $_{35}y_{30}$ will be 3540 feet. Then $$4680 + 7774 + \frac{1}{2} \times 3540 = 14224$$ feet gives $$\log \tau = 9.8510,$$ $$\left(\frac{1000}{u_0}\right)^2 = \left(\frac{1000}{u_{ss}}\right)^2 + \frac{k}{g}\frac{d^2}{w}\tau Q_{ss} = 0.5966 + 1.0339 = 1.6305;$$ $$u_0 = 783.14 \text{ f.s.}; \text{ and } \lambda = 0.4206 = 0.42 \text{ nearly}.$$ Also $$\left(\frac{1000}{u_{s0}}\right)^2 = \left(\frac{1000}{u_{o}}\right)^2 - \frac{k}{g}\frac{d^2}{w}\tau Q_{s0} = 1.6305 - 0.8339 = 0.7966;$$ $\therefore u_{s0} = 1120.4 \text{ f.s.}$ (3) The cubic law holds from velocity 1300 to 1100 f.s., but as we have no means of calculating x, y and t for the case where the resistance varies as the sixth power of the velocity, we will suppose the change in the coefficient of resistance to take place at a velocity near 1050 f.s. $$(v_{\phi}) = 10^3 \times 1050 \div u_0 = 1341,$$ which gives $\phi = 22^{\circ}$, supposing the last arc to be continued so far. But as the resistance will be less than we have supposed it to be, we will next take the arc 30° to 21°, then $$\{(^{30}y^{0}) - (^{21}y^{0})\} \times \frac{u_{0}^{2}}{g} \times 10^{-4} = 3126 \text{ feet.}$$ But as the resistance would be less than we have supposed it we may assume the rise in this arc to be a little more, say 3160 feet. Then $4680 + 7774 + 3529 + \frac{1}{2}$ 3160 = 17563 gives $\log \tau = 9.7989$. $$\left(\frac{1000}{u_0}\right)^{\rm s} = \left(\frac{1000}{u_{\rm so}}\right)^{\rm s} + \frac{K}{g} \frac{d^2}{w} \tau P_{\rm so} = 0.71105 + 0.90442 = 1.61547;$$ $$\therefore \quad u_0 = 852.25 \text{ f.s. and } \gamma = 0.2909.$$ If we produced the above arc to where $\phi=0$ the vertex would be reached at a height = $882.6 \times \frac{{u_0}^2}{g} \div 10^4 = 1991$ feet, or as the resistance will be lower than we have supposed we may assume the height to be 2060 feet. Then $$4680 + 7774 + 3529 + 3186 + \frac{1}{2} \times 2060 = 20199$$ feet, which gives $$\log \tau = 9.7578.$$ $$\left(\frac{1000}{u_0}\right)^3 = \left(\frac{1000}{u_{21}}\right)^3 + \frac{K}{g}\frac{d^2}{w}\tau P_{21} = 1.04770 + 0.34844 = 1.39614;$$ $$\therefore u_0 = 894.72 \text{ f.s. and } \gamma = 0.2066.$$ Suppose the next arc to be taken from $\phi = 0$ to -20° . $$(^{0}Y^{20})\frac{u_{_{0}}^{^{2}}}{g} \times 10^{-4} = 604 \cdot 2 \times \frac{u_{_{0}}^{^{2}}}{g} 10^{-4} = 1503 \text{ feet.}$$ Then to find $\log \tau$ we have $$4680 + 16558 - \frac{1}{2}1504 = 20486$$ feet, which gives $\log \tau = 9.7534$ by Table XXI.; $\therefore \gamma = 0.2045$; and $u_0 = 894.22$ f.s. as before. $$\phi \qquad \gamma \qquad (x) \qquad (y) \qquad (t) \qquad (v)$$ $$-20^{\circ} \quad 0.2045 \quad 3393 \qquad -603.3 \qquad 3514 \qquad 992.7$$ $$\sigma x_{20} = 8438 \text{ ft.}; \ _{0}y_{20} = -1500.3 \text{ ft.}; \ _{0}t_{20} = 9''.767; \ v'_{20} = 888.2 \text{ f.s.}$$ $$\left(\frac{1000}{u'_{20}}\right)^{3} = \left(\frac{1000}{u_{0}}\right)^{3} + \frac{K}{g} \frac{d^{2}}{w} \tau P_{20} = 1.39614 + 0.32551 = 1.72165;$$ $$\therefore \quad u'_{20} = 834.35 \text{ f.s.}$$ Assuming that the same law holds for the next arc -20° to -40°, $$({}^{20}{\rm Y}^{40}) \times \frac{u_{\rm o}^2}{g} 10^{-4} = 2252 \times \frac{u_{\rm o}^2}{g} 10^{-4} = 5600 { m \ feet}.$$ In order to find $\log \tau$, we have $$4680 + 16558 - 1500 - \frac{1}{2}5600 = 16938,$$ which gives $\log \tau = 9.8087$. $$\left(\frac{1000}{u_0}\right)^{s} = \left(\frac{1000}{u'_{20}}\right)^{s} - \frac{Kd^2}{gw}\tau P_{20} = 1.72165 - 0.36971 = 1.35194;$$ $$u_0 = 904.4 \text{ f. s. and } \gamma = 0.2399.$$ and $$\left(\frac{1000}{u'_{40}}\right)^3 = \left(\frac{1000}{u_0}\right)^3 + \frac{K}{g} \frac{d^2}{w} \tau P_{40} = 1.35194 + 1.00789 = 2.35983;$$ $\therefore u'_{40} = 751.12 \text{ f. s.}$ The shot is now +165580 - 15003 - 55191 = 95386 feet above the level of the muzzle, and therefore the mean height above muzzle will be 4769 feet which must be diminished by 13 feet, because the arc we intend to calculate extends to 27 feet below the level of the muzzle. Therefore $$4769 - 13 + 4680 = 9436$$ feet, $\log \tau = 9.9257$. which gives $$\left(\frac{1000}{u_0}\right)^3 = \left(\frac{1000}{u_{40}'}\right)^3 - \frac{K}{g} \frac{d^2}{w} \tau P_{40} = 2.3598 - 1.3195 = 1.0403;$$ $$\therefore u_0 = 986.9 \text{ f. s. and } \gamma = 0.4081.$$ $$\phi \qquad \gamma \qquad \text{(x)} \qquad \text{(y)} \qquad \text{(T)}$$ $$-40^\circ \qquad 0.4081 \qquad 6391 \qquad -2442 \qquad 7300$$ The shot has to fall vertically 9538.6 + 27 = 9565.6 feet. And $$9565.6 \times 10^4 \div \frac{u_0^2}{g} = 3161,$$ which being added to 2442 the value of $({}^{\circ}Y^{4\circ})$ gives $({}^{\circ}Y^{\phi}) = 5603$, and referring to the Table it will be found that ϕ falls between -54° and -55° . #### CHAPTER VI. ### ON THE MOVEMENT OF ELONGATED PROJECTILES. "La détermination du mouvement des projectiles oblongs, "lancés par les armes à feu rayées, est un problème tres-complexe "qui pris dans toute sa généralité, présente de grandes difficultés." St-Robert. 136. In the preceding calculations it has been supposed that the projectile moved in the vertical plane of projection. This would be the case very nearly, if the projectile was spherical and had its centre of gravity coincident with the centre of its figure, the air being at rest. But when an elongated projectile is fired from a rifled gun, the combined action of gravity and of the resistance of the air acting upon it, causes what is called a lateral "drift." The original explanation of this drift was made to depend upon a supposed greater pressure of the air upon the elongated projectile from below than from above, so that the greater friction of the air on the underside of the rotating projectile caused it to deviate to the right or left, according to the direction of its rotation. This difference of friction above and under the projectile may have some slight effect, but it would not be sufficient to produce the amount of lateral "drift" commonly observed. Even if we adopted this explanation we should have a vertical drift also caused by the excess of the pressure of the air upwards on the projectile. 137. Magnus
gave the true explanation of all drift in 1852, which he illustrated by experiments with the gyroscope. He says: "From these experiments, we may conclude that the "deviation of elongated projectiles is caused by the resistance of "the air seeking to elevate the apex. The elevation thereby "produced is, however, scarcely perceptible, for during rotation "the forces acting on the mass of the projectile so combine them-"selves, that the apex, instead of being elevated, is moved side-"ways, and indeed, towards the right when the projectile rotates "to the right. In consequence of this motion to the right, the "resistance of the air presses the projectile's centre of gravity "towards the same side, and thus produces the deviation. At "the same time the apex sinks, and thus it appears as if the "pressure of the air against the hinder part of the projectile was "greater than that against the fore part, whereas, in fact, this "pressure is greatest on that part of the axis which is placed "between the centre of gravity and the apex"." 138. St-Robert published a mathematical treatise on the motion of elongated projectiles², in which he confirmed the explanation of drift given by Magnus. He expressed the result of his investigations in the following words: "Tandis que le "centre de gravité du projectile parcourt la trajectoire, celui-ci "tourne uniformément sur son axe de figure, qui reste immobile "dans son intérieur et qui tourne lentement dans l'espace autour "de la tangente à la trajectoire³." 139. Mayevski also published a long paper, De l'influence du mouvement de rotation sur la trajectoire des projectiles oblongs dans l'air⁴, in which he in a great measure followed St-Robert, and attempted to apply his results to a particular example, where the velocity of projection was low. But he was in error as he explained afterwards⁵ when he supposed that the axis of the projectile made several complete revolutions about the tangent. The axis really made oscillations about the tangent whose ampli- Scientific Memoirs 1. 1853, p. 228, and Abweichung der Geschosse, 1860, p. 35. ² Journal des Armes spéciales, 1860, and Mémoires Scientifiques, 1. pp. 179-312. ³ lb. p. 228. ⁴ Revue Technologie Militaire, 1866, pp. 1—176. ⁵ Traité de Balistique, p. x. tude did not exceed π for the low velocity of this projectile. Mayevski has stated the result he arrived at as follows: "Tandis "que le centre de gravité du projectile décrit une certaine trajec- "toire dans l'air, le projectile tourne autour de son axe de figure "avec une vitesse angulaire sensiblement égale à la vitesse an- "gulaire initiale, et l'axe de figure a un mouvement de rotation "autour de la tangente qui s'abaisse pendant toute la durée du "mouvement." He resolves the resistance of the air as follows: "Décomposons la résultante ρ de la résistance en trois autres "résistances: l'une dirigée en seus contraire de la tangente, "l'autre perpendiculaire à la tangente dans le plan horizontal "et la troisième perpendiculaire à la tangente dans le plan "vertical." And then Mayevski explains this latter force would raise or depress the centre of gravity of the projectile according as its apex was above or below the tangent. 140. Suppose that at any instant the plane of the paper passes through the axis of the projectile ba, and the tangent to the trajectory of at the point G, drawn in the direction of the Fig. 10. motion of the projectile. Then by what goes before, it appears that the resistance of the air will impart to the centre of gravity G of the projectile a motion of translation from the tangent ot in the plane of the paper, and towards that side, where the apex of the projectile is found. Also the resultant pressure of the air on the projectile will cut the axis between G and the apex of the shot. This will tend to increase the angle tGa, which however it will not affect sensibly, but will cause the axis Ga to rotate about the tangent Gt, in the same direction as the projectile rotates about its own axis. ¹ Traité de Balistique, p. 236. 141. The attention of Magnus seems to have been confined to the explanation of lateral drift of elongated projectiles. But his explanation of that phenomenon requires in addition the consideration of a drift in the vertical direction. It also appears to be a common notion that, if an elongated projectile is perfectly steady when it leaves a rifled gun, it will continue to move on steadily in the direction of its axis. It is not so, however, for suppose OT, Fig. 11, to be the direction of projection, the rapid Fig. 11. rotation of the projectile about its axis will tend to keep that axis ab parallel to OT. But the action of gravity upon the projectile will cause G, its centre of gravity, to move in a curve, so that the axis ba will become inclined to Gt the direction of motion of G. The resistance of the air will thus impart a motion of translation to the projectile upwards, and will also cause Ga to begin to describe a conical surface about Gt, as already explained. This vertical drift is the origin of all drift in a steady projectile. - 142. Didion noticed a drift of elongated projectiles in a vertical direction, and in a practical case remarked it was equivalent to a reduction in the force of gravity in the ratio of 9.809 to 7.72, and then he adds the remark "Outre cette dérivation "verticale il en existe une autre, qui est horizontale, et du même "genre, et qu'il importe aussi de connaître, afin de diriger le tir "en conséquence¹." - 143. Various successive positions assumed by an elongated projectile shortly after it leaves the rifled gun are shown by the ¹ Traité de Balistique, 1860, p. 441. diagrams A, B, C, D and E, Fig. 12, when viewed by an eye looking in a direction parallel to the tangent to the trajectory in each case. The curved arrows denote the direction of rotation of the projectile about its own axis, and the straight arrows show the direction in which the resistance of the air acting on the side of the projectile produces a motion of translation of the projectile. When a steady projectile has just left the gun, its base only would be seen, as in diagram A. After a short time the Figure B would represent the appearance of the projectile, where the drift would be entirely in a vertical direction, and upwards as denoted by the arrow: and the resistance of the air would cause the point of the projectile to begin to turn to the right. In a short time after. Figure C would represent the state of the case. Here the drift would be in the direction denoted by the arrow. If ab be taken to represent the drift in magnitude and direction at this time, then it may be re- solved into a horizontal drift ac to the right, and a vertical drift cb upwards. The axis of the projectile will go on rotating about the tangent to the trajectory till the projectile comes into the position D, where the drift is entirely horizontal and to the right as indicated by the arrow. When the projectile has come to the position D the circumstances of the case will change slowly, for the tangent Gt to the trajectory is always dipping downwards. and the action of the resistance of the air in this case will cause the axis of the shot Ga also to dip downwards. If the tangent Gt dips more rapidly than the axis Ga, then the projectile will tend to return to the position shown in Figure C, and the motion will become oscillatory as in the case mentioned by Mayevski (139). This will be likely to happen when the trajectory is much curved, that is, when the velocity of the projectile is low as in the case referred to. But if the axis Ga dips faster than the tangent Gt, then the projectile will take the position represented by Figure E, where the drift will be in the direction indicated by the arrow. And if ab represent the drift in magnitude and direction, it may be resolved into a drift ac vertically downwards, and cb horizontally to the right. And afterwards the axis Ga may go on rotating about the tangent Gt and complete one or more revolutions. It should be observed that when the point of the shot is to the right of the vertical plane passing through the tangent, the tangent Gt to the trajectory and the axis Ga of the projectile are both dipping downwards, the rotation of the shot about its own axis being right handed as we have supposed. But when the apex of the projectile is to the left of the vertical plane through the tangent, the tangent Gt is dipping downwards but the axis Ga is rising upwards. Hence we may conclude that the drift will be in operation a much longer time to the right than to the left, when the projectile has a right-handed rotation about its own axis. - 144. We thus find that the drift upwards is the beginning of all drift, and continues in operation from A to B. After passing the position B the drift upwards gradually decreases and vanishes at the position D. But the horizontal drift begins to make its appearance as soon as the projectile leaves the position B and gradually increases till it comes to the position D. - 145. There can therefore no longer be any doubt that an elongated projectile, although it may leave the gun with perfect steadiness, soon begins to acquire the gyratory motion described by Magnus, St-Robert and Mayevski. At any instant the resistance of the air endeavours to push the projectile bodily from the tangent to its trajectory towards that side on which the apex of the projectile is situated (140). If the axis of the projectile makes one or more complete revolutions about the tangent to the trajectory then there will be a drift in every direction as seen from the gun. But we have no reason to assume that the sum of the vertical drift will vanish, so that the resultant drift will be entirely horizontal. With a right-hand rotation of the projectile, although there may be at times a drift to the left, that is very much exceeded by the drift to the right. So also there may be a drift downwards as well as upwards, but
it seems to me that the total drift both in a vertical and horizontal direction will be in a great measure determined by what takes place near the gun, or while the projectile passes at a high velocity from position A to D, Fig. 12, and consequently that the projectile will be lifted up and made to move as if it had been fired at a somewhat higher elevation. - 146. From what has been said, it appears to be necessary in calculating trajectories to allow an increase of elevation on account of the *vertical* drift, just in the same manner as the "jump" of the gun is allowed for. But this correction will not be quite so satisfactory, because the *vertical* drift does not act instantaneously at the muzzle, but goes on accumulating gradually while the projectile is moving in its trajectory, as already explained (143). - 147. As the diagrams A, B, C, D and E, Fig. 12, represent the cross sections of the path swept out by the elongated projectile in its passage through the air, it is evident that, strictly speaking, the sectional area of the projectile at A will afterwards require to be increased, or that the coefficients of resistance must be increased, and not diminished according to Krupp's doctrine. It may also be remarked that as the projectile rises, the density of the air and therefore its resistance will diminish, and Tables xx. and xxi. have been prepared to assist in introducing the necessary corrections. But when the projectile rises only to a moderate height, the reduced resistance on this account may be supposed to balance the increased resistance arising from the inclination of the axis of the projectile to the direction of its motion. In such a case, however, a small reduction in the coefficients of resistance will be proper, if the head of the projectile be more pointed than an ogival struck with a radius of one diameter and a half. - 148. I have calculated the following ranges for comparison with the Range Tables of the 4-inch B.L. gun, making d=4 in.; w=25 lbs.; muzzle velocity = 1900 f.s.; jump 6 minutes. In the first Table I have arranged the results so as to show the comparative ranges and times of flight, given by calculation and experiment for elevations of 1° to 15°. In these calculations the coefficients of Table IV. were used, which were obtained from experiments with ogival-headed shot struck with a radius of one diameter and a half, and no allowance was made for the decreasing density of the air, or for a more acutely pointed shot. | | | Range | | Time of Flight | | | | | |-----------------------------------|---|---|---|---|--|---|--|--| | Eleva- | By R.
Table | By Cal-
culation | Difference | By R.
Table | By Cal-
culation | Difference | | | | 1° 2 3 4 5 6 7 8 9 10 11 12 13 14 | yards
1083
1811
2400
2917
3392
3820
4213
4576
4905
5215
5514
5800
6086 | yards
1049
1817
2406
2901
3338
3738
4074
4441
5027
5307
5562
5804
 | yards - 34 + 6 + 6 - 16 - 54 - 82 - 139 - 144 - 164 - 188 - 207 - 238 - 282 - 359 | 1"'.97 3"'.72 5"'.34 6"'.93 8"'.44 9".85 11"'.28 12".65 13"'.93 15".16 16".39 17".50 18".84 | 1"'93 3"'71 5"'34 6"'84 8"'24 9"'58 10"'90 12"'14 13"'36 14"'55 15"'73 16"'86 17"'92 | -0"·04
-0"·01
0"·00
-0"·09
-0"·20
-0"·27
-0"·31
-0"·57
-0"·61
-0"·66
-0"·85
 | | | 149. I have taken from the Range Table the elevations and times of flight corresponding to the above ranges obtained by calculation. I have also used the horizontal muzzle velocities in calculating by the General Tables the times over the same ranges, and the remaining velocities. The results are stated in the following Table: | | | Elevation | | | me of F | light | Calc.
Hori- | General Tables | | |---|--|--|---|--|--|--|---|--|---| | Range | By R.
Table | By Cal-
culation | Difference | By R.
Table | By Cal-
culation | Difference | zontal
Striking
Velocity | | Hori-
zontal
Velocity | | yards
1049
1817
2406
2901
3338
3738
4074
4432
4741
5027
5307
5562
5804
 | 0° 58′
2° 1′
3° 1′
3° 58′
4° 53′
5° 48′
6° 38′
7° 35′
10° 18′
11° 10′
11° 10′
11° 10′
11° 10′
11° 10′ | 1° 2° 3° 4° 5° 6° 7° 8° 9° 10° 11° 12° 13° | +0° 2'
-0° 1'
+0° 2'
+0° 2'
+0° 12'
+0° 25'
+0° 31'
+0° 37'
+0° 42'
+0° 50'
+1° 24' | 1"'90 3"'73 5"'36 6"'86 6"'86 8"'26 9"'57 10"'76 12"'10 13"'29 14"'41 15"'53 16"'67 17"'52 | 1"'93 3"'71 5"'34 6"'84 8"'24 9"'58 10"'90 12"'14 13"'36 14"'55 15"'73 16"'86 17"'99 | +0"·03
-0"·02
-0"·02
-0"·02
-0"·02
+0"·01
+0"·04
+0"·07
+0"·14
+0"·20
+0"·19
+0"·67 | y. s. 476 386 340 319 302 289 274 265 255 246 238 221 225 | 1"'92
3"'72
5"'35
6"'85
8"'28
9"'65
10"'86
12"'22
13"'44
14"'61
15"'80
16"'94
18"'04 | y. s. 474 386 342 319 301 286 275 263 254 246 223 211 | Here the difference of elevations in each case seems to be the correction required for vertical drift, inasmuch as that correction gives both ranges and times of flight satisfactorily. 150. It must be borne in mind that my coefficients of resistance were mostly derived from the motion of ogival-headed projectiles fired through ten screens placed 50 yards apart, at elevations calculated to give ranges of 600 or 700 yards. Those projectiles, which passed through all the ten screens, must in general have been steady in their flight. The 5-inch gun was a remarkably good one, which by its accurate shooting gave many records, and consequently many values of the coefficient K for velocities between 1000 and 1650 f.s. But those projectiles, which were unsteady, passed through only a few screens giving very few records, and therefore they could have only a very limited effect on the final results. The coefficients of resistance for velocities 1000 to 1650 f.s. were derived from experiments made with ogival-headed projectiles in 1867, 8 by the use of 3, 5, 7 and 9-inch M.L. guns. This variation in the calibres of the guns was adopted because it was necessary to ascertain in the first place, whether the resistance of the air did really vary as the square of the diameter of the projectile. That law having been found satisfactory, the coefficients of resistance for velocities 1650 to 2250 f.s. were obtained by experiments in 1878, 9 with a new 6-inch B.L. Armstrong gun, and in 1880 these coefficients were extended to velocity 2780 f.s. by experiments made with a new 8-inch B.L. Armstrong gun. The results given by these two guns proved perfectly consistent, as will be found by comparing the Report of Experiments printed in 1879 with the Final Report of 1880. I have the best authority for stating that no English guns constructed since 1880 have hitherto given evidence of any marked improvement in the centering of their projectiles. Numerous examples have been worked out to explain the use of the Tables, and to show how well the calculated agree with the experimental results of recent guns, so long as the elevation of the gun is low, for in that case the projectiles move nearly in the direction of their axes, and much as they did when my experiments were made. These comparisons of calculated and experimental results have been found perfectly satisfactory for velocities 1900 to 960 f.s. and for ranges up to 3000 yards. That is full and complete evidence of the accuracy of my coefficients of resistance. 151. As the elevation of the 4-inch gun goes on increasing above 4°, the calculated ranges and times of flight gradually fall short more and more of these values given in the Range Table for the specified elevation (148), but they are consistent with those given for a somewhat lower elevation (149). There is no reason for supposing that the resistance of the air to an elongated projectile fired at an elevation greater than 4° is less than that to the same projectile fired at a lower elevation, excepting for the decreasing density of the air for which special provision has to be made (92). Certainly this discrepancy cannot be corrected by simply reducing the coefficients of resistance as Captain May, R.N., has discovered. For he has observed that "...when the "coefficients used in calculating the time of flight are the same "as those which were found to give results agreeing with practice "when used for the calculation of the range, it has often been "found that the calculated time falls short of the observed
time; "this would seem to point to the range being prolonged by a "kite-like action of the shell, and if this is so, it may be that "the coefficients which give bad results when applied to the cal-"culation of the range may not be so erroneous as they appear"." If the experiments here referred to were good, and if my coefficients had been reduced 5, 10 or 15 per cent.² to make the calculated agree with the observed range, it might naturally be expected that the calculated time of flight would fall short of the observed time of flight—because the resistance of the air to the projectile had been unduly reduced. But if my coefficients of resistance had been properly used, I feel satisfied that, if not for the given elevation, then for some slightly reduced elevation the calculated range and time of flight would have been found consistent with experiment as in (149). And the proper way to bring calculation into agreement with experiment will be, to make the necessary addition to the elevation, which is accounted for by the vertical drift or "the kite-like action" of the shell (143). 152. From the note Captain May appends, I fear he has also made use of some faulty methods of calculation, for he remarks:—"Curiously enough it is usually at comparatively short "ranges, where the trajectory is but little curved that the ob- ¹ Proceedings of the R. A. Inst. xiv. p. 369. "served time of flight has been found to differ most from the "calculated time. At longer ranges with the same gun they "often agree well¹." Now I have calculated ranges and times of flight for Captain May's own model Range Table² for elevations of 1°, 2°, 3° and 4° the full extent of his Table, and found throughout a most precise agreement between calculation and experiment up to a range of 4000 yards (123). This being the case for low elevations, confirmed by the General Tables (124), I cannot suppose that projectiles fired at higher elevations would require any reduction in the coefficients of resistance, except as above observed so far as the density of the air becomes reduced, and for that I have prepared special corrections. 153. Special experiments were made with the 4-inch B.L. gun in 1887 to test my coefficients of resistance on a long range. I have no confidence in velocities measured by galvanic chronographs at considerable distances from the gun. Therefore the initial velocity of each round and the time of flight over a range of 2000 to 3000 yards were measured by the same chronograph, and afterwards the mean experimental and mean calculated times of flight were compared. The results showed that the coefficients were quite satisfactory, as we have found them to be by the use of the Range Table of the same gun for even longer Ranges (125) and (126). ¹ Proceedings of the R. A. Inst. xiv. p. 369. ² Ib. p. 356. ### CHAPTER VII. # PROPOSED LAWS OF THE RESISTANCE OF THE AIR TO ELONGATED PROJECTILES. - 154. My method of experimenting gave the coefficients of resistance in a form directly applicable to the calculation of General Tables and trajectories. The expression of the law of resistance of the air in terms of the velocity of the projectile was not therefore required for my own purposes. But as such laws seemed to be desired, I endeavoured to give them from time to time for ogival-headed projectiles. The average of the times at which the equidistant screens were passed in the trial of the instrument in 1865 gave a value of $\Delta^2 t$ nearly constant, and thence it was inferred that the resistance varied approximately as the cube of the velocity (38)¹. - 155. As there have been many laws of resistance published for ogival-headed projectiles since the commencement of my ballistic experiments, I now propose to state them in the order in which the principal of them appeared and also to apply them, as far as possible, to calculate a standard example, which has been already used for a similar purpose by Major Mackinlay, R.A.². The problem will be to find in each case, by the General Tables, in what Range a 10-inch, or 25.4 c.m. ogival-headed projectile would have its velocity reduced: - (i) from 1700 to 1300 f.s.; or from 518·15 to 396·23 m.s., and - (ii) from 1300 to 1100 f.s.; or from 396·23 to 335·27 m.s. where w = 412·54 lbs., or 187·12 kgs. which give $d^2 \div w = 0.2424.$ ¹ Reports, &c. 1865—1870, p. 8. 2 Proceedings of the R. A. Inst. xiv. p. 18. The ranges calculated by the English Tables will be reduced to the French standard, where $\omega = 527$ grains. - 156. We have seen, (106), that my Tables published in 1868, when applied to the 10-inch ogival-headed shell, gave a reduction - (i) from 1700 to 1300 f.s. in velocity in a range of 2534 yards, when reduced to the French standard. And - (ii) from 1300 to 1100 f.s. in a range of 1781 yards.....(a). In 1871, from the results of my experiments in 1867, 8¹, I stated that for ogival-headed projectiles, the resistance of the air might be taken to vary roughly as follows: $$v > 1350 \text{ f.s.}; \ f \propto v^2 v < 1350 > 1100 \text{ f.s.}; \ f \propto v^3 v < 1100 > 900 \text{ f.s.}; \ f \propto v^6$$(b). My General Table, 1871, gave ranges (i) of 2584 yards, and (ii) of 1789 yards. 157. The formulæ deduced by Mayevski² from the so-called "résultats des expériences *russes* et anglaises" 1872 were 158. My General Tables recalculated in 1873 gave ranges (i) of 2583 yards, and (ii) of 1790 yards. The experiments made with my chronograph 1878, 9^4 gave in addition to the laws (b), and $v < 1010 > 830 \text{ f.s.}; \quad f \propto v^3$ $v < 830 > 430 \text{ f.s.}; \quad f \propto v^2$(d), Remaining Velocities, 1871, p. 48, and Proceedings of the R. A. Inst. vii. p. 392. Traité de Balistique, p. 42. Report, &c. Part II. 1879. and the General Table founded on these experiments gave ranges (i) of 2584 yards, ranges (1) of 2584 yards and (ii) of 1785 yards. 159. When Siacci published his Ballistic Tables, (1880), he professed to have founded them upon the so-called "russe ed "inglesi" results, but he modified Mayevski's laws (c), and brought them more nearly into agreement with my laws (b) and (d), except for low velocities, as follows: $$v < 520 > 420 \text{ m.s.}; \text{ or } < 1706 > 1378 \text{ f.s.}; f \propto v^2$$ $v < 420 > 343 \text{ m.s.}; \text{ or } < 1378 > 1125 \text{ f.s.}; f \propto v^3$ $v < 343 > 280 \text{ m.s.}; \text{ or } < 1125 > 919 \text{ f.s.}; f \propto v^6$ $v < 280 > 0 \text{ m.s.}; \text{ or } < 919 > 0 \text{ f.s.}; f \propto v^2 \left\{1 + \left(\frac{v}{495 \cdot 1}\right)^2\right\}$ Siacci's Table D(v), 1880, gives ranges (i) of 2522 yards, and (ii) of 1814 yards. 160. Krupp did not attempt to assign any laws of resistance, but they differed little from my own, when my coefficients were reduced 9 or 10 per cent. His Table (1881), gives ranges (i) of 2847 yards, and (ii) of 2209 yards. 161. Mayevski (1883), professes to have deduced certain laws from Krupp's Meppen experiments which Ingalls has expressed as follows in English measure²: $$\begin{array}{l} v < 2300 > 1370 \; \mathrm{f.s.} \; ; \; \; f \propto v^2 \\ v < 1370 > 1230 \; \mathrm{f.s.} \; ; \; \; f \propto v^3 \\ v < 1230 > \; 970 \; \mathrm{f.s.} \; ; \; \; f \propto v^5 \\ v < \; 970 > \; 790 \; \mathrm{f.s.} \; ; \; \; f \propto v^3 \\ v < \; 790 > \; \; 0 \; \mathrm{f.s.} \; ; \; \; f \propto v^2 \\ \end{array} \right\} \; \cdots \cdots (f).$$ The Mayevski-Krupp Table (1873), gives ranges (i) of 2819 yards, and (ii) of 2176 yards. ² Exterior Ballistics, p. 29. ¹ Giornale d' Artiglieria, 1880. Here it is manifest that Mayevski completely abandons his original laws (c) and approximates to my laws (b) and (d). - 162. Hojel professes to have deduced similar laws from the same experiments, upon which Ingalls remarks¹, that "Hojel has "considered it necessary to employ fractional exponents, thereby "sacrificing simplicity without apparently gaining in accuracy." He afterwards compared the results given by the formulæ of Mayevski and Hojel, and by the "Table de Krupp" for velocities 2300 to 400 f.s. and found they agreed², so that we may take the law expressed by Mayevski to represent all three. - 163. From my Final Report (1880), I deduced the following laws 3: $$\begin{array}{lll} v & > 1300 \, \mathrm{f.s.} \; ; \; \; f \propto v^2, \\ v < 1300 > 1100 \, \mathrm{f.s.} \; ; \; \; f \propto v^3, \\ v < 1100 > 1040 \, \mathrm{f.s.} \; ; \; \; f \propto v^6, \\ v < 1040 > \; 850 \, \mathrm{f.s.} \; ; \; \; f \propto v^3, \\ v < \; 850 > \; 100 \, \mathrm{f.s.} \; ; \; \; f \propto v^2. \end{array}$$ 164. Ingalls has deduced the following laws from the same Report, 1880: $$\begin{array}{lll} v & > 1330 \; \mathrm{f.s.} \; ; \; f \propto v^2 \\ v < 1330 > 1120 \; \mathrm{f.s.} \; ; \; f \propto v^3 \\ v < 1120 > \; 990 \; \mathrm{f.s.} \; ; \; f \propto v^6 \\ v < \; 990 > \; 790 \; \mathrm{f.s.} \; ; \; f \propto v^3 \\ v < \; 790 > \; 100 \; \mathrm{f.s.} \; ; \; f \propto v^2 \\ \end{array} \right\} \;(g).$$ Ingalls employed these results when he calculated his Tables, which give ranges (i) of 2595 yards, and (ii) of 1775 yards. My own General Tables, (1889), give ranges (i) of 2566 yards, and (ii) of 1781 yards. ¹ Exterior Ballistics, p. 30. ² Ib. p. 31. ³ Nature, xxxIII. p. 605. ⁴ Exterior Ballistics, 1886, p. 36. My Laws of Resistance (1889), finally adopted after the recent revision of all my experiments, will be found in Tables (III) and (IV). 165. The following is a summary of the results above obtained: | Reduction of velocity $\{ \begin{array}{l} (I) \\ \text{from 1700 f.s.} \\ \text{to 1300 f.s.} \end{array} \}$ | (II)
from 1300 f.s.
to 1100 f.s. | (III) or {from 1700 f.s. to 1100 f.s. | |--|--|---------------------------------------| | Bashforth 1868, 2534 yards, | 1781 yards; | or 4315 yards | | ,, 1871, 2584 ,, , | 1789 "; |
or 4373 " | | " 1873, 2583 ", | 1790 "; | or 4373 ,, | | " 1879, 2584 ", | 1785 ,, ; | or 4369 ,, | | Siacci 1880, 2522 ,, , | 1814 ,, ; | or 4336 " | | Krupp 1881, 2847 ,, , | 2209 "; | or 5056 " | | Mayevski 1883, 2819 ", | 2176 ,, ; | or 4995 ,, | | Ingalls 1886, 2595 ,, , | 1775 ,, ; | or 4370 " | | Bashforth 1889, 2566 ,, , | 1781 ,, ; | or 4347 " | I have now noticed in chronological order the works of those writers on Ballistics mentioned by Ingalls as the authors of Ballistic Tables or of Laws of Resistance of the air to the Motion of Projectiles. # CHAPTER VIII. #### CONCLUDING REMARKS. 166. As the accuracy of my coefficients of resistance has been questioned, I have gone carefully over all my experimental rounds (53)—(72) and given full particulars of the values of K so obtained (73)—(81). I have also used the means of these coefficients to calculate by Bernoulli's exact method the ranges and times of flight of projectiles fired from the 4-inch B.L. gun (125). The General Tables have also been used to calculate the times of flight of projectiles fired from the same gun (126). And similar calculations have been made for the 12-inch B.L. gun (123). In every case the agreement between calculation and experiment has been found to be far closer than could reasonably have been expected. The natural conclusion seems to be that my coefficients are well adapted for the calculation of the motion of clongated projectiles fired from recent guns for ranges of these guns up to 3000 or 4000 yards, and therefore for all ranges so long as the motion of the projectile in practice corresponds to the motion of the projectiles in my experiments, that is, so long as the projectile moves nearly in the direction of its axis. 167. But as the elevation of the gun increases above 4° or 5° the vertical drift (141) coming into action raises up the elongated projectile so as to give an increased range and time of flight. In such cases my proposal is to correct the elevation so that the calculated range and time of flight may agree with those observed quantities. By the careful calculation of good Range Tables it is probable that the law of vertical drift might be ascertained for elongated projectiles. On the other hand it has been proposed by the Krupp party to reduce my coefficients of resistance. But this mode of correcting for range has been found to give too short a time of flight (151), and consequently an erroneous striking velocity. We may now proceed to consider on what authority this proposed reduction of my coefficients depends. 168. Mayevski published the results of some few rounds in 1872, for both spherical and ogival-headed shot¹ accompanied by a statement that these experiments were made in 1868, 9. "Les "expériences de St Pétersbourg sur la résistance de l'air au "mouvement des projectiles sphériques et oblongs ont été faites "par nous en 1868 et 1869 et leurs résultats sont pour la première "fois publiés dans notre traité" (1872). "Afin que les expressions "de la résistance représentent, avec une approximation suffisante, "les résultats de nos expériences et ceux des expériences anglaises, "faites avec des appareils perfectionnés...pour les projectiles sphé-"riques...pour les projectiles oblongs²." Thus Mayevski both here in his preface and in his work fully acknowledges the use he had made of my published results, for he remarks "Aussi pour compléter les données se rapportant "aux projectiles de forts calibres nous avons profité des tableaux ¹ Note. The following is a statement of *all the results* of experiments given by Mayevski for both spherical and oblong projectiles in his Balistique Extérieure, 1872, p. 39. | w.s. | ρ' | v
m. s. | ρ΄ | <i>v</i> m. s. | ρ΄ | 7 m. s. | ρ΄ | w m. s. | ρ΄ | | |-------------------|----------------------------|-------------------|----------------------------|-------------------|----------------------------|-------------------|----------------------------|--------------------------|--------------------------------------|--| | | Spherical Projectiles. | | | | | | | | | | | 227
234
262 | 0,0295
0,0267
0,0361 | 278
287
330 | 0,0424
0,0411
0,0491 | 341
342
380 | 0,0519
0,0582
0,0554 | 384
408
415 | 0,0602
0,0587
0,0625 | 457
463
475
527 | 0,0598
0,0611
0,0625
0,0619 | | | | | | Ol | olong | Projecti | les. | | | | | | 172
207
239 | 0,0151
0,0137
0,0148 | 247
266
282 | 0,0170
0,0160
0,0163 | 304
307
317 | 0,0221
0,0158
0,0259 | 319
320
329 | 0,0174
0,0299
0,0338 | 337
360
401
409 | 0,0341
0,0384
0,0450
0,0430 | | ² Traité de Balistique extérieure, 1872, p. vi. "des vitesses décroissantes' déduites par M. Bashforth de ses ex-"périences faites en 1868 au moyen de son chronographe...Nous "avons calculé d'après les résultats insérés dans ces tableaux les "valeurs de la résistance correspondantes à différentes vitesses²." Afterwards Mayevski gives in a tabular form some values of Didion's ρ' derived from the published results of my labours, as well as those he had deduced from his own experiments³, the former being more numerous than the latter. far everything was as it should be. But unfortunately, immediately afterwards Mayevski spoke of this compound as "les ré-"sultats des expériences russes et anglaises." And Siacci in publishing his Ballistic Tables (1880), copied the above-mentioned Table, saying "ecco i resultati dell' esperienze russe ed inglesi." And again Siacci in his Balistica (1884), gives a second copy of this precious Table of "esperienze russe ed inglesi4." ought to have known that the English experiments were complete in themselves and were published long before Mayevski concocted his Law of Resistance. But to show clearly the value of the Russian element, I have used Siacei's own Table D(v), said to have been derived from the results "russe ed inglesi" to recalculate one of my Tables of decreasing velocities published in 1868, which Mayevski avowedly made use of and which has already been reprinted in full (104). | Distances | Decreasing Velocities | | | | | | | |-----------|--------------------------------|---|--------------|--|--|--|--| | Feet | Eashforth's
Report,
1868 | Mayevski, 1872,
by Siacci's
Table | Differences | | | | | | 100 | 1706 f.s. | 1706 f.s. | 0 f. s. | | | | | | 1100 | 1603 | 1605 | +2 | | | | | | 2100 | 1509 | 1509 | 0 | | | | | | 3100 | 1419 | 1420 | +1 | | | | | | 4100 | 1336 | 1336 | 0 | | | | | | 5100 | 1259 | 1261 | +2 | | | | | | 6100 | 1189 | 1194 | +5 | | | | | | 7100 | 1129 | 1134 | + 5 | | | | | | 8100 | 1076 | 1082 | $+\tilde{6}$ | | | | | | 9100 | 1034 | 1040 | +6 | | | | | | 10100 | 1002 | 1005 | +3 | | | | | ¹ Proceedings of the R. A. Inst. Notes, 1868. ² Mayevski, Traité de Balistique, 1872, p. 38. ⁴ Balistica, III. p. 4. ³ Ib. p. 41, and Note (168). This shows clearly that the effect of the Russian experiments was nil, and consequently that Mayevski merely adopted in 1872 my results published in 1868. When experimenters publish the results of their laborious investigations, they know that their results are always open to be tested and examined by any one qualified for such work, but in no case have I met with such a flagrant attempt to appropriate the chief share in the already published work of another. 170. We will now proceed to test Mayevski's experiments with spherical projectiles (1872) in the same manner. In the Report on my experiments with spherical projectiles (1869) a Table of decreasing velocities was given for all the service spherical projectiles (105), just as in the case of the ogival-headed shot above referred to. As Captain Ingalls has used Mayevski's results in preparing Tables for his edition of Siacci's method of calculating trajectories of spherical projectiles, I am thus enabled to give a Table of decreasing velocities calculated after Mayevski's results for spherical projectiles (1872) for the 100-Pr. gun at intervals of 1000 feet $(d^2 \div w = 0.7766)$ for comparison with my own Table published in 1869 as follows: | Distances | Decreasing Velocities | | | | | | | |---|--|--|---|--|--|--|--| | Feet | Bashforth's
Report,
1869 | Mayevski, 1872,
by Ingall's
Table | Differences | | | | | | 400
1400
2400
3400
4400
5400
6000 | 1970 f. s.
1680
1437
1236
1078
962
906 | 1970 f. s.
1682
1436
1226
1066
950
893 | of.s.
+ 2
- 1
- 10
- 12
- 12
- 13 | | | | | Here again we have very trifling differences, showing that Mayevski's experiments with spherical shot published in 1872, gave just the same results for all practical purposes as my coefficients gave which were published in 1870. Hence it appears that the only value of Mayevski's experiments is, so far as they go, to confirm my previously published coefficients for both spherical and ogival-headed projectiles. 171. Major Siacci inserted the following note in his Balistica (1884), "La prima tavola balistica fu calcolata sulla base delle "formole (2) della Nota I. dal maggiore Siacci, pubblicando il "Nuovo Metodo (Giornale d' Artiglieria e Genio P. II. 1880). Un' "altra tavola balistica fondata sulle stesse formole, ma con unità "inglesi, fu calcolata dal tenente Mitcham degli S.U. d'America "(Ordnance Note n. 152). Una terza tavola colle stesse formole "è dovuta al Capitano M. Ingalls degli S.U., il quale ha calco-"lato anche una tavola balistica sui proietti sferici (Ballistics, "Fort Monroe Virginia, 1883). La casa Krupp ha pubblicato "anche una estesa tavola balistica sulla base delle formole (3) "della Nota I (Ballistische Formeln von Mayevski, nach Siacci, "Essen, 1883), &c.1" 172. Here
we find no reference to similar Tables published in England in 1871, 2, 3, 7 &c. for both spherical and ogival-headed projectiles (106)—(110). The simple fact is that Major Siacci uses four Tables in his approximate method of calculating trajectories, three of which had been previously in use in this country, and were well known. Siacci's Table D (u) 1880 is the same as my Table $\frac{d^2}{w}s$, 1871, ,, ,, T (u) 1880 ,, ,, ,, $$\frac{d^2}{w}t$$, 1872, ,, J (u) 1880 ,, ,, Niven's $D_v \frac{\pi}{180}$, 1877. My two General Tables were adapted by me for use when the path of the projectile approximated to a straight line. And Professor Niven afterwards applied these two tables, with the help of a third table D_v of his own to the calculation of flat trajectories in 1877. These simple matters of fact ought to have been mentioned by Major Siacci, as he pretended to give a history of the tables, for his statement of the case as above quoted is misleading. 173. Captain Ingalls has pointed out certain grave difficulties in the use of Siacci's Equations for Direct Fire, as follows: "As ¹ Balistica, 1884, p. 63. ² Proceedings of the Royal Society, 1877. "already stated, a is some mean value of the secants of the in-"clinations of the extremities of the arc of the trajectory over "which we integrate, and consequently if we take the whole "trajectory lying above the level of the gun, a will be greater "than 1 and less than sec w. To illustrate, suppose we have for "our data a given projectile fired with a certain known initial "velocity and angle of projection, and we wish to calculate the "angle of fall, terminal velocity, range and time of flight. "we calculate these elements by means of (75), (72), (76) and "(77) making $\alpha = 1$, they will be too great; while if α is made "equal to $\sec \omega$, or even $\sec \phi$ they will be too small; and the "correct value of each element would be found by giving to a "some value intermediate to the two. Moreover, the value of a. "which would give the exact range would not give the exact time of "flight or terminal velocity" ! It must be very evident that the approximate calculation of trajectories by Siacci's method as above described, or any similar method involving the use of an arbitrary value of "a," cannot be recognised by me as any test whatever of the correctness of my coefficients. 174. It appears² that in a recent edition of his Tables, Siacci has given up what he was pleased to name "esperienze *russe* ed "inglesi" and has adopted the laws of resistance which Mayevski professes to have deduced from Krupp's experiments, although he has confessed that "Io non conosco i particolari d'esecuzione "delle sperienze Krupp, nè il metodo con cui furono calcolate le "due tabelle³." 175. The late Mr Krupp was famous for his method of employing steel in the construction of big guns, but he appeared in quite a new character as the nominal author of Ballistic Tables in 1881. The second part of the Reports on experiments made by my chronograph, with the help of the first part, 1868, 9, gave coefficients of resistance to ogival-headed projectiles for all velocities between 430 and 2250 f.s., or between 131 and 686 m.s., which were made use of in calculating General Tables 1879. In 1881 Krupp printed in French and German some Ballistic Tables ¹ Exterior Ballistics, p. 115. ² Proceedings of the R. A. Inst. xvii. p. 86. ³ Giornale d' Artiglieria, Pt 2, 1881. of the same kind as my own which extended from velocity 140 to 700 m.s. But no particulars were given of the experiments, from which he professed to derive materials for his Tables. He merely stated that his Table "a été établi par l'usine Krupp au com-"mencement de l'année 1880," but he did not condescend to particulars, neither did he refer to my results printed two years previously. Having stated that it had been found that no satisfactory general law of resistance of the air as function of the velocity could be found, he then remarked "Cette expérience "devait le faire paraître utile de trouver une nouvelle méthode "pour le calcul des vitesses restantes. Cette méthode a été "trouvée de la manière suivante." This is quite erroneous as explained (89). For the same method had been previously discovered in a different manner and published, and had been in regular use in England during the preceding ten years 1871-1881. Early copies of these Tables of Krupp were sent over to the United States, America, where they were at once translated, but I was not able to obtain a sight of the precious work till Dec. 1883, and that copy arrived in this country viâ America. I then found that Krupp's Tables were based on my Laws of Resistance (Fig. 13), but with the coefficients reduced about 9.3 per cent. Afterwards it appears to have been felt that these Tables lacked support from experiment, for in the following year (1882) an "Annexe", which contained a statement of 37 rounds, apparently selected from old note books 1875 to 1881, was put forward to support the correctness of the so-called "Table de Krupp" (1881). But in no case was the time of flight given, and so there was wanting a most important test of accuracy. The chief particulars of the experiments will be found in the accompanying Table (see next page), which also gives the results obtained by Captain Ingalls who recalculated each round of the "Annexe" (1) by Krupp's Table; (2) by his own table based on my results, reduced 9.3 per cent.; and (3) by formulæ of resistance which Mayevski professes to have deduced from Krupp's Meppen experiments. 176. On these results Captain Ingalls has remarked that "The only discrepancies of any account between the calculated velocities in this column (his own) and the observed velocities ¹ Proceedings of the R. A. Inst. xiii. p. 350. | | | Proje | ectiles | | | | sses | Calcu | lated Velo | ocities | |----------------------|--|----------------------|------------------------------|--------------------------------------|----------------------------|--|---|------------------------------------|--------------------------------------|---| | No. | Dates | Calibre
en
mm. | Poids
en kilo-
grammes | | | niesurées
des
Projectiles
v ₁ et v ₂
en mètres | | v
Computed
by Krupp
m. s. | v Computed by Table I, m. s, c=0.907 | Computed
by
Mayevski's
Formulas
m. s. | | 1
2
3 | 16/11/75
18/ 3/76 | 240
,,
172.6 | 125
161
61.5 | 1.245 | 1450
,,
1389 | 467
454.5
477 | 380
390
388 | 379°9
388°3
388°7 | 380.4
384.4
386.4 | 380·6
387·5
388·7 | | 4
5
6 | 24/ 3/76
2/ 3/76
3/ 3/76 | ,,
149·1 | 39.3 | 1.540
1.540 | 1429
", | 514.7
518
507.7 | 416.6
401.6
380 | 417.9
405.1
380.2 | 417.6
403.0
379.9 | 415.4
401.5
379.1 | | 7
8
9 | 30/11/76
2/ 7/78
11/ 6/79 | 355 | 31.3 | 1,500
1,500 | 924
1884
2384 | 475.8
495.9
490 | 387·8
432·7
415 | 388·2
433·1
411·8 | 387.7
433.8
414.4 | 387.3
432.6
412.3 | | 10
11
12 | 20/ 6/79
17/12/78
7/ 8/79 | ,,
149·1 | 31.3 | 1,500
1,502 | 2389
1950
1929 | 488·5
609
505·2 | 409.6
394.6 | 410.4
393.3
393.3 | 412·3
395·4
393·4 | 410.9
392.3
392.3 | | 13
14
15 | 9/ 8/78 | 152.4
,,
149.1 | 31.3
35.2
21.2 | 1.530 | 1450
", | 472'4
577
632'4 | 391°3
422
460°9 | 389.3
422.0
460.3 | 389°1
424°2
462°8 | 388·6
421·5
459·8 | | 16
17
18 | 25/ 6/79
5/ 8/79
6/ 8/79 | 240
400
" | 215
777
643 | 1,180
1,180 | 1904
2384
" | 480°4
499°4
533°4 | 412.8
433.7
443.8 | 412'0
432'1
447'0 | 412'4
433 0
448'2 | 411°1
431°7
446°6 | | 19
20
21 | 6/10/76
3/10/76 | 84
120 | 6·55
16·4 | 1.130
1.134
1.130 | ,,
2447
,, | 531.2
446.9
463.3 | 444'5
266
284'I | 445°4
267°2
289°2 | 446.6
259.7
281.6 | 267.4
289.3 | | 22
23
24 | 12/12/78
22/ 1/80
17/ 1/80 | 149°1
105
96 | 31'3
16
12 | 1.340
1.340 | 3448
3436
3439 | 536.6
481.5
425.8 | 294.8
282
256.2 | 290.6
278.4
250.5 | 283.7
271.2
244.1 | 290°5
279°6
254°4 | | 25
26
27 | 26/ 6/80
10/ 7/80
7/ 7/81 | 107
152.4
105 | 16
31.2
15.2 | 1,555
1,500
1,518 | 777.5
966.5
950 | 205°I
203
514°2 | 188 [.] 2
188
426 [.] 9 | 189·8
187·4
421·1 | 187.7
185.9
422.2 | 189.8
188.0
420.4 | | 28
29
30 | 11/ 7/81
23/ 6/77
25/ 7/81 | 149°1
283
", | 39
234.7
", | 1,502 | 1429
4450
1879 | 470
464.7
465.3 | 369.2
369.2 | 370°4
318°9
403°3 | 369.1
311.3
404.6 | 369°3
317°6
403°7 | | 31
32
33 | 26/ 7/81
27/"7/81 | " | 17 | I '200
,,
I '220 | 1919
2425.5
2921.5 | 465.9
466.5
464.8 | 385.4
370.6
347.8 | 384.7
368.0
350.9 | 384.0
366.6
347.7 | 383 8
367 0
349 7 | | 34
35
36
37 | 28/ 7/81
29/ 7/81
1/ 8/81
4/ 8/81 | ",
",
", | ";
";
"; | 1 '227
1 '220
1 '192
1 '206 | 3426°0
4446°5
5945°0 | 463.1
460.0
453.1
463.1 | 336.0
316.6
295.0
294.7 | 337.6
293.9
316.6
337.6 | 331.4
308.6
285.6
283.2 | 336.6
315.0
293.0
291.4 | "occur where the curvature of the trajectory is considerable, as "in the last four rounds, and one or two others. Equation (30) is "based upon the supposition that the path of the projectile is a "horizontal right line, and of course, gives only approximate results "when this path has any appreciable curvature.... In No. 37, "for example, it will be found that to attain a range of 5945 metres
"(3\frac{2}{3}\text{ miles}) the angle of projection would have to be 12° 37', and "the angle of fall would be 17° 40' 1." Hence it appears that the result of Krupp's labours was a reduction of 9.3 per cent. in my coefficients, and the authority for that reduction depends entirely upon the 37 rounds given in Krupp's "Annexe." 177. When it is desired to find the law of the resistance of the air to the motion of projectiles by the use of chronoscopes of the Navez type, it is necessary to measure the velocities of the projectiles at two points near together, and then the resistance required to produce the observed loss of velocity in the given short range is usually taken to be the resistance of the air to the projectile when moving with the mean of the two measured velocities. But not one of the ranges given in Krupp's Annexe is of moderate length, for they vary from 777 to 5945 metres. Nothing can therefore be known experimentally about the variation of the velocity between the two extremities of each range. Velocities measured at distant stations by chronoscopes have not been found satisfactory. Take the round mentioned in particular by Captain Ingalls (176); the rise in the trajectory near the gun would be 22 in the 100, and the fall at the distant end would be 32 in the Here is a difficult problem to fire a projectile through a pair of screens near the gun and also through another pair 5945 metres off. And if this could be done, the resulting velocities would not be trustworthy under the circumstances above stated. 178. Notwithstanding all these difficulties Mayevski and Hojel have had the courage to attempt to deduce laws of resistance from the Meppen experiments. It appears to me that the only way to proceed in such a case, would be to take some previously determined law and adjust the coefficients so as to obtain the desired results. I have copied the following diagram², as it ¹ Proceedings of the R. A. Inst. xiii. p. 62. ² Ib. xvii. p. 87. shows clearly the state of the case. The dotted line (1) represents the results given by my experiments (1880); (2) the laws deduced from my experiments by Captain Ingalls' (164); and (3) the laws deduced by Mayevski (161), "when the Krupp projectile is "employed?". As Ingalls has used both the Krupp Table and Fig. 13. Mayevski's laws to calculate the rounds of the Annexe, and found a close agreement between them, (3) may be taken also to represent the laws of resistance on which Krupp's Tables are founded. 179. Immediately after my Report on the experiments of 1878, 9 was printed, it was decided to make experiments with still higher velocities. These experiments, carried out at Shoeburyness, March 8—10, 1880, extended the coefficients of resistance to ogival-headed projectiles to all velocities between 2250 and 2780 f.s., or between 686 and 850 m.s. The Report of these experiments was published 1880³. 180. The following July experiments were professedly carried on at Meppen: "pour déterminer la résistance de l'air aux grandes "vitesses de projectile" Bulletin xxx. But in the end, all that was attempted was to try "si la résistance de l'air restait pro"portionelle au carré de vitesse du projectile aussi pour les vi"tesses de projectile plus grandes que celles expérimentées jus"qu'ici." Here the details of each round have been given, so that we are able to judge how experiments of this nature were con- ¹ Exterior Ballistics, p. 36. ³ Final Report. ducted at Meppen. No less than six independent chronographs were used which were arranged so that one pair measured the velocity at station A, 30 metres, another pair at B, 130 metres, and the remaining pair at C, 500 to 1500 metres from the gun. Generally the two measures of the velocity at the same point differed considerably and much more than is allowed by the rule laid down by Ingalls, for he says that the difference in the velocities of each shot as determined by two instruments should not exceed one-thousandth of the actual velocity. 181. As a curiosity, I copy from Bulletin xxx. the worst group of all, which exceeds belief. | | 30 met | ed veloci
res from (
Chronoso | Gun by | 130 met | ed veloci
res from
Chronoso | Measured velo-
city at C
1000 metres
from Gun by
Chronoscopes | | | |----------|---------|-------------------------------------|--------|---------|-----------------------------------|---|---------|---------| | Round | No. 301 | No. 302 | Diff. | No. 292 | No. 293 | Diff. | No. 114 | No. 115 | | 7 | 896.4 | 892.5 | + 3.9 | 855.9 | 850.0 | + 5.0 | nil. | nil. | | 8 | 903.8 | 894.5 | + 9.3 | 852.7 | 862.7 | - 10.0 | nil. | nil. | | 9 | 907.4 | 887.2 | + 20.2 | 857.6 | 856.7 | + 0.9 | 438.1 | nil. | | 10 | 907.4 | 911.4 | - 4.0 | 854.1 | 834.7 | +19.4 | nil. | nil. | | Means | 903.8 | 896.4 | + 7.4 | 855.1 | 851.3 | + 3.8 | 438.1 | nil. | | s of mea | ns 900' | m.s. | | 853" | 2 m.s. | | 438 | m.s. | July 5, 1881. 182. Here the two measured velocities of round 9 at station A differ by so much as 20.2 m.s., or 66 f.s.; those of round 10, at station B differ 19.4 m.s., or 64 f.s.; and other rounds differ 10.0, 9.3, 5.0.4.0 and 3.9 m.s. But that is not the worst, for there was only one solitary unchecked velocity measured at station C, and that was treated as a perfectly satisfactory mean velocity at C for all the four rounds. The mean velocities so obtained at A and C, and at B and C, were combined to calculate a certain coefficient, which was found respectively to be 3.585 and 3.700, and these differed little from the mean value 3.66 finally adopted. But if Krupp had combined the mean velocities at A and B, he would have obtained 2.584, something very different from 3.66 the value of the constant adopted. ¹ Ballistic Machines, p. 13. - 183. Round 27 of Krupp's "Annexe" formed a part of the above-mentioned experiment. It is in reality the mean of five rounds. In this case the velocities measured at each station agreed better together. Combining the mean velocities at stations A and C, and B and C, the values of the constant were found to be respectively 3.641 and 3.743. But if those at A and B had been combined in the same way the result would have been found 2.765! It is manifest that such experiments are quite unworthy of attention. - 184. Thus it appears that the Report of some experiments made by my chronograph and General Tables for velocities 131—686 m.s. were published in 1879. Krupp professes to have carried out the experiments in the following year, 1880, which formed the basis of his Tables for velocities 140—700 f.s. printed in 1881. These Tables were similar to my own. Again the Report on experiments with my chronograph, for velocities higher than 686 m.s., was published in 1880, and in the following summer, 1881, Krupp carried out experiments of the same kind (Bulletin XXX.). - 185. I believe I am correct in stating that the United States did not adopt the Krupp system of guns, and they certainly have not adopted his Tables, for Captain Ingalls in his Exterior Ballistics, 1886, intended chiefly as text book for officers in U. S. Artillery School, has stated that his table was based "upon the experiments of Bashforth," p. 129. - 186. The correct method of calculating the trajectories of projectiles originally given by Bernoulli is that which I have endeavoured to render practically useful for the purpose for which it was intended. If trajectories are correctly calculated by this method, we are quite certain that any error in the result arrived at is entirely due to the defects of the data made use of, and not at all to any defect in the mode of calculation. - 187. In order to test the value of the coefficients of resistance in a satisfactory manner, great care must be exercised in selecting really trustworthy experiments. Random shots are of no value. Good Range Tables, where the muzzle velocity can be relied on, seem to be the best, because the ranges and times of flight for different elevations must respectively be consistent. But the elevations given are liable to be affected by both the "jump" and the "vertical drift" which probably vary with the elevation. It seems to me also probable that the muzzle velocity may vary slightly with the elevation of the gun. A moderate wind might produce an effect upon the range, and still not affect sensibly the time of flight. In common fairness these causes of error must be allowed for. 188. As a test of the accuracy of coefficients of resistance for high velocities, I prefer to apply the General Tables to calculate the times of flight for ranges given by the Range Table for elevations below 4° or 5°, because such tests are not sensibly affected by the "jump" or the "vertical drift". Take the Range Table of the 4-inch B.L. gun. Weight of projectile 25 lbs.; muzzle-velocity 1900 f.s.; jump, 6 minutes. | Experimental Ranges. | 1000 yards. | $2000 \; \mathrm{yards}.$ | 3000 yards. | |-----------------------------------|---------------------------|------------------------------|---------------------------| | Elevation $+6'$ | 0° $55'$ | $2^{\circ}17'$ | 4° 10′ | | Horizontal m. velocity | $1899.76 \mathrm{f.s.}$ | 1898.49 f.s. | 1894 [.] 98 f.s. | | Calc. horizon, striking) velocity | 1443 [.] 04 f.s. | 1109·03 f.s. | 944·1 f.s. | | Exp. time of flight | 1".80 | 4''·21 | 7".20 | | Calc. time of flight | 1".814 | 4":205 | 7".171 | | Difference in time, or | +0".014 | - 0"· 0 05 | - 0" 029 | | Difference in range | -7 yds. | $+\overline{2 \text{ yds.}}$ | + 9 yds. | The negative sign in the time of flight here indicates that the coefficients of resistance are too little. As the errors in time are so very minute, it is plain that my coefficients of resistance give admirable results for velocities from 1900 f.s. to 1443 f.s. to 1109 f.s. to 944 f.s., or, for all velocities between 1900 and 944 f.s. No matter at what elevation the gun be fired, so
long as the density of the air remains unaltered, the same coefficients of resistance must still hold good for all velocities between 1900 and 944 f.s. For the case where the density of the air decreases with the height, proper corrections must be introduced by Tables xx. and xxi. Although the form of the 4-inch projectile is probably more acutely pointed than those used in my experiments, it appears that, if anything, my coefficients are a trifle too little. Krupp's correction would be utterly wrong in this case. This is the gun chosen by the authorities to be used in testing my coefficients in consequence of the Krupp scare. It is also a modern gun. 189. Referring again to the Notes by Captain H. J. May, R.N., on the Method of compiling a Range Table, 1886¹, there will be found a specimen Range Table, which we have already made use of (124), for ranges up to 4000 yards of the 12-inch B.L. gun; muzzle velocity 1892 f.s.; weight of projectile 714 lbs.; jump 6 minutes. Using the horizontal muzzle velocity in the specified cases, the General Tables have been employed to calculate the time of flight as before. | Experimental Ranges. Elevation +6' | 1000 yards
0° 50' | 2000 yards
1° 44' | 3000 yards
2° 4 6' | 4000 yards
3° 56' | |------------------------------------|----------------------|---------------------------|------------------------------|----------------------| | Horizontal muzzle) velocity | | 1891·14 f.s. | | | | C.1. 1 | 1739·15 f.s. | 1593 [.] 44 f.s. | 1457:74 f.s. | 1332·10 f.s. | | Exp. time of flight | 1′′.66 | 3''.47 | 5″·44 | 7".61 | | Calc. time of flight | 1".654 | 3".457 | 5"·428 | 7".591 | | Difference in time, or | -0".006 | -0":013 | - 0''·012 | -0".019 | | Difference in range | + 4 yds. | +7 yds. | +6 yds. | + 8 yds. | - 190. Here it is manifest that my coefficients give most admirable results for velocity 1892 f.s. to 1739 f.s. to 1593 f.s. to 1458 f.s. and to 1332 f.s. or for all velocities between 1892 and 1332 f.s. And that will hold true for any elevation whatever, so long as the density of the air remains unaltered. The 12-inch B.L. gun is, I believe, a modern gun. The only way to test my coefficients of resistance for low velocities is by calculating trajectories. This has been done with great success for one gun (122). In the above two examples the error in range has been found by calculating how far the shot moving with its corresponding velocity would travel in the error of time. - 191. The conclusion I arrive at is, that my coefficients of resistance are perfectly satisfactory, and might be used with great advantage in testing all the new heavy guns. I would measure ¹ Proceedings of the R. A. Inst. xiv. p. 356. the muzzle velocity and time of flight for say an elevation of about 4° by my chronograph. I would also take two or more measures of the muzzle velocity by the best chronoscopes in the service to secure a reliable muzzle velocity. I would then calculate by the General Tables, as above, the time of flight over the given range. If the time of flight of the experimental projectile was then divided by the calculated time of flight over the same range, the result, as it was < or > 1, would show whether, and to what extent, the experimental projectile was superior or inferior in steadiness to the theoretical projectile. In this way the General Tables might be used as a standard of reference in the trial of new guns, and in process of time it would be found how far calculation might take the place of experiment. This is a matter of great practical importance, if, as I see it stated, a 110-ton gun can only fire 95 rounds, a 67-ton gun only 127 rounds, and a 45-ton gun only 150 rounds before they become respectively unserviceable. 192. I have given in Tables I.—IV. the coefficients of resistance to both spherical and ogival-headed projectiles finally adopted after a most careful re-examination of 502 rounds. In arriving at my conclusion I have had no theory to support and no interest to promote. I have been simply searching for the truth, and I have not been able to discover any satisfactory reason for changing my coefficients. But if any one should still be desirous of making a reduction of x per cent. in using the General Tables, or in calculating an arc of a trajectory, he has only to substitute $\frac{d^2}{w}$. $\frac{100-x}{100}$ for $\frac{d^2}{w}$. If x=100 he will come to the case of no resistance, and if x>100 he will have an accelerating force, and all the tables may still be used as directed. # Titles in full of some Reports, &c., referred to. - (1) Reports on Experiments made with the Bushforth Chronograph, to determine the Resistance of the Air to the Motion of Projectiles, 1865—1870. 84/B/1941. W. Clowes & Son; Harrison & Sons; &c., &c. - (2) Tables of Remaining Velocity, Time of Flight and Energy of various Projectiles, calculated from the Results of Experiments made with the Bashforth Chronograph, 1865—1870. London, 1871. - (3) A Mathematical Treatise on the Motion of Projectiles, founded chiefly on the Results of Experiments made with the Bashforth Chronograph. London, 1873. - (4) Supplement to the above. London, 1881. - (5) Report on Experiments made with the Bashforth Chronograph to determine the Resistance of the Air to the Motion of Elongated Projectiles. (Part II.) 1878—79. 84/B/2853. Printed for Her Majesty's Stationery Office, 1879. - (6) Official Copy. 84/B/2909. Final Report on Experiments made with the Bashforth Chronograph to determine the Resistance of the Air to the Motion of Elongated Projectiles, 1878—80. W. Clowes & Son; Harrison & Sons; &c., &c. I. Coefficients for the Newtonian Law of the Resistance of the Air to Spherical Projectiles. $(\omega = 534.22 \text{ grains.})$ | v | k_v | k_v | 7' | k _v | $\frac{k_v}{g}$ | v | k_v | $\frac{k_v}{g}$ | |-------|----------------|----------------|--------------|----------------|-----------------|--------------|-------|-----------------| | | | g | | 7.0 | g | | ~~ | g | | f. s. | | | f.s. | | | f. s. | | | | 840 | 118.3 | 3.675
3.718 | 1330 | 194.9 | 6.055 | 1820 | 205.8 | 6.393 | | 850 | 119.7 | 3.418 | 1340 | 195.6 | 6.076 | 1830 | 205.8 | 6.393 | | 860 | 151.1 | 3.762 | 1350 | 196.5 | 6.092 | 1840 | 205.9 | 6.396 | | 870 | 122.2 | 3.805 | 1360 | 196.8 | 6.114 | 1850 | 206.1 | 6.402 | | 880 | 123.9 | 3.849 | 1370 | 197.4 | 6.132 | 1860 | 206.1 | 6.402 | | 890 | 125.3 | 3.892 | 1380 | 197.9 | 6.148 | 1870 | 206.2 | 6.406 | | 900 | 126·7
128·1 | 3.936 | 1390 | 198.4 | 6·179
6·179 | 1880
1890 | 206.4 | 6.412 | | 910 | 129.5 | 3'979
4'023 | 1400 | 198.9 | 6.194 | 1900 | 206.9 | 6.427 | | 930 | 130.9 | 4.066 | 1420 | 199.9 | 6.510 | 1910 | 207.2 | 6.437 | | 940 | 132.4 | 4.113 | 1430 | 200.4 | 6.225 | 1920 | 207.6 | 6.449 | | 950 | 133.8 | 4.126 | 1440 | 200'9 | 6.241 | 1930 | 207.9 | 6.458 | | 960 | 135.5 | 4.500 | 1450 | 201.3 | 6.253 | 1940 | 208.2 | 6.468 | | 970 | 136.8 | 4.50 | 1460 | 201.6 | 6.263 | 1950 | 208.4 | 6.474 | | 980 | 138.4 | 4.599 | 1470 | 202.0 | 6.275 | 1960 | 208.7 | 6.483 | | 990 | 140.1 | 4.325 | 1480 | 202.3 | 6.284 | 1970 | 209.0 | 6.493 | | 1000 | 142.0 | 4.411 | 1490 | 202.7 | 6.592 | 1980 | 209.3 | 6.205 | | 1010 | 144.2 | 4.480 | 1500 | 203.0 | 6.306 | 1990 | 209.5 | 6.208 | | 1020 | 146.9 | 4.263 | 1510 | 203.3 | 6.312 | 2000 | 209.8 | 6.217 | | 1030 | 150.0 | 4.660 | 1520 | 203.8 | 6.322 | 2010 | 210.0 | 6.24 | | 1040 | 156.2 | 4·762
4·862 | 1530 | | 6·331 | 2030 | 210.3 | 6·536
6·536 | | 1050 | 120.2 | 4.955 | 1540
1550 | 204.1 | 6.342 | 2040 | 210.5 | 6.239 | | 1070 | 162.3 | 5.042 | 1560 | 204.2 | 6.353 | 2050 | 210.2 | 6.239 | | 1080 | 164.9 | 5.153 | 1570 | 204.7 | 6.329 | 2060 | 210.2 | 6.539 | | 1090 | 167.3 | 5.197 | 1580 | 204.9 | 6.365 | 2070 | 210.4 | 6.536 | | 1100 | 169.6 | 5.269 | 1590 | 205'1 | 6.371 | 2080 | 210.3 | 6.233 | | 1110 | 171.7 | 5.334 | 1600 | 205.3 | 6.378 | 2090 | 210.1 | 6.227 | | 1120 | 173.7 | 5.396 | 1610 | 205.4 | 6.381 | 2100 | 209.8 | 6.217 | | 1130 | 175.6 | 5.455 | 1620 | 205.6 | 6.387 | 2110 | 209.6 | 5.211 | | 1140 | 177.5 | 5.214 | 1630 | 205.7 | 6.390 | 2120 | 209.3 | 6.202 | | 1150 | 179.3 | 5.240 | 1640
1650 | 205.8 | 6.396 | 2130 | 209.1 | 6·496
6·486 | | 1160 | 181.0 | 5.623 | 1660 | 205.0 | 6.399 | 2150 | 208.6 | 6.480 | | 1180 | 184.1 | 5.719 | 1670 | 206.1 | 6.402 | 2160 | 208.4 | 6.474 | | 1190 | 185.4 | 5.759 | 1680 | 206.1 | 6.402 | 2170 | 208.2 | 6.468 | | 1200 | 186.6 | 5.797 | 1690 | 206.2 | 6.406 | 2180 | 208.0 | 6.461 | | 1210 | 187.7 | 5.831 | 1700 | 206.2 | 6.406 | 2190 | 207.9 | 6.458 | | 1220 | 188.6 | 5.859 | 1710 | 206.2 | 6.406 | 2200 | 207.7 | 6.452 | | 1230 | 189.4 | 5.884 | 1720 | 206.2 | 6.406 | 2210 | 207.5 | 6.446 | | 1240 | 190.5 | 2.909 | 1730 | 206.2 | 6.406 | 2220 | 207.3 | 6.440 | | 1250 | 190.9 | 5.930 | 1740 | 206.2 | 6.406 | 2230 | 207.2 | 6:437 | | 1260 | 191.5 | 5.949 | 1750 | 206.1 | 6.402 | 2240 | 207.0 | 6.430 | | 1270 | 192.1 | 5.983
5.983 | 1760
1770 | 206.0 | 6.399 | 2250
2260 | 206.6 | 6.418 | | 1290 | 193.0 | 2.996 | 1770 | 205.9 | 6.396 | 2270 | 206.4 | 6.412 | | 1300 | 193.3 | 6.002 | 1790 | 205.9 | 6.396 | 2280 | 206.1 | 6.402 | | 1310 | 193.7 | 6.012 | 1800 | 205.9 | 6.396 | | | | | 1320 | 194.3 | 6.036 | 1810 | 205.9 | 6.396 | | | | | 1 | | | | | 1 | l | | | | | | | | | | | | | ## II. Approximate Law of the Resistance of the Air to the motion of Spherical Projectiles. ($\omega = 534.22$ grains.) III. Coefficients for the Newtonian Law of the Resistance of the Air to Ogival-headed Projectiles. ($\omega = 534.22$ grains.) | 7' | k_v | $\frac{k_v}{g}$ | v | k_v | k_v | 7' | k_v | $\frac{k_v}{g}$ | |-------|-------|-----------------|-------|-------|-------|------|-------|-----------------| | f. s. | | | f. s. | | | f.s. | | | | | | | | | | | | | | 100 | 60.5 | 1.879 | 1110 | 120.3 | 3.737 | 1430 | 147.9 | 4.294 | | to | | | 1120 | 122.3 | 3.799 | 1440 | 148.0 | 4.598 | | 810 | 60.5 | 1.879 | 1130 | 123.9 |
3.849 | 1450 | 148.1 | 4.601 | | 820 | 60.6 | 1.883 | 1140 | 125.0 | 3.883 | 1460 | 148.0 | 4.598 | | 830 | 61.1 | 1.898 | 1150 | 126.0 | 3.914 | 1470 | 148.0 | 4.598 | | 840 | 61.8 | 1.920 | 1160 | 127.1 | 3 948 | 1480 | 148.0 | 4.598 | | 850 | 62.6 | 1.945 | 1170 | 128.2 | 3.983 | 1490 | 147.8 | 4.291 | | 8.0 | 63.3 | 1.966 | 1180 | 129.3 | 4.012 | 1500 | 147.6 | 4.585 | | 870 | 64.0 | 1.988 | 1190 | 130.4 | 4.021 | 1510 | 147.6 | 4.282 | | 880 | 64.8 | 2.013 | 1200 | 131.5 | 4 085 | 1520 | 147.3 | 4.576 | | 890 | 65.5 | 2.035 | 1210 | 132.6 | 4.119 | 1530 | 147.1 | 4.570 | | 900 | 66.2 | 2.057 | 1220 | 133.7 | 4.123 | 1540 | 146.8 | 4.560 | | 910 | 67.0 | 2.081 | 1230 | 134.8 | 4.188 | 1550 | 146.5 | 4.221 | | 920 | 67.7 | 2.103 | 1240 | 135.9 | 4.222 | 1560 | 146.5 | 4.245 | | 930 | 68.4 | 2.122 | 1250 | 137.0 | 4.256 | 1570 | 145.9 | 4'532 | | 940 | 69.2 | 2.120 | 1260 | 138.1 | 4.500 | 1580 | 145.6 | 4.23 | | 950 | 69.9 | 2.121 | 1270 | 139.2 | 4.324 | 1590 | 145.2 | 4.211 | | 960 | 70.7 | 2.196 | 1280 | 140.3 | 4.328 | 1600 | 144.9 | 4.201 | | 970 | 71.4 | 2.518 | 1290 | 141'4 | 4.393 | 1610 | 144.6 | 4.492 | | 980 | 72.1 | 2.540 | 1300 | 142.5 | 4'417 | 1620 | 144'4 | 4.486 | | 990 | 72.9 | 2.262 | 1310 | 142.9 | 4'439 | 1630 | 144.5 | 4.480 | | 1000 | 73.6 | 2.586 | 1320 | 143.6 | 4 461 | 1640 | 143.9 | 4.470 | | 1010 | 74.2 | 2.314 | 1330 | 144.3 | 4.483 | 1650 | 143.6 | 4.461 | | 1020 | 76.1 | 2.364 | 1340 | 144'9 | 4.201 | 1660 | 143.3 | 4'452 | | 1030 | 78.9 | 2.421 | 1350 | 145.4 | 4.214 | 1670 | 143.0 | 4'442 | | 1040 | 84.0 | 2.609 | 1360 | 145.8 | 4.259 | 16So | 142.6 | 4.430 | | 1050 | 91.7 | 2 849 | 1370 | 146 3 | 4.242 | 1690 | 142'3 | 4'421 | | 1000 | 99.6 | 3.094 | 1380 | 146.6 | 4.554 | 1700 | 142.0 | 4'411 | | 1070 | 105.6 | 3.581 | 1390 | 147'1 | 4.240 | 1710 | 141.6 | 4.399 | | 1080 | 110.5 | 3.423 | 1400 | 147.3 | 4.276 | 1720 | 141.3 | 4.389 | | 1000 | 114.3 | 3.221 | 1410 | 147.5 | 4.282 | 1730 | 141.0 | 4.380 | | 1100 | 117.0 | 3.653 | 1420 | 147.7 | 4.288 | 1740 | 140.4 | 4.371 | | | | | | | | ! | | | III. (continued). | 1 | 1 | | | | | | | | |------|-------|-----------------|--------------|----------------|-----------------|--------------|-------|-----------------| | ₹′ | k_v | $\frac{k_v}{g}$ | T' | k_v | $\frac{k_v}{g}$ | υ | k_v | $\frac{k_v}{g}$ | | f.s. | | | f. s. | | | f.s. | | ., | | | | | | | | | | | | 1750 | 140.2 | 4.365 | 2100 | 140.7 | 4.37 I | 2450 | 134.1 | 4.166 | | 1760 | 140.3 | 4.328 | 2110 | 141.5 | 4.386 | 2460 | 133.6 | 4.120 | | 1770 | 140.1 | 4.325 | 2120 | 141.6 | 4.399 | 2470 | 133.5 | 4.138 | | 1780 | 139.9 | 4.346 | 2130 | 142.0 | 4.411 | 2480 | 132.9 | 4.129 | | 1790 | 139.6 | 4.337 | 2140 | 142.5 | 4.427 | 2490 | 132.2 | 4.119 | | 1810 | 139.3 | 4.327 | 2150 | 143.0 | 4'442 | 2500 | 132.2 | 4.102 | | 1820 | 139.0 | 4.318 | 2160 | 143.5 | 4.458 | 2510 | 132.3 | 4.110 | | 1830 | 138.8 | 4.312 | 2170
2180 | 143.9 | 4.470 | 2520 | 132.2 | 4.119 | | 1840 | 138.4 | 4.306 | | 144.5 | 4.480
4.489 | 2530 | 132'4 | 4.113 | | 1850 | 138.3 | 4·296
4·296 | 2190 | 144·5
144·8 | 4.498 | 2540 | 132.2 | 4.119 | | 1860 | 138.3 | 4.293 | 2200
2210 | 144.0 | 4 490 | 2550
2560 | 132.6 | 4.119 | | 1870 | 138.0 | 4.287 | 2220 | 145.1 | 4.204 | 2570 | 133.1 | 4.132 | | 1880 | 137.8 | 4.581 | 2230 | 145.2 | 4.211 | 2580 | 133.4 | 4'144 | | 1890 | 137.5 | 4.521 | 2240 | 145.3 | 4.214 | 2590 | 133.4 | 4.123 | | 1900 | 137.2 | 4.565 | 2250 | 145.3 | 4.214 | 2600 | 133.9 | 4.160 | | 1910 | 136.9 | 4.253 | 2260 | 145.1 | 4.207 | 2610 | 134.5 | 4.169 | | 1920 | 136.7 | 4.547 | 2270 | 144.6 | 4.492 | 2620 | 134.6 | 4.181 | | 1930 | 136.6 | 4.543 | 2280 | 144.1 | 4.476 | 2630 | 135.5 | 4.500 | | 1940 | 136 6 | 4.543 | 2290 | 143.6 | 4.461 | 2640 | 135.7 | 4.215 | | 1950 | 136.2 | 4.240 | 2300 | 143.1 | 4.445 | 2650 | 136.3 | 4'234 | | 1960 | 136.4 | 4.237 | 2310 | 142.5 | 4.427 | 2660 | 136.8 | 4.250 | | 1970 | 136.5 | 4.540 | 2320 | 142.0 | 4.411 | 2670 | 137:3 | 4.265 | | 1980 | 136.6 | 4.543 | 2330 | 141.4 | 4.393 | 2680 | 137.7 | 4.278 | | 1990 | 136.8 | 4.520 | 2340 | 140.9 | 4.377 | 2 690 | 138.1 | 4.290 | | 2000 | 137.0 | 4.256 | 2350 | 140.5 | 4.355 | 2700 | 138.5 | 4.302 | | 2010 | 137.2 | 4.262 | 2360 | 139.5 | 4.334 | 2710 | 139.0 | 4.318 | | 2020 | 137.5 | 4.521 | 2370 | 138.9 | 4.312 | 2720 | 139.4 | 4.330 | | 2030 | 137.8 | 4.581 | 2380 | 138.2 | 4.593 | 2730 | 139.8 | 4'343 | | 2040 | 138.1 | 4.500 | 2390 | 137.5 | 4.521 | 2740 | 140.3 | 4.328 | | 2050 | 138.4 | 4.599 | 2400 | 136.8 | 4.220 | 2750 | 140.8 | 4.374 | | 2060 | 138.8 | 4.315 | 2410 | 136.5 | 4.531 | 2760 | 141.4 | 4.393 | | 2070 | 139.2 | 4.322 | 2420 | 135.6 | 4.515 | 2770 | 141.9 | 4.408 | | 2080 | 139.6 | 4.337 | 2430 | 135.0 | 4.194 | 2780 | 142.4 | 4'424 | | 2090 | 140.1 | 4'352 | 2440 | 134.2 | 4.148 | | | | IV. Approximate Law of the Resistance of the Air to the motion of Ogival-headed Projectiles. ($\omega = 534.22$ grains.) V. Coefficients for the Newtonian Law of Resistance of the Air to Hemispherical-headed Projectiles. ($\omega = 534^{\circ}22$ grains.) | v
f.s. | k_v | $\frac{k_v}{g}$ | κ, | v
f.s. | k_v | $\frac{k_v}{g}$ | κ, | v
f.s. | k_v | $\frac{k_v}{g}$ | κ, | |--|--|--|---|--|---|--|--|--|---|--|--| | 1100
1110
1120
1130
1140
1150
1160

1640
1650 | 146·3
147·6
149·0
150·3
151·6
153·0
154·3

189·6
190·4
191·2 | 4°54
4°59
4°63
4°67
4°71
4°75
4°79

5°89
5°92
5°94 | I '24
I '23
I '22
I '21
I '21
I '21
I '31
I '33
I '33 | 1670
1680
1690
1700
1710
1720
1730
1740
1750
1760 | 192°0
192°7
193°3
193°8
194°3
194°7
195°0
195°1
195°0
194°8
194°5 | 5.97
5.99
6.01
6.02
6.03
6.05
6.06
6.06
6.06
6.06 | 1'34
1'35
1'36
1'37
1'37
1'38
1'38
1'39
1'39 | 1780
1790
1800
1810
1820
1830
1840
1850
1860
1870 | 194.0
193.3
192.6
191.9
190.0
189.0
188.0
188.1
186.3 | 6.03
6.01
5.98
5.96
5.93
5.90
5.87
5.84
5.81 | 1'39
1'38
1'38
1'38
1'37
1'37
1'36
1'35 | VI. Coefficients for the Newtonian Law of Resistance of the Air to Flat-headed Projectiles. ($\omega = 534.22$ grains.) | v
f. s. | k_v | $\frac{k_v}{g}$ | κ, | v
f. s. | k ₁ , | $\frac{k_v}{g}$ | κ ₂ | ī'
f. s. | <i>λ</i> _τ , | $\frac{k_v}{g}$ | κ ₂ | |--|--|--|--|--|---|--|--|--|--|--|--| | 1530
1540
1550
1560
1570
1580
1590
1600
1610
1620
1630
1640 | 266.7
268.6
270.3
272.2
274.0
275.6
277.1
278.7
280.3
281.9
283.5
284.9 | 8·28
8·34
8·40
8·46
8·51
8·56
8·61
8·66
8·71
8·76
8·81
8·85 | 1.81
1.83
1.85
1.86
1.88
1.89
1.91
1.92
1.94
1.95
1.97 | 1650
1660
1670
1680
1690
1710
1710
1720
1730
1740
1750 | 286'4
288'0
289'4
291'0
292'4
293'9
295'3
296'9
298'3
299'5
300'6 | 8.90
8.95
8.99
9.04
9.08
9.13
9.17
9.22
9.27
9.30
9.34 | 2.00
2.01
2.02
2.04
2.05
2.07
2.09
2.10
2.12
2.13
2.14 | 1760
1770
1780
1790
1800
1810
1820
1830
1840
1850 | 301.8
303.0
304.2
305.2
306.8
306.8
307.4
308.6
308.6
308.6 | 9'38
9'41
9'44
9'48
9'51
9'53
9'55
9'57
9'58
9'59 | 2.15
2.16
2.17
2.19
2.20
2.21
2.22
2.23
2.23
2.23 | VII. $Q_{\phi} = \sec \phi \, \tan \phi + \log_e \tan \left(\frac{\pi}{4} + \frac{\phi}{2}\right).$ | φ | .0 | . 1 | .2 | '3 | .4 | .5 | .6 | .7 | .8 | .9 | Δ | |----------------|----------------------------------|----------------------|----------------------|----------------------|----------------------|----------------------|-----------------------|-----------------------|-----------------------|-----------------------|------------------------| | 0°
I 2 | 0.0 0000
0.0 3491
0.0 6986 | 0349
3840
7335 | 0698
4190
7685 | 1047
4539
8035 | 1396
4888
8385 | 1745
5238
8735 | 2095
5587
9085 | 2444
5937
9435 | 2793
6286
9786 | 3142
6636
*0136 | +
349
350
350 | | 3 4 5 | 0°1 0486 | 0837 | 1188 | 1538 | 1889 | 2240 | 2591 | 2942 | 3294 | 3645 | 351 | | | 0°1 3997 | 4348 | 4700 | 5052 | 5404 | 5757 | 6109 | 6462 | 6814 | 7167 | 352 | | | 0°1 7520 | 7873 | 8227 | 8580 | 8934 | 9288 | 9642 | 9996 | *0350 | *0705 | 354 | | 6 7 8 | 0°2 1059 | 1414 | 1770 | 2125 | 2481 | 2836 | 3192 | 3549 | 3905 | 4262 | 356 | | | 0°2 4618 | 4976 | 5332 | 5691 | 6048 | 6406 | 6765 | 7123 | 7482 | 7841 | 358 | | | 0°2 8200 | 8560 | 8920 | 9280 | 9640 | *0001 | *0362 | *0723 | *1085 | *1447 | 361 | | 9 | 0.3 1809 | 2171 | 2534 | 2897 | 3260 | 3624 | 3988 | 4352 | 4717 | 5082 | 364 | | 10 | 0.3 2447 | 5813 | 6179 | 6545 | 6912 | 7279 | 7646 | 8014 | 8382 | 8751 | 367 | | 11 | 0.3 1809 | 9489 | 9858 | *0228 | *0599 | *0969 | *1341 | *1712 | *2084 | *2457 | 371 | | 12 | 0.4 2829 | 3202 | 3576 | 3950 | 4325 | 4700 | 5075 | 5451 | 5827 | 6203 | 375 | | 13 | 0.4 6581 | 6958 | 7336 | 7715 | 8094 | 8473 | 8853 | 9233 | 9614 | 9996 | 379 | | 14 | 0.5 0378 | 0760 | 1143 | 1526 | 1910 | 2294 | 2679 | 3065 | 3451 | 3837 | 384 | | 15 | 0.5 4224 | 4612 | 5000 | 5389 | 5778 | 6168 | 6558 | 6949 | 7341 | 7733 | 390 | | 16 | 0.5 8126 | 8519 | 8913 | 9307 | 9702 | *0098 | *0494 | *0891 | *1289 | *1687 | 396 | | 17 | 0.6 2086 | 2485 | 2885 | 3286 | 3687 | 4090 | 4492 | 4896 | 5300 | 5704 | 402 | | 18 | 0.6 61 10 | 6516 | 6923 | 7330 | 7739 | 8148 | 8557 | 8968 | 9379 | 9791 | 409 | | 19 | 0.7 0203 | 0616 | 1030 | 1445 | 1861 | 2277 | 2694 | 3112 | 3531 | 3950 | 416 | | 20 | 0.7 437 1 | 4792 | 5214 | 5636 | 6060 | 6484 | 6909 | 7335 | 7762 | 8190 | 424 | | 21 | 0.7 8619 | 9048 | 9478 | 9910 | *0342 | *0774 | *1208 | *1643 | *2079 | *2515 | 433 | | 22 | 0.8 2953 | 3391 | 3830 | 4270 | 4712 | 5154 | 5597 | 6041 | 6486 | 6932 | 442 | | 23 | 0.8 7380 | 7828 | 8277 | 8727 | 9178 | 9630 | *0083 | *0537 | *0992 | *1449 | 452 | | 24 | 0.9 1906 | 2364 | 2824 | 3284 | 3746 | 4209 | 4672 | 5137 | 5603 | 6071 | 463 | | 25 | 0.9 6539 | 7008 | 7479 | 7951 | 8424 | 8898 | 9373 | 9850 | *0327 | *0806 | 474 | | 26 | 1.0 1286 | 1768 | 2250 | 2734 | 3219 | 3706 | 4193 | 4682 | 5173 | 5664 | 486 | | 27 | 1.0 6157 | 6651 | 7147 | 7643 | 8141 | 8641 | 9142 | 9644 | *0148 | *0653 | 500 | | 28 | 1.1 1159 | 1667 | 2176 | 2687 | 3199 | 3712 | 4227 | 4744 | 5262 | 5781 | 514 | | 29 | 1.1 6302 | 6825 | 7349 | 7874 | 8402 | 8930 | 9460 | 9992 | *0526 | *1061 | 529 | | 30
31
32 | 1.3 2687
1.3 2687 | 2136
7610
3260 | 2675
8167
3835 | 3217
8725
4412 | 3760
9286
4991 | 4305
9848
5572 | 4851
*0412
6155 | 5400
*0978
6739 | 5950
*1546
7326 | 6501
*2115
7915 | 545
562
581 | | 33 | 1·3 8506 | 9098 | 9693 | *0290 | *0889 | *1490 | *2093 | *2698 | *3305 | *3915 | 601 | | 34 | 1·4 4526 | 5140 | 5756 | 6374 | 6994 | 7617 | 8241 | 8868 | 9498 | *0129 | 623 | | 35 | 1·5 0763 | 1399 | 2038 | 2679 | 3322 | 3968 | 4616 | 5267 | 5920 | 6575 | 646 | | 36 | 1.5 7233 | 7894 | 8557 | 9222 | 9890 | *0561 | *1234 | *1910 | *2589 | *3270 | 671 | | 37 | 1.6 3954 | 4641 | 5330 | 6022 | 6717 | 7414 | 8115 | 8818 | 9524 | *0233 | 698 | | 38 | 1.7 0945 | 1660 | 2378 | 3099 | 3823 | 4549 | 5279 | 6012 | 6748 | 7487 | 727 | | 39 | 1.7 8229 | 8974 | 9722 | *0474 | *1229 | *1987 | *2749 | *3513 | *4281 | *5053 | 758 | | 40 | 1.8 5828 | 6606 | 7388 | 8173 | 8961 | 9753 | *0549 | *1348 | *2151 | *2958 | 792 | | 41 | 1.9 3768 | 4582 | 5399 | 6221 | 7046 | 7875 | 8708 | 9544 | *0385 | *1229 | 829 | VII. $Q_{\phi} = \sec \phi \tan \phi + \log_e \tan \left(\frac{\pi}{4} + \frac{\phi}{2}\right)$ (continued). | φ | .0 | .1 | .2 | .3 | '4 | .5 | .6 | .7 | .8 | .9 | Δ | |-----------------|----------------------------------|----------------------------|----------------------------|----------------------------|----------------------------|-----------------------|----------------------------|-----------------------|----------------------------|----------------------------|------------------------| | 42°
43
44 | 2.0 2078
2.1 0789
2.1 9937 | 2931
1684
*0877 | 3787
2583
*1822 | 4648
3486
*2772 | 5513
4394
*3726 | 6382
5306
*4686 | 7255
6223
*5650 | 8132
7145
*6620 | 9014
8071
*7594 | 9899
9001
*8574 | +
869
912
960 | | 45 | 2· 2956 | 3055 | 3154 | 3254 | 3355 | 3456 | 3558 | 3660 | 3763 | 3866 | 101 | | 46 | 2· 3970 | 4074 | 4179 | 4285 | 4391 | 4498 | 4605 | 4713 | 4821 | 4931 | 107 | | 47 | 2· 5040 | 5151 | 5262 | 5373 | 5485 | 5598 | 5712 | 5826 | 5941 | 6056 | 113 | | 48 | 2. 6173 | 6289 | 6407 | 6525 | 6644 | 6764 | 6884 | 7005 | 7127 | 7249 | 120 | | 49 | 2. 7373 | 7497 | 7621 | 7747 | 7873 | 8000 | 8128 | 8257 | 8386 | 8516 | 127 | | 50 | 2. 8647 | 8779 | 8912 | 9045 | 9180 | 9315 | 9451 | 9588 | 9726 | 9864 | 135 | | 51 | 3° 0004 | 0144 | 0286 | 0428 | 0571 | 0716 | 0861 | 1007 | 1154 | 1302 | 144 | | 52 | 3° 1451 | 1601 | 1753 | 1905 | 2058 | 2212 | 2367 | 2524 | 2681 | 2839 | 154 | | 53 | 3° 2999 | 3160 | 3322 | 3485 | 3649 | 3814 | 3980 | 4148 | 4317 | 4487 | 165 | | 54 | 3. 4658 | 4831 | 5004 | 5179 | 5356 | 5533 | 5712 | 5 ⁸ 93 | 6074 | 6257 | 178 | | 55 | 3. 6441 | 6627 | 6814 | 7-03 | 7193 | 7384 | 7577 | 7771 | 7967 | 8164 | 192 | | 56 | 3. 8363 | 8563 | 8765 | 8969 | 9174 | 9381 | 9589 | 9799 | *0011 | *0225 | 207 | | 57 | 4. 0440 | 0657 | 0876 | 1096 | 1318 | 1542 | 1768 | 1996 | 2226 | 2458 | 224 | | 58 | 4. 2691 | 2927 | 3164 | 3404 | 3645 | 3889 | 4135 | 4383 | 4633 | 4885 | 244 | | 59 | 4. 2139 | 5396 | 5655 | 5916 | 6180 | 6445 | 6714 | 6984 | 7257 | 7533 | 266 | | 60 | 4. 7811 | 8091 | 8374 | 8660 | 8948 | 9239 | 9533 | 9829 | *0129 | *0431 | 291 | | 61 | 5. 0736 | 1043 | 1354 | 1668 | 1984 | 2304 | 2627 | 2953 | 3282 | 3615 | 320 | | 62 | 5. 3950 | 4289 | 4632 | 4978 | 5327 | 5680 | 6036 | 6396 | 6760 | 7127 | 353 | | 63 | 5· 7498 | 7873 | 8252 | 8635 | 9022 | 9412 | 9807 | 0207 | 0610 | 1018 | 391 | | 64 | 6· 1430 | 1847 | 2268 | 2693 | 3124 | 3559 | 3999 | 4444 | 4893 | 5348 | 435 | | 65 | 6· 5808 | 6273 | 6743 | 7219 | 7700 | 8187 | 8679 | 9177 | 9681 | 0191 | 487 | | 66 | 7. 0706 | 1228 | 1756 | 2291 | 2831 | 3379 | 3932 | 4493 | 5061 | 5635 | 548 | | 67 | 7. 6217 | 6805 | 7402 | 8005 | 8616 | 9235 | 9862 | *0497 | *1140 | *1791 | 620 | | 68 | 8. 2451 | 3119 | 3796 | 4483 | 5178 | 5882 | 6 5 96 | 7319 | 8052 | 8796 | 705 | | 69 | 8· 9549 | *0312 | *1087 | *1872 | *2667 | *3475 | *4293 | *5123 | *5965 | *6819 | 80S | | 70 | 9· 7685 | 8564 | 9455 | *0360 | *1278 | *2210 | *3155 | *4115 | *5088 | *6078 | 933 | | 71 | 10· 7082 | 8101 | 9136 | *0187 | *1254 | *2338 | *3440 | *4558 | *5695 | *6850 | 10S5 | | 72 | 11.8023 | 9216 | 0428 | 1660 | 2912 | 4185 | 5480 | 6796 | 8134 | 9496 | 1275 | | 73 | 13.0881 | 2290 | 3723 | 5181 | 6665 | 8176 | 9713 | *1278 | *2871 | *4493 | 1512 | | 74 | 14.614 | 14'783 | 14'954 | 15'129 | 15'306 | 15:488 | 15.672 | 15:860 | 16:052 | 16·248 | 181 | | 75
76
77 | 16° 447
18° 676
21° 427 | 16.650
18.925
21.737 | 16.858
19.180
22.055 | 17.069
19.440
22.380 | 17·285
19·705
22·712 | | 17.730
20.254
23.401 | | 18·193
20·828
24·123 | 18·432
21·124
24·497 | 221
272
341 | | 78
79 | 24. 881
24. 881 | 25.274
29.812 | 25·677
30·335 | 30·873 | 26·514
31·425 | | | 27·854
33·182 | 28·324
33·801 | 28·806
34·439 | 436
571 | VIII. | | Log Q |)
φ | | Log Q | φ | |---|--|---|---|---
---| | ϕ | $\text{Log } Q_{\phi}$ | $\log \Delta Q_{\phi}$ | φ | $\text{Log } Q_{\phi}$ | $\operatorname{Log} \Delta Q_{\phi}$ | | 1° 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 20 31 32 33 34 35 36 37 38 39 40 | 8:54297
8:84420
9:02063
9:14603
9:24353
9:32345
9:39126
9:45026
9:50255
9:54958
9:59239
9:63174
9:76437
9:76437
9:76437
9:76437
9:76437
9:76437
9:84636
9:87140
9:89553
9:91883
9:94141
9:96334
9:98470
0:005555
0:02594
0:04595
0:06559
0:06559
0:06559
0:12283
0:14147
0:15995
0:19654
0:21472
0:23286
0:25098
0:26911 | 8·54337
8·54417
8·54536
8·54694
8·54894
8·55133
8·555411
8·55732
8·56092
8·56493
8·56935
8·57418
8·57943
8·57943
8·58511
8·59120
8·59772
8·60467
8·61206
8·61206
8·62816
8·63690
8·6457
8·66587
8·66587
8·69647
8·66587
8·6996
8·75065
8·71124
8·72386
8·73699
8·75065
8·776487
8·77963
8·77963
8·77963
8·77963
8·879498
8·81090
8·82742
8·84456
8·86233
8·86233
8·86233
8·86954 | 41° 42° 43° 444 45° 46 47 48 49 50 51 52 53 54 555 66 67 68 69 70 72 73 74 75 76 77 78 80 | 0'28728 0'30552 0'32385 0'34330 0'36089 0'37966 0'39864 0'41785 0'43732 0'45708 0'47718 0'49764 0'51850 0'53981 0'56159 0'58391 0'60681 0'63034 0'65456 0'67952 0'70531 0'73199 0'75965 0'78838 0'81828 0'84946 0'88205 0'91620 0'95206 0'98983 1'02971 1'07197 1'11688 1'1669 1'27129 1'33097 1'319987 1'46690 1'54526 | 8-91961
8-94009
8-96130
8-98326
9-00600
9-02956
9-05395
9-07921
9-10538
9-13249
9-16058
9-18969
9-21988
9-25119
9-28368
9-31741
9-35244
9-38884
9-42671
9-46611
9-50716
9-54995
9-59461
9-64126
9-69006
9-74117
9-79478
9-85112
9-91042
9-97297
0-10917
0-18367
0-26307
0-18367
0-26307
0-18367
0-26307
0-18367
0-26307
0-18367
0-26307
0-18367
0-18367
0-18367
0-18367
0-18367
0-18367
0-18367
0-18367
0-18367
0-18367
0-18367
0-18367
0-18367
0-18367
0-18367
0-18367
0-18367
0-18367
0-18367
0-18367
0-18367
0-18367
0-18367
0-18367
0-18367
0-18367
0-18367
0-18367
0-18367
0-18367
0-18367
0-18367
0-18367
0-18367
0-18367
0-18367
0-18367
0-18367
0-18367
0-18367
0-18367
0-18367
0-18367
0-18367
0-18367
0-18367
0-18367
0-18367
0-18367
0-18367
0-18367
0-18367
0-18367
0-18367
0-18367
0-18367
0-18367
0-18367
0-18367
0-18367
0-18367
0-18367
0-18367
0-18367
0-18367
0-18367
0-18367
0-18367
0-18367
0-18367
0-18367
0-18367
0-18367
0-18367
0-18367
0-18367
0-18367
0-18367
0-18367
0-18367
0-18367
0-18367
0-18367
0-18367
0-18367
0-18367
0-18367
0-18367
0-18367
0-18367
0-18367
0-18367
0-18367
0-18367
0-18367
0-18367
0-18367
0-18367
0-18367
0-18367
0-18367
0-18367
0-18367
0-18367
0-18367
0-18367
0-18367
0-18367
0-18367
0-18367
0-18367
0-18367
0-18367
0-18367
0-18367
0-18367
0-18367
0-18367
0-18367
0-18367
0-18367
0-18367
0-18367
0-18367
0-18367
0-18367
0-18367
0-18367
0-18367
0-18367
0-18367
0-18367
0-18367
0-18367
0-18367
0-18367
0-18367
0-18367
0-18367
0-18367
0-18367
0-18367
0-18367
0-18367
0-18367
0-18367
0-18367
0-18367
0-18367
0-18367
0-18367
0-18367
0-18367
0-18367
0-18367
0-18367
0-18367
0-18367
0-18367
0-18367
0-18367
0-18367
0-18367
0-18367
0-18367
0-18367
0-18367
0-18367
0-18367
0-18367
0-18367
0-18367
0-18367
0-18367
0-18367
0-18367
0-18367
0-18367
0-18367
0-18367
0-18367
0-18367
0-18367
0-18367
0-18367
0-18367
0-18367
0-18367
0-18367
0-18367
0-18367
0-18367
0-18367
0-18367
0-18367
0-18367
0-18367
0-18367
0-18367
0-18367
0-18367
0-18367
0-18367
0-18367
0-18367
0-18367
0-18367
0-18367
0-18367
0-18367
0-18367
0-18367
0-18367
0-18367
0-1836 | IX. | | | $\gamma = 0.0$ | 00 | | | 2 | $\gamma = 0.0$ | Ю | | |----------|-------|----------------|-------|--------------|----------|-------|-----------------|-------|--------| | φ | (x) | (y) | (t) | (7') | φ | (x) | (y) | (1) | (v) | | 70° | 27475 | 37743 | 27475 | 2924 | 30° | 5774 | 1667 | 5774 | 1155 | | 69 | 26051 | 33933 | 26051 | 2790 | 29 | 5543 | 1536 | 5543 | 1143 | | 68 | 24751 | 30630 | 24751 | 2669 | 28 | 5317 | 1414 | 5317 | 1133 | | 67 | 23559 | 27750 | 23559 | 2559 | | | | | | | | | | | | 27 | 5095 | 1298 | 5095 | 1122 | | 66 | 22460 | 25223 | 22460 | 2459 | 26 | 4877 | 1189 | 4877 | 1113 | | 65 | 21445 | 22995 | 21445 | 2366 | 25 | 4663 | 1087 | 4663 | 1103 | | 64 | 20503 | 21019 | 20503 | 2281 | | | | | | | | | | | | 24 | 4452 | 991.I | 4452 | 1095 | | 63 | 19626 | 19259 | 19626 | 2203 | 23 | 4245 | 900.9 | 4245 | 1086 | | 62 | 18807 | 17686 | 18807 | 2130 | 22 | 4040 | 816.3 | 4040 | 1079 | | 61 | 18040 | 16273 | 18040 | 2063 | | | | | | | | | | | | 21 | 3839 | 7,36.8 | 3839 | 1071 | | 60 | 17321 | 15000 | 17321 | 2000 | 20 | 3640 | 662.4 | 3640 | 1064 | | 59
58 | 16643 | 13849 | 16643 | 1942 | 19 | 3443 | 592.8 | 3443 | 1058 | | 58 | 16003 | 12805 | 16003 | 1887 | _ | | | | | | | li | | | | 18 | 3249 | 527.9 | 3249 | 1051 | | 57 | 15399 | 11856 | 15399 | 1836 | 17 | 3057 | 467.4 | 3057 | 1046 | | 56 | 14826 | 10990 | 14826 | 1788 | 16 | 2867 | 411.1 | 2867 | 1040 | | 55 | 14281 | 10198 | 14281 | 1743 | | | | | | | | | | | | 15 | 2679 | 359.0 | 2679 | 1035 | | 54 | 13764 | 9472 | 13764 | 1701 | 14 | 2493 | 310.8 | 2493 | - 1031 | | 53 | 13270 | 8805 | 13270 | 1662 | 13 | 2309 | 266.5 | 2309 | 1026 | | 52 | 12799 | 8191 | 12799 | 1624 | | | | _ | 1 | | | | -6-4 | | 00 | 12 | 2126 | 225.9 | 2126 | 1022 | | 51 | 12349 | 7625 | 12349 | 1589 | 11 | 1944 | 188.9 | 1944 | 1010 | | 50 | 11918 | 7101 | 11918 | 1556 | 10 | 1763 | 122.2 | 1763 | 1015 | | 49 | 11504 | 6617 | 11504 | 1524 | | | | | | | 48 | 11106 | 6167 | 11106 | 1404 | 9
8 | 1584 | 98·8 | 1584 | 1012 | | | | | 1 1 | 1494
1466 | 7 | 1405 | | 1405 | 1008 | | 47
46 | 10724 | 5750 | 10724 | | ′ | 1220 | 75.4 | 1220 | 1000 | | 40 | 10355 | 5362 | 10355 | 1440 | 6 | 1051 | 55.2 | 1051 | 1006 | | 45 | 10000 | 5000 | 10000 | 1414 | 5 | 875 | 38.3 | 875 | 1004 | | 44 | 9657 | 4663 | 9657 | 1390 | 4 | 699 | 24.2 | 699 | 1002 | | 43 | 9325 | 4348 | 9325 | 1367 | 4 | 099 | 243 | 099 | 1002 | | 73 | 23~3 | 4340 | 93~3 | -307 | 3 | 524 | 13.7 | 524 | 1001 | | 42 | 9004 | 4054 | 9004 | 1346 | 2 | 349 | 6.1 | 349 | 1001 | | 41 | 8693 | 3778 | 8693 | 1325 | 1 | 175 | 1.2 | 175 | 1000 | | 40 | 8391 | 3520 | 8391 | 1305 | 0 | ő | · ŏ | 0 | 1000 | | 20 | Case | | 00 | | | | | | 1 | | 39
38 | 8098 | 3279 | 8098 | 1287 | | | | | | | | 7813 | 3052
2839 | 7813 | 1269 | | | y =
0.0 | 10 | | | 37 | 7536 | 2039 | 7536 | 1252 | | | | | | | 36 | 7265 | 2639 | 7265 | 1236 | , 1 | / \ | () | 10 | 1 , . | | 35 | 7002 | 2451 | 7002 | 1221 | $ \phi $ | (x) | (\mathcal{Y}) | (t) | (7) | | 34 | 6745 | 2275 | 6745 | 1206 | | | | | | | | | | | | 70° | 28628 | 39987 | 28043 | 3078 | | 33 | 6494 | 2109 | 6494 | 1192 | 69 | 27057 | 35783 | 26547 | 2924 | | 32 | 6249 | 1952 | 6249 | 1179 | 68 | 25635 | 32170 | 25187 | 2787 | | J~ | 6009 | 1S05 | 6009 | | 67 | 24340 | 29042 | | | IX. (continued). | | | λ=0.0 | 10 | | | | λ=0.0 |)2 | | |-----------------------|----------------------------------|----------------------------------|----------------------------------|------------------------------|-----------------|----------------------------------|-------------------------|----------------------------------|------------------------------| | φ | (x) | (y) | (t) | (v) | φ | (x) | (y) | (t) | (v) | | 66°
65
64 | 23155
22065
21059 | 26315
23922
21812 | 22804
21752
20779 | 2550
2448
2355 | 63°
62
61 | 20666
19744
18888 | 20685
18914
17336 | 20137
19268
18458 | 2341
2255
2176 | | 63
62
61 | 20127
19260
18450 | 19942
18275
16784 | 19874
19032
18244 | 2269
2190
2117 | 60
59
58 | 18089
17342
16641 | 15924
14655
13511 | 17699
16988
16318 | 2103
2036
1973 | | 60
59
58 | 17693
16982
16314 | 15445
14238
13147 | 17506
16812
16158 | 2050
1988
1929 | 57
56
55 | 15982
15360
14771 | 12476
11535
10679 | 15687
15090
14524 | 1915
1861
1811 | | 57
56
55 | 15683
15086
14521 | 12156
11255
10432 | 15540
14955
14401 | 1874
1824
1776 | 54
53
52 | 14214
13685
13182 | 9898
9183
8526 | 13987
13476
12989 | 1764
1719
1678 | | 54
53
52 | 13984
13473
12987 | 9679
8989
8355 | 13874
13372
12893 | 1732
1690
1650 | 51
50
49 | 12702
12243
11805 | 7923
7367
6853 | 12524
12079
11653 | 1639
1602
1568 | | 51
50
49 | 12522
12078
11652 | 7770
7231
6732 | 12436
11998
11578 | 1613
1579
1546 | 48
47
46 | 11385
10982
10594 | 6379
5939
5530 | 11245
10852
10474 | 1535
1505
1475 | | 48
47
46 | 11243
10851
10473 | 6271
5842
5444 | 11175
10787
10414 | 1514
1485
1457 | 45
44
43 | 9862
9516 | 5151
4798
4469 | 9759
9420 | 1448
1422
1397 | | 45
44
43 | 9758
9419 | 5074
4729
4407 | 9708
9373 | 1431
1406
1382 | 42
41
40 | 9181
8857
8543 | 4162
3875
3607 | 9092
8775
8467 | 1374
1352
1330 | | 42
41
40 | 9091
8774
8466 | 4107
3826
3563 | 9048
8734
8429 | 1359
1338
1318 | | | λ=0.0 | 03 | | | | | λ=0.0 | 02 | | φ | (x) | (y) | (t) | (v) | | φ | (x) | (y) | (t) | (v) | 70°
69
68 | 31463
29483
27731 | 45656
40356
35905 | 29366
27687
26178
24812 | 3477
3263
3077
2914 | | 70°
69
68
67 | 29943
28191
26621
25204 | 42590
37901
33913
30489 | 28669
27089
25661
24361 | 3260
3080
2921
2780 | 66
65
64 | 26167
24758
23481
22317 | 28884
26081
23639 | 23568
22430
21382 | 2770
2641
2526 | | 66
65
64 | 23916
22741
21661 | 27527
24946
22682 | 23172
22079
21071 | 2653
2539
2436 | 63
62
61 | 21250
20267
19357 | 21498
19608
17932 | 20415
19518
18682 | 242I
2327
2240 | IX. (continued). | | | λ=0.0 | 23 | | | | λ=0.0 | 04 | | |-----------------------|----------------------------------|----------------------------------|----------------------------------|------------------------------|-----------------------|----------------------------------|----------------------------------|----------------------------------|--| | φ | (x) | (y) | (t) | (v) | φ | (x) | (3) | (t) | (v) | | 60° | 18512 | 16438 | 17903 | 2161 | 57° | 16633 | 13176 | 15999 | 2005 | | 59 | 17725 | 15101 | 17172 | 2088 | 56 | 15953 | 12148 | 15374 | 1944 | | 58 | 16988 | 13899 | 16486 | 2021 | 55 | 15313 | 11217 | 14784 | 1886 | | 57 | 16298 | 12814 | 15839 | 1959 | 54 | 14709 | 10370 | 14225 | 1833 | | 56 | 15648 | 11832 | 15229 | 1901 | 53 | 14139 | 9599 | 13695 | 1784 | | 55 | 15035 | 10940 | 14652 | 1847 | 52 | 13598 | 8894 | 13190 | 1737 | | 54 | 14455 | 10128 | 14104 | 1797 | 51 | 13084 | 8249 | 12709 | 1694 | | 53 | 13906 | 9386 | 13584 | 1751 | 50 | 12596 | 7656 | 12250 | 1653 | | 52 | 13385 | 8706 | 13088 | 1707 | 49 | 12130 | 7110 | 11811 | 1615 | | 51 | 12889 | 8082 | 12615 | 1666 | 48 | 11684 | 6606 | 11390 | 1579 | | 50 | 12416 | 7508 | 12164 | 1627 | 47 | 11258 | 6141 | 10986 | 1546 | | 49 | 11964 | 6979 | 11731 | 1591 | 46 | 10850 | 5711 | 10598 | 1514 | | 48 | 11532 | 6490 | 11317 | 1557 | 45 | 10458 | 5312 | 10225 | 1484 | | 47 | 11117 | 6038 | 10918 | 1525 | 44 | 10081 | 4941 | 9865 | 1456 | | 46 | 10720 | 5619 | 10536 | 1494 | 43 | 9718 | 4597 | 9518 | 1429 | | 45 | 10338 | 5230 | 10167 | 1466 | 42 | 9368 | 4276 | 9183 | 1404 | | 41 | 9970 | 4868 | 9812 | 1438 | 41 | 9030 | 3977 | 8859 | 1380 | | 43 | 9615 | 4532 | 9469 | 1413 | 40 | 8703 | 3698 | 8545 | 1357 | | 42
41
40 | 9273
8942
8622 | 4218
3925
3652 | 9138
8817
8506 | 1388
1365
1343 | | | y = 0.0 | >5 | | | | | λ = 0.0 | 04 | | φ | (x) | (y) | (t) | (v) | | φ | (.v.) | (y) | (t) | (v) | 70°
69
68
67 | 35424
32747
30466 | 53902
46734
40938 | 31056
29103
27381 | 4088
3755
3482 | | 70°
69
68
67 | 33257
30981
28999
27252 | 49344
43250
38216
33996 | 30152
28352
26747
25304 | 3746
3483
3261
3070 | 66
65
64 | 28489
26754
25212
23831 | 36164
32169
28785
25887 | 25846
24466
23215
22074 | 32 5 3
30 5 8
2889
2741 | | 66 | 25697 | 30418 | 23997 | 2903 | 63 | 22583 | 23383 | 21028 | 2609 | | 65 | 24300 | 27351 | 22806 | 2757 | 62 | 21448 | 21202 | 20064 | 2493 | | 64 | 23037 | 24701 | 21715 | 2627 | 61 | 20409 | 19288 | 19171 | 2388 | | 63 | 21886 | 22392 | 20711 | 2510 | 60 | 19454 | 17599 | 18342 | 2293 | | 62 | 20833 | 20367 | 19782 | 2405 | 59 | 18571 | 16099 | 17569 | 2207 | | 61 | 19863 | 18580 | 18920 | 2310 | 58 | 17752 | 14762 | 16845 | 2128 | | 60 | 18966 | 16995 | 18116 | 2224 | 57 | 16988 | 13563 | 16165 | 2056 | | 59 | 18134 | 15581 | 17365 | 2145 | 56 | 16275 | 12485 | 15526 | 1989 | | 58 | 17358 | 14315 | 16661 | 2072 | 55 | 15605 | 11511 | 14922 | 1928 | IX. (continued). | | | y=0.0 | 5 | | | 7 | /=o.o | 5 | | |----------------|----------------------|----------------------|----------------------|----------------------|--------------------|------------------------|-------------------------|------------------------|----------------------| | $ \phi $ | (x) | (y) | (1) | (v) | φ | (x) | (بر) | (t) | (v) | | 54° | 14976 | 10628 | 14351 | 1871 | 15° | 2716 | 365·6 | 2698 | 1050 | | 53 | 14382 | 9825 | 13810 | 1818 | 14 | 2525 | 316·1 | 2509 | 1044 | | 52 | 13821 | 9093 | 13296 | 1769 | 13 | 2336 | 270·7 | 2322 | 1038 | | 51 | 13288 | 8424 | 12806 | 1724 | 12 | 2148 | 229·2 | 2137 | 1033 | | 50 | 12783 | 7811 | 12339 | 1681 | 11 | 1963 | 191·4 | 1953 | 1029 | | 49 | 12302 | 7247 | 11893 | 1641 | 10 | 1779 | 157·2 | 1771 | 1025 | | 48 | 11843 | 6728 | 11466 | 1603 | 9 | 1597 | 126·8 | 1590 | 1021 | | 47 | 11404 | 6249 | 11056 | 1567 | 8 | 1415 | 99·7 | 1410 | 1017 | | 46 | 10984 | 5807 | 10663 | 1534 | 7 | 1235 | 76·0 | 1232 | 1014 | | 45 | 10582 | 5397 | 10285 | 1503 | 6 | 1057 | 55.6 | 1054 | 1008 | | 44 | 10195 | 5017 | 9921 | 1474 | 5 | 879 | 38.5 | 877 | | | 43 | 9823 | 4664 | 9570 | 1446 | 4 | 702 | 24.6 | 700 | | | 42 | 9465 | 4336 | 9231 | 1419 | 3 | 526 | 1.2 | 525 | 1004 | | 41 | 9120 | 4031 | 8903 | 1394 | 2 | 350 | 6.1 | 349 | 1002 | | 40 | 8786 | 3746 | 8585 | 1370 | + I | 175 | 13.8 | 175 | 1001 | | 39
38
37 | 8464
8152
7849 | 3480
3232
2999 | 8278
7980
7690 | 1348
1327
1307 | 0
- 1
2
3 | 0
174
348
523 | 0
1.5
6.1 | 0
175
349
523 | 999
999
999 | | 36 | 7555 | 2782 | 7408 | 1288 | 4 | 697 | 24.3 | 698 | 999 | | 35 | 7270 | 2578 | 7134 | 1270 | 5 | 871 | 38.1 | 873 | 1000 | | 34 | 6993 | 2388 | 6867 | 1252 | 6 | 1045 | 54.9 | 1048 | 1000 | | 33 | 6722 | 2209 | 6607 | 1236 | 7 | 1220 | 74·8 | 1224 | 1001 | | 32 | 6459 | 2041 | 6353 | 1220 | 8 | 1395 | 97·8 | 1400 | 1003 | | 31 | 6203 | 1884 | 6104 | 1206 | 9 | 1571 | 124·1 | 1578 | 1004 | | 30
29
28 | 5952
5707
5467 | 1736
1597
1467 | 5862
5624
5391 | 1192
1178
1165 | 10
11
12 | 1748
1925
2103 | 153.7
186.5 | 1755
1934
2114 | 1007
1009
1012 | | 27 | 5233 | 1345 | 5163 | 1152 | 13 | 2282 | 262·5 | 2295 | 1015 | | 26 | 5003 | 1231 | 4939 | 1142 | 14 | 2462 | 305·7 | 2478 | 1018 | | 25 | 4777 | 1123 | 4720 | 1131 | 15 | 2644 | 352·6 | 2662 | 1022 | | 24
23
22 | 4556
4339
4125 | 927.7
839.2 | 4504
4291
4082 | 1121
1111
1102 | 16
17
18 | 2827
3011
3197 | 403°3
457°9
516°6 | 2847
3034
3223 | 1026
1030
1035 | | 21 | 3915 | 756·5 | 3877 | 1093 | 19 | 3384 | 579°4 | 3414 | 1040 | | 20 | 3708 | 679·1 | 3674 | | 20 | 3574 | 646°5 | 3607 | 1045 | | 19 | 3504 | 606·9 | 3474 | | 21 | 3766 | 718°2 | 3802 | 1051 | | 18 | 33°3 | 539.7 | 3276 | 1069 | 22 | . 3959 | 794·5 | 4000 | 1057 | | 17 | 31°5 | 477.2 | 3081 | 1062 | 23 | 4156 | 875·8 | 4200 | 1063 | | 16 | 291°0 | 419.2 | 2888 | 1056 | 24 | 4354 | 962·1 | 4403 | 1070 | IX. (continued). | | | γ=0.0 | 5 | | | | γ=0.0 | 5 | | |----------------|----------------------------------|------------------------------|----------------------------------|------------------------------|-----------------------
----------------------------------|----------------------------------|----------------------------------|------------------------------| | φ | (x) | (y) | (1) | (v) | φ | (x) | ('') | (t) | (v) | | 25° | 4555 | 1054 | 4609 | 1078 | 64° | 18244 | 17883 | 19327 | 1995 | | 26 | 4760 | 1151 | 4818 | 1085 | 65 | 18959 | 19382 | 20147 | 2052 | | 27 | 4967 | 1255 | 5030 | 1094 | 66 | 19716 | 21043 | 21024 | 2113 | | 28 | 5177 | 1364 | 5247 | 1102 | 67 | 20519 | 22891 | 21963 | 2178 | | 29 | 5391 | 1480 | 5466 | 1111 | 68 | 21373 | 24954 | 22972 | 2246 | | 30 | 5609 | 1603 | 5690 | 1121 | 69 | 22283 | 27263 | 24059 | 2319 | | 31 | 5830 | 1734 | 5918 | 1131 | 70 | 23253 | 29859 | 25235 | 2397 | | 32 | 6055 | 1872 | 6151 | 1142 | 71 | 24289 | 32789 | 26509 | 2479 | | 33 | 6285 | 2018 | 6388 | 1153 | 72 | 25400 | 36109 | 27897 | 2566 | | 34 | 6520 | 2173 | 6631 | 1165 | 73 | 26591 | 39889 | 29414 | 2659 | | 35 | 6759 | 2338 | 6879 | 1177 | 74 | 27871 | 44213 | 31079 | 2758 | | 36 | 7003 | 2512 | 7133 | 1190 | 75 | 29249 | 49185 | 32915 | 2862 | | 37
38
39 | 7253
7509
7771 | 2697
2894
3102 | 7392
7659
7932 | 1204
1218
1233 | 76
77
78 | 30734
32336
34068
35939 | 54932
61614
60431
78639 | 34950
37217
39758
42627 | 2973
3089
3211
3338 | | 40
41
42 | 8040
8316
8599 | 3324
3559
3810 | 8213
8501
8798 | 1249
1265
1282 | 79
80 | 37961 | 89563 | 45890 | 3470 | | 43
44
45 | 8890
9189
9498 | 4077
4361
4664 | 9104
9419
9744 | 1300
1320
1340 | | | γ=0.0 | 6 | | | 46
47 | 9816
10144 | 4988
5334 | 10080 | 1360
1382 | φ | (x) | (y) | (t) | (v) | | 49
50
51 | 10483
10834
11197
11573 | 5704
6100
6525
6982 | 10788
11161
11549
11952 | 1405
1429
1455
1482 | 70°
69
68
67 | 38133
34883
32196
29920 | 59745
51042
44214
38715 | 32116
29965
28096
26449 | 4545
4102
3755
3474 | | 52 | 11963 | 7473 | 12371 | 1510 | 66 | 27956 | 34196 | 24981 | 3240 | | 53 | 12369 | 8002 | 12809 | 1540 | 65 | 26236 | 30420 | 23659 | 3042 | | 54 | 12791 | 8572 | 13265 | 1571 | 64 | 24713 | 27223 | 22461 | 2871 | | 55 | 13231 | 9188 | 13742 | 1603 | 63 | 23349 | 24488 | 21368 | 2722 | | 56 | 13689 | 9855 | 14241 | 1638 | 62 | 22119 | 22123 | 20364 | 2590 | | 57 | 14168 | 10579 | 14765 | 1675 | 61 | 21001 | 20064 | 19438 | 2473 | | 58 | 14668 | 11365 | 15315 | 1713 | 60 | 19979 | 18256 | 18581 | 2368 | | 59 | 15193 | 12221 | 15894 | 1754 | 59 | 19040 | 16661 | 17783 | 2274 | | 60 | 15743 | 13155 | 16505 | 1797 | 58 | 18171 | 15243 | 17038 | 2188 | | 61 | 16320 | 14176 | 17150 | 1842 | 57 | 17366 | 13978 | 16340 | 2110 | | 62 | 16928 | 15296 | 17833 | 1891 | 56 | 16615 | 12844 | 15684 | 2038 | | 63 | 17568 | 16526 | 18557 | 1941 | 55 | 15914 | 11823 | 15066 | 1972 | IX. (continued). | | | γ=0.0 | 6 | | | | γ=0.0 | 7 | | |-----------------------|----------------------------------|----------------------------------|----------------------------------|------------------------------|-------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------| | φ | (x) | (y) | (t) | (v) | φ | (x) | (y) | (t) | (v) | | 54° | 15256 | 10900 | 14482 | 1912 | 51° | 13724 | 8803 | 13011 | 1788 | | 53 | 14637 | 10064 | 13930 | 1856 | 50 | 13181 | 8144 | 12527 | 1740 | | 52 | 14053 | 9302 | 13405 | 1803 | 49 | 12667 | 7541 | 12065 | 1695 | | 51 | 13501 | 8608 | 12906 | 1755 | 48 | 12177 | 6988 | 11624 | 1654 | | 50 | 12977 | 7973 | 12431 | 1710 | 47 | 11711 | 6479 | 11202 | 1615 | | 49 | 12480 | 7390 | 11977 | 1667 | 46 | 11267 | 6011 | 10797 | 1578 | | 48 | 12006 | 6855 | 11543 | 1628 | 45 | 10842 | 5578 | 10409 | 1544 | | 47 | 11554 | 6362 | 11128 | 1591 | 44 | 10434 | 5178 | 10035 | 1511 | | 46 | 11122 | 5906 | 10729 | 1556 | 43 | 10044 | 4807 | 9675 | 1481 | | 45 | 10709 | 5486 | 10346 | 1523 | 42 | 9668 | 4463 | 9328 | 1452 | | 44 | 10312 | 5096 | 9977 | 1492 | 41 | 9307 | 4143 | 8992 | 1425 | | 43 | 9931 | 4734 | 9621 | 1463 | 40 | 8959 | 3846 | 8668 | 1400 | | 42
41
40 | 9565
9212
8871 | 4398
4086
3795 | 9278
8947
8626 | 1436
1410
1385 | | | λ=0.0 | 8 | | | | | γ=0.0 | 7 | - | φ | (x) | (y) | (t) | (v) | | φ | (x) | (y) | (t | (v) | 70°
69¾ | 46794
45170 | 79353
74922 | 35058
34284 | 6255
5952
5686 | | 70°
69
68
67 | 41699
37561
34292
31609 | 67658
56575
48267
41785 | 33405
30979
28918
27129 | 5200
4568
4105
3747 | 69½
69¼
69
68¾ | 43694
42342
41096
39942 | 70947
67355
64087
61099 | 33555
32866
32211
31589 | 5450
5240
5050 | | 66 | 29348 | 36580 | 25554 | 3460 | 68½ | 38867 | 5 ⁸ 354 | 30995 | 4 ⁸ 77 | | 65 | 27403 | 32310 | 24148 | 3222 | 68¼ | 37863 | 55 ⁸ 20 | 30426 | 4720 | | 64 | 25705 | 28747 | 22884 | 3022 | 68 | 36921 | 53473 | 29882 | 4576 | | 63 | 24203 | 25732 | 21736 | 2850 | 67 ³ | 36034 | 51292 | 29360 | 4442 | | 62 | 22860 | 23152 | 20687 | 2700 | 67 ¹ | 35197 | 49258 | 28858 | 4319 | | 61 | 21650 | 20922 | 19724 | 2569 | 67 ¹ | 34405 | 47358 | 28375 | 4204 | | 60 | 20551 | 18978 | 18834 | 2452 | 67 | 33653 | 45576 | 27909 | 4097 | | 59 | 19546 | 17272 | 18009 | 2348 | 66 | 30988 | 39442 | 26198 | 3731 | | 58 | 18623 | 15765 | 17241 | 2254 | 65 | 28751 | 34528 | 24691 | 3439 | | 57 | 17770 | 14426 | 16523 | 2169 | 64 | 26832 | 30503 | 23347 | 3199 | | 56 | 16979 | 13230 | 15850 | 2091 | 63 | 25159 | 27146 | 22136 | 2997 | | 55 | 16242 | 12157 | 15216 | 2021 | 62 | 23682 | 24306 | 21036 | 2825 | | 54 | 15553 | 11191 | 14619 | 1955 | 61 | 22362 | 21875 | 20030 | 2676 | | 53 | 14906 | 10317 | 14054 | 1895 | 60 | 21174 | 19773 | 19105 | 2545 | | 52 | 14298 | 9524 | 13519 | 1839 | 59 | 20095 | 17941 | 18250 | 2429 | IX. (continued). | | | y = 0.0 | 8 | | | | λ = o.o | 9 | | |--|----------------------------------|------------------------------|----------------------------------|--|--------------------------|----------------------------------|--------------------------------------|----------------------------------|---------------------------------| | φ | (x) | (1) | (1) | (7') | φ | (x) | ('') | (1) | (v) | | 58°
57
56 | 19109
18203
17366 | 16332
14909
13644 | 17456
16716
16023 | 2326
2232
2148 | 66‡°
66
65 | 33715
32970
30336 | 44655
42972
37186 | 27382
26936
25301 | 4186
4077
3706 | | 55
54
53 | 16590
15866
15190 | 12514
11500
10585 | 15373
14762
14184 | 2071
2001
1937 | 64
63
62 | 28131
26244
24601 | 32560
28773
25615 | 23860
22574
21414 | 3412
3171
2970 | | 52
51
50 | 14555
13958
13394 | 9758
9007
8323 | 13637
13118
12625 | 1878
1823
1772 | 61
60
59 | 23151
21857
20692 | 22943
20655
18677 | 20360
19395
18506 | 2798
2650
2520 | | 49
48
47 | 12861
12355
11874 | 7698
7126
6601 | 12155
11707
11278 | 1725
1681
1640 | 58
57
56 | 19635
18669
17781 | 16950
15433
14091 | 17684
16919
16206 | 2405
2302
2210 | | 46
45
44
43 | 11416
10978
10560
10159 | 6118
5673
5262
4882 | 10867
10473
10094
9730 | 1601
1565
1531
1500 | 55
54
53 | 16961
16199
15490 | 12898
11830
10871 | 15538
14910
14319 | 2127
2051
1982 | | 42
41
40 | 9775
9405
9049 | 4529
4202
3898 | 9378
9039
8711 | 1470
1441
1415 | 52
51
50 | 14827
14204
13618 | 10006
9223
8512 | 13760
13230
12727 | 1918
1860
1806 | | | | λ=0.0 | 9 | | 49
48
47
46 | 13064
12541
12044
11571 | 7864
7272
6729
6231 | 12249
11792
11356 | 1756
1709
1666
1626 | | φ | (x) | (v) | (t) | (v) | 45
44
43 | 11121
10691
10279 | 5773
5350
4959 | 10539
10155
9786 | 1588
1552
1519 | | 70°
69 ³
69 ¹ / ₂ | 55375
52545
50134 | 99919
92196
85701 | 37405
36384
35453 | 8411
7718
7167 | 42
41
40 | 9885
9506
9142 | 4598
4263
3952 | 9430
9087
8755 | 1488
1458
1431 | | 69 1
69
683 | 48035
46180
44520 | 80124
75259
70962 | 34594
33795
33049 | 6715
6334
6009 | | , | $\gamma = 0.16$ | 0 | | | 681
681 | 43019
41651 | 67127
63676 | 32346
31684 | 5726
5477 | φ | (x) | (y) | (1) | (v) | | 68
673
674
674 | 4°395
39235
38159
37155 | 57694
55079
52670 | 31055
30458
29889
29345 | 5256
5058
4879
4716 | 70°
694
694
694 | 81218
69862
63221
58519 | 166085
135118
117242
104747 | 42040
40009
38466
37181 | 19221
13684
11178
9669 | | 67
663
661 | 36215
35333
34501 | 50443
48376
46452 | 28824
28324
27844 | 45 ⁶ 7
4430
43 ⁰ 4 | 69
684
684 | 54884
51926
49437 | 95214
87558
81198 | 36064
35067
34163 | 8631
7862
7262 | IX. (continued). | | | y = 0.1 | 0 | | | 2 | γ = 0.1 | 0 | | |-----------------|-------|---------|-------|------|-----|------|---------|------|------| | φ | (x) | (3) | (t) | (v) | φ | (x) | (y) | (1) | (v) | | 681° | 47292 | 75785 | 33333 | 6776 | 39° | 8880 | 3712 | 8476 | 1419 | | 68 | 45409 | 71094 | 32564 | 6372 | 38 | 8534 | 3437 | 8162 | 1394 | | 673 | 43733 | 66972 | 31846 | 6030 | 37 | 8201 | 3182 | 7858 | 1369 | | 67½ | 42225 | 63308 | 31172 | 5734 | 36 | 7879 | 2943 | 7564 | 1346 | | 67¼ | 40855 | 60021 | 30537 | 5476 | 35 | 7568 | 2721 | 7277 | 1325 | | 67 | 39601 | 57049 | 29935 | 5248 | 34 | 7267 | 2514 | 6999 | 1304 | | 663 | 38446 | 54345 | 29364 | 5044 | 33 | 6974 | 2320 | 6728 | 1285 | | 661 | 37377 | 51870 | 28819 | 4861 |
32 | 6690 | 2140 | 6464 | 1266 | | 661 | 36382 | 49594 | 28299 | 4694 | 31 | 6414 | 1970 | 6207 | 1249 | | 66 | 35451 | 47492 | 27801 | 4543 | 30 | 6146 | 1812 | 5955 | 1232 | | 653 | 34579 | 45543 | 27324 | 4404 | 29 | 5884 | 1664 | 5710 | 1216 | | 651 | 33757 | 43730 | 26865 | 4275 | 28 | 5629 | 1526 | 5470 | 1202 | | 65 1 | 32982 | 42039 | 26424 | 4157 | 27 | 5380 | 1396 | 5235 | 1187 | | 65 | 32248 | 40456 | 25999 | 4047 | 26 | 5137 | 1275 | 5005 | 1174 | | 64 | 29657 | 35018 | 24436 | 3673 | 25 | 4899 | 1162 | 4779 | 1161 | | 63 | 27492 | 30673 | 23059 | 3379 | 24 | 4667 | 1056 | 4558 | 1149 | | 62 | 25642 | 27117 | 21828 | 3139 | 23 | 4439 | 956·4 | 4340 | 1137 | | 61 | 24033 | 24152 | 20717 | 2939 | 22 | 4215 | 863·8 | 4126 | 1126 | | 60 | 22613 | 21641 | 19706 | 2769 | 21 | 3996 | 777'4 | 3916 | 1116 | | 59 | 21347 | 19491 | 18780 | 2621 | 20 | 3781 | 696'9 | 3709 | 1106 | | 58 | 20207 | 17629 | 17926 | 2493 | 19 | 3569 | 621'9 | 3505 | 1097 | | 57 | 19172 | 16004 | 17135 | 2379 | 18 | 3361 | 552·2 | 3304 | 1088 | | 56 | 18226 | 14575 | 16399 | 2278 | 17 | 3156 | 487·5 | 3106 | 1080 | | 55 | 17357 | 13310 | 15711 | 2187 | 16 | 2954 | 427·7 | 2910 | 1072 | | 54 | 16554 | 12183 | 15067 | 2105 | 15 | 2755 | 372.4 | 2717 | 1065 | | 53 | 15808 | 11176 | 14460 | 2030 | 14 | 2558 | 321.6 | 2525 | 1058 | | 52 | 15113 | 10270 | 13888 | 1962 | 13 | 2364 | 375.0 | 2336 | 1051 | | 51 | 14463 | 9452 | 13347 | 1899 | 12 | 2172 | 232·5 | 2149 | 1045 | | 50 | 13853 | 8711 | 12834 | 1842 | 11 | 1983 | 194·0 | 1963 | 1039 | | 49 | 13278 | 8038 | 12346 | 1790 | 10 | 1795 | 159·2 | 1779 | 1034 | | 48 | 12735 | 7424 | 11881 | 1739 | 9 | 1610 | 128·2 | 1596 | 1029 | | 47 | 12221 | 6863 | 11438 | 1694 | 8 | 1426 | 100·7 | 1415 | 1024 | | 46 | 11733 | 6349 | 11014 | 1651 | 7 | 1243 | 76·6 | 1235 | 1020 | | 45 | 11269 | 5876 | 10608 | 1612 | 6 | 1062 | 56·0 | 1057 | 1016 | | 44 | 10826 | 5441 | 10218 | 1574 | 5 | 883 | 38·7 | 879 | 1013 | | 43 | 10403 | 5040 | 9843 | 1539 | 4 | 704 | 24·7 | 702 | 1010 | | 42 | 9999 | 4669 | 9483 | 1506 | 3 | 527 | 1.2 | 526 | 1007 | | 41 | 9611 | 4326 | 9135 | 1476 | 2 | 351 | 9.1 | 350 | 1004 | | 40 | 9238 | 4007 | 8800 | 1447 | + I | 175 | 13.8 | 175 | 1002 | IX. (continued). | |) | / = 0.10 |) | | | | y = 0.1 | 0 | | |------------------|------------------------------|-------------------------------|------------------------------|----------------------|----------------------------|---|---|---|--------------------------------------| | φ | (x) | (y) | (1) | (v) | φ | (x) | (3) | (1) | (v) | | 0
- 1°
2 | 0
174
348 | 6.1
0 | 0
174
349 | 1000
998
997 | 40°
41
42 | 7727
7981
8241 | 3150
3367
3597 | 8050
8326
8611 | 1199
1213
1227 | | 3
4
5
6 | 695
867 | 13.6
24.2
37.8 | 523
697
871 | 996
996
995 | 43
44
45 | 8507
8780
9060 | 3841
4100
4375 | 8903
9204
9514 | 1243
1259
1275 | | 7 8 9 | 1040
1213
1386
1559 | 54.5
74.2
96.9
122.8 | 1046
1221
1396
1572 | 995
995
996 | 46
47
48 | 9348
9644
9948 | 4668
4980
5312 | 9834
10164
10505 | 1293
1311
1331 | | 10 | 1733 | 151.9 | 1748 | 997 | 49 | 10262 | 5667 | 10858 | 1351 | | 11 | 1907 | 184.1 | 1925 | 998 | 50 | 10585 | 6046 | 11224 | 1372 | | 12 | 2082 | 219.7 | 2103 | 999 | 51 | 10919 | 64 5 0 | 11603 | 1393 | | 13 | 2257 | 258·5 | 2283 | 1003 | 52 | 11263 | 6884 | 11997 | 1417 | | 14 | 2433 | 300·8 | 2463 | | 53 | 11620 | 7348 | 12407 | 1441 | | 15 | 2610 | 346·6 | 2644 | | 54 | 11988 | 7846 | 12833 | 1466 | | 16 | 2788 | 395·9 | 2827 | 1011 | 55 | 12370 | 8382 | 13278 | 1493 | | 17 | 2967 | 449·0 | 3012 | | 56 | 12766 | 8958 | 13742 | 1520 | | 18 | 3147 | 505·8 | 3198 | | 57 | 13 1 77 | 9579 | 14228 | 1549 | | 19 | 3329 | 566.6 | 33 ⁸ 5 | 1022 | 58 | 13604 | 10250 | 14736 | 1580 | | 20 | 3512 | | 3575 | 1027 | 59 | 14049 | 10975 | 15269 | 1612 | | 21 | 3697 | | 3767 | 1031 | 60 | 14512 | 11761 | 15829 | 1645 | | 22 | 3884 | 774·1 | 3961 | 1036 | 61 | 14994 | 12614 | 16418 | 1680 | | 23 | 4072 | 852·1 | 4157 | 1042 | 62 | 15497 | 13541 | 17039 | 1717 | | 24 | 4263 | 935·0 | 4356 | 1048 | 63 | 16023 | 14552 | 17696 | 1755 | | 25 | 4455 | 1023 | 4557 | 1054 | 64 | 16573 | 15655 | 18390 | 1795 | | 26 | 4650 | 1116 | 4762 | 1060 | 65 | 17149 | 16863 | 19127 | 1838 | | 27 | 4848 | 1214 | 4969 | 1067 | 66 | 17752 | 18188 | 19909 | 1882 | | 28 | 5048 | 1318 | 5180 | 1074 | 67 | 18386 | 19644 | 20743 | 1928 | | 29 | 5251 | 1429 | 5394 | 1082 | 68 | 19051 | 21250 | 21634 | 1976 | | 30 | 5457 | 1545 | 5612 | 1090 | 69 | 19750 | 23026 | 22587 | 2027 | | 31
32
33 | 5666
5878
6095 | 1668
1798
1936 | 5834
6059
6290 | 1099
1108 | 70
71
72 | 20485
21260
22077 | 24994
27183
29625 | 23611
24713
25903 | 2080
2134
2192 | | 34 | 6314 | 2082 | 6525 | 1127 | 73 | 22938 | 3 ² 357 | 27192 | 2251 | | 35 | 6538 | 2236 | 6765 | 1138 | 74 | 23846 | 354 ² 6 | 28595 | 2312 | | 36 | 6767 | 2398 | 7010 | 1149 | 75 | 24805 | 38886 | 30127 | 2376 | | 37
38
39 | 6999
7237
7479 | 2571
2753
2946 | 7264
7517
7780 | 1161
1173
1185 | 76
77
78
79
80 | 25818
26886
28014
29202
30454 | 42804
47258
52347
58195
64955 | 31806
33657
35708
37994
40561 | 2441
2508
2575
2644
2712 | IX. (continued). | |) | /=0.1 | I | | |) | /=0.1 | 2 | | |--|-------------------------|-------------------------|-------------------------|----------------------|---|--------------------------------|------------------------------|------------------------------|-----------------------------------| | ø | (x) | (''U) | (t) | (v) | φ | (x) | (y) | (1) | (v) | | 68½°
68
67¾ | 57839
54069
51047 | 99473
90087
82651 | 35819
34731
33768 | 9888
8752
7927 | 67°
663
661 | 52928
49912
47412 | 84598
77534
71749 | 33410
32487
31655 | 8758
7905
7256 | | 67½
67¼
67 | 48527
46370
44487 | 76529
71353
66888 | 32897
32099
31362 | 7292
6785
6366 | 66 <u>1</u>
66
65 <u>3</u> | 45280
43424
41782 | 66874
62679
59012 | 30894
30191
29536 | 6740
6316
5960 | | 66½
66½
66¼ | 42817
41319
39962 | 62978
59511
56409 | 30675
30030
29423 | 6014
5711
5448 | 65½
65¼
65 | 40311
38981
37767 | 55766
52864
50246 | 28922
28344
27797 | 5656
5392
5160 | | 66
65≩
65 <u>₹</u> | 38723
37583
36529 | 53608
51064
48737 | 28849
28303
27784 | 5215
5009
4823 | 64 ³
64 ¹
64 ¹ | 36652
35622
34665 | 47868
45696
43700 | 27277
26782
26310 | 4953
4768
4601 | | 65 1
65
64 1 | 35549
34635
33778 | 46600
44627
42799 | 27287
26813
26357 | 4656
4503
4363 | 64
63 ³
63 ¹
63 ¹ | 33772
32935
32148 | 41858
40152
38565 | 25858
25424
25007 | 4449
4311
4183 | | 64½
64¼
64 | 32971
32211
31492 | 41099
39514
38030 | 25919
25498
25092 | 4235
4116
4006 | 63 1
63 | 31406
30704 | 37085
35701 | 24605
24218 | 4065
3956 | | 63
62
61 | 28954
26837
25029 | 32937
28867
25535 | 23601
22284
21107 | 3633
3341
3103 | 62
61
60 | 28230
26167
24405 | 30944
27142
24025 | 22795
21537
20411 | 35 ⁸ 7
3298
3063 | | 60
59
58 | 23456
22070
20833 | 22754
20399
18379 | 20043
19074
18185 | 2905
2736
2591 | 59
58
57 | 22872
21520
20314 | 19214
17319 | 19392
18462
17608 | 2868
2702
2559 | | 57
56
55 | 19718
18707
17783 | 16630
15101
13755 | 17364
16602
15893 | 2464
2352
2252 | 56
55
54 | 19227
18239
17336 | 15676
14239
12973 | 16818
16086
15403 | 2434
2324
2226 | | 54
53
52 | 16932
16147
15417 | 12563
11501
10550 | 15230
14607
14021 | 2163
2082
2008 | 53
52 | 16506 | 11850 | 14762 | 2138 | | 51
50
49 | 14737
14100
13501 | 9694
8921
8221 | 13467
12943
12446 | 1941
1880
1823 | 51
50
49 | 15024
14359
13735 | 9952
9144
8414 | 13593
13057
12550 | 1986
1920
1860 | | 48
47
46 | 12938
12406
11901 | 7584
7003
6471 | 11972
11521
11090 | 1771
1723
1678 | 48
47
46 | 13150
12597
12076 | 7752
7149
6599 | 12067
11607 | 1805
1753
1706 | | 45
44
43 | 11422
10967
10532 | 5983
5535
5123 | 10678
10282
9902 | 1636
1597
1560 | 45
44 | 11581 | 6096
5634 | 10750 | 1662
1620 | | 42
41
40 | 10116
9719
9337 | 4742
4390
4064 | 9537
9185
8846 | 1526
1494
1464 | 43
42
41
40 | 10664
10237
9829
9438 | 5209
4818
4457
4123 | 9963
9593
9237
8893 | 1582
1546
1513
1481 | IX. (continued). | | | λ = 0· | 1 3 | | | | y = 0. | 14 | | |---|-------------------------|-------------------------|-------------------------|----------------------|---|-------------------------|-------------------------|-------------------------|----------------------| | φ | (x) | (3) | (t) | (v) | φ | (x) | (1) | (t) | (1) | | 66° | 51486 | 78857 | 32101 | 8648 | 65° | 49792 | 73004 | 30811 | 8435 | | 65¾ | 48547 | 72293 | 31226 | 7802 | 64 ³ | 46991 | 67031 | 29988 | 7620 | | 65½ | 46115 | 66923 | 30436 | 7156 | 64 ¹ / ₂ | 44667 | 62130 | 29245 | 6998 | | 65 1 | 44042 | 62400 | 29715 | 6644 | 64 <u>1</u> | 42683 |
57993 | 28565 | 6503 | | 65 | 42239 | 58510 | 29048 | 6225 | 64 | 40954 | 54428 | 27936 | 6097 | | 64½
64½ | 40644
39217 | 55110 | 28427
27844 | 5873
5573 | 63 ³
63 ¹
63 ¹ | 39424
38052
36810 | 51307
48540
46062 | 27349
26798
26279 | 5756
5464
5211 | | 641 | 37925
36747 | 49407
46979 | 27296
26776 | 5312
5083 | 63
62 ³ | 35676
34634 | 43825 | 25787
25319 | 4988
4790 | | 63 ²
63 ¹
63 ¹ | 35665
34666
33737 | 44773
42756
40903 | 26283
25813
25363 | 4879
4697
4533 | 62½ | 33670 | 39929 | 24873 | 4612 | | 63
623
621 | 32870
32058
31294 | 39192
37607
36133 | 24933
24520
24123 | 4383
4247
4121 | 62
613 | 31938
31154 | 36636
35170 | 24038
23646 | 4306
4173 | | 62 1
62
61 | 30574
29893
27491 | 34757
33469
29041 | 23741
23372
22015 | 4005
3898
3535 | 61
61
61
61 | 30417
29721
29063 | 33804
32530
31336 | 23269
22905
22554 | 4050
3937
3832 | | 60 | 254 ⁸ 7 | 25496 | 20814 | 3251 | 60 | 26739 | 27225 | 21261 | 3478 | | 59 | 23774 | 22586 | 19737 | 3021 | 59 | 24798 | 23928 | 20114 | 3200 | | 58 | 22283 | 20152 | 18761 | 2829 | 58 | 23137 | 21216 | 19083 | 2975 | | 57 | 20967 | 18086 | 17869 | 2666 | 57 | 21690 | 18944 | 18148 | 2788 | | 56 | 19792 | 16310 | 17048 | 2526 | 56 | 20412 | 17011 | 17292 | 2628 | | 55 | 18733 | 14769 | 16289 | 2403 | 55 | 19269 | 15349 | 16503 | 2491 | | 54 | 17771 | 13419 | 15583 | 2295 | 54 | 18239 | 13903 | 15773 | 2371 | | 53 | 16890 | 12228 | 14924 | 2199 | 53 | 17301 | 12636 | 15093 | 2265 | | 52 | 16079 | 11171 | 14306 | 2113 | 52 | 16443 | 11517 | 14457 | 2171 | | 51 | 15329 | 10228 | 13725 | 2035 | 51 | 15653 | 10523 | 13860 | 2087 | | 50 | 14632 | 9382 | 13176 | 1964 | 50 | 14921 | 9635 | 13298 | 2010 | | 49 | 13981 | 8620 | 12657 | 1899 | 49 | 14240 | 8837 | 12768 | 1941 | | 48 | 13371 | 7930 | 12165 | 1840 | 48 | 13604 | 8118 | 12265 | 1878 | | 47 | 12798 | 7304 | 11697 | 1785 | 47 | 13008 | 7467 | 11787 | 1820 | | 46 | 12257 | 6734 | 11250 | 1735 | 46 | 12447 | 6876 | 11333 | 1766 | | 45 | 11746 | 6214 | 10824 | 1688 | 45 | 11918 | 6338 | 10899 | 1717 | | 44 | 11261 | 5738 | 10416 | 1645 | 44 | 11417 | 5846 | 10485 | 1671 | | 43 | 10801 | 5300 | 10025 | 1605 | 43 | 10942 | 5395 | 10088 | 1629 | | 42 | 10 3 62 | 4898 | 9650 | 1567 | 42 | 10491 | 4981 | 9707 | 1589 | | 41 | 9943 | 4527 | 9289 | 1532 | 41 | 10060 | 4600 | 9341 | 1552 | | 40 | 9542 | 4185 | 8941 | 1499 | 40 | 9649 | 4249 | 8989 | 1518 | IX. (continued). | - | 7 | y = 0.1 | 5 | | | 2 | y=0.1 | 5 | | |--------------------------------|-------------------------|-------------------------|-------------------------------|----------------------------------|----------------|-------------------------|-------------------------|-------------------------|----------------------| | φ | (x) | (y) | (1) | <u>(v)</u> | þ | (x) | (y) | (1) | (v) | | 64½° | 55459 | 82861 | 31412 | 10758 | 43° | 8164 | 3634 | 8719 | 1192 | | 64½ | 51164 | 73902 | 30412 | 9185 | 44 | 8415 | 3872 | 9007 | 1205 | | 64 | 47909 | 67189 | 29549 | 8139 | 45 | 8671 | 4124 | 9304 | 1220 | | 63 ³ / ₂ | 45292 | 61852 | 28782 | 7379 | 46 | 8934 | 4392 | 9610 | 1235 | | 63 ¹ / ₂ | 43107 | 57444 | 28087 | 6794 | 47 | 9204 | 4676 | 9925 | 1250 | | 63 ¹ / ₄ | 41233 | 53707 | 27449 | 6326 | 48 | 9480 | 4977 | 10250 | 1266 | | 63
623
623
622 | 39595
38140
36834 | 50473
47634
45111 | 26858
26305
25786 | 5940
5614
5335 | 49
50
51 | 9764
10055
10355 | 5298
5639
6003 | 10586
10933
11292 | 1283
1301
1320 | | 62½ | 35649 | 42847 | 25296 | 5091 | 52 | 10663 | 6390 | 11665 | 1339 | | 62 | 34566 | 40799 | 24831 | 4877 | 53 | 10981 | 6804 | 12052 | 1359 | | 61¾ | 33569 | 38933 | 24388 | 4687 | 54 | 11308 | 7247 | 12454 | 1380 | | 61½ | 32646 | 37224 | 23966 | 4515 | 55 | 11546 | 7720 | 12872 | 1402 | | 61¼ | 31787 | 35650 | 23562 | 4360 | 56 | 11994 | 8227 | 13307 | 1425 | | 61 | 30984 | 34195 | 23174 | 4220 | 57 | 12354 | 8772 | 13762 | 1449 | | 60 | 28220 | 29304 | 21764 | 3761 | 58 | 12727 | 9356 | 14236 | 1473 | | 59 | 25979 | 25498 | 20533 | 3417 | 59 | 13112 | 9986 | 14733 | 1499 | | 58 | 24104 | 22436 | 19437 | 3147 | 60 | 13512 | 10664 | 15253 | 1526 | | 57 | 22498 | 19912 | 18451 | 2927 | 61 | 13926 | 11396 | 15799 | 1554 | | 56 | 21096 | 17794 | 17555 | 2745 | 62 | 14356 | 12187 | 16373 | 1584 | | 55 | 19856 | 15989 | 16734 | 2589 | 63 | 14802 | 13045 | 16978 | 1614 | | 54 | 18748 | 14433 | 15976 | 2455 | 64 | 15265 | 13975 | 17615 | 1645 | | 53 | 17745 | 13079 | 15273 | 2338 | 65 | 15747 | 14986 | 18289 | 1679 | | 52 | 16833 | 11890 | 14618 | 2235 | 66 | 16249 | 16087 | 19003 | 1713 | | 51 | 15998 | 10839 | 14004 | 2143 | 67 | 16772 | 17289 | 19760 | 1748 | | 50 | 15227 | 9905 | 13428 | 2060 | 68 | 17316 | 18605 | 20566 | 1785 | | 49 | 14514 | 9069 | 12884 | 1985 | 69 | 17884 | 20047 | 21425 | 1823 | | 48 | 13849 | 8318 | 12370 | 1918 | 70 | 18477 | 21632 | 22344 | 1862 | | 47 | 13228 | 7640 | 11883 | 1856 | 71 | 19095 | 23379 | 23328 | 1903 | | 46 | 12646 | 7026 | 11420 | 1799 | 72 | 19741 | 25310 | 24387 | 1944 | | 45 | 12098 | 6468 | 10979 | 1747 | 73 | 20415 | 27450 | 25528 | 1987 | | 44 | 11580 | 5959 | 10557 | 1698 | 74 | 21120 | 29828 | 26763 | 2031 | | 43 | 11090 | 5494 | 10154 | 1654 | 75 | 21855 | 32482 | 28104 | 2075 | | 42
41
40
+ | 10625
10182
9760 | 5067
4676
4315 | 9767
9396
9039 | 1612
1573
1537 | 76
77
78 | 22623
23424
24260 | 35453
38794
42567 | 29567
31170
32935 | 2120
2166
2211 | | 0
-
40
41
42 | 7444
7679
7919 | 2996
3197
3409 | 0

7899
8165
8438 | 1000

1154
1166
1179 | 79
80 | 25131
26037 | 46851
51746 | 34892
37077 | 2256
2301 | 1X. (continued). | | *************************************** | y = 0.1 | 16 | | | | λ = o' | 17 | | |--------------------------------|---|-------------------------|-------------------------|----------------------|----------------------|-------------------------|-------------------------|-------------------------|----------------------| | φ | (x) | (y) | (1) | (v) | φ | (x) | (y) | (1) | (v) | | 63° | 45906 | 61547 | 28320 | 7786 | 62½° | 49842 | 67590 | 28682 | 9367 | | 62 ³ / ₄ | 43499 | 56847 | 27610 | 7095 | 62¼ | 46493 | 61188 | 27858 | 8216 | | 62 ¹ / ₂ | 41472 | 52931 | 26963 | 6556 | 62 | 43844 | 561 7 9 | 27132 | 7 401 | | 62½ | 39722 | 49588 | 26367 | 6121 | 613 | 41656 | 52085 | 26476 | 6783 | | 62 | 38185 | 46681 | 25813 | 5759 | 613 | 39795 | 48638 | 25877 | 6295 | | 61¾ | 36815 | 44118 | 25295 | 5453 | 614 | 38176 | 45672 | 25322 | 5 ⁸ 97 | | 61½
61¼
61 | 35581
34459
33430 | 41833
39776
37912 | 24806
24344
23906 | 5189
4958
4754 | 60
60
60
60 | 36746
35465
34307 | 43078
40779
38722 | 24805
24319
23861 | 5563
5278
5031 | | 603 | 32482 | 36209 | 23488 | 4573 | 60‡ | 33250 | 36863 | 23427 | 4814 | | 601 | 31602 | 34647 | 23088 | 4409 | 60 | 32280 | 35173 | 23013 | 4622 | | 601 | 30783 | 33206 | 22706 | 4261 | 59¾ | 31382 | 33627 | 22619 | 4450 | | 60 | 30016 | 31871 | 22339 | 4125 | 59½ | 30548 | 32204 | 22242 | 4295 | | 59 ³ | 29296 | 30630 | 21986 | 4002 | 59¼ | 29770 | 30889 | 21880 | 4154 | | 59 ¹ | 28617 | 29472 | 21645 | 3887 | 59 | 29040 | 29669 | 21532 | 4026 | | 59 1 | 27976 | 28388 | 21317 | 3782 | 58 | 26512 | 25540 | 20261 | 3604 | | 59 | 27368 | 27371 | 20999 | 3684 | 57 | 24449 | 22299 | 19145 | 3284 | | 58 | 25215 | 23855 | 19826 | 3352 | 56 | 22712 | 19673 | 18147 | 3032 | | 57 | 23408 | 21018 | 18781 | 3093 | 55 | 21217 | 17497 | 17245 | 2826 | | 56 | 21857 | 18673 | 17838 | 2878 | 54 | 19909 | 15662 | 16422 | 2654 | | 55 | 20502 | 16700 | 16980 | 2700 | 53 | 18747 | 14091 | 15665 | 2508 | | 54 | 19301 | 15016 | 16191 | 2549 | 52 | 17705 | 12733 | 14965 | 2381 | | 53 | 18225 | 13562 | 15463 | 2419 | 51 | 16762 | 11547 | 14313 | 2270 | | 52 | 17253 | 12294 | 14786 | 2305 | 50 | 15902 | 10503 | 13704 | 2172 | | 51 | 16367 | 11179 | 14154 | 2204 | 49 | 15112 | 9577 | 13132 | 2085 | | 50 | 15554 | 10193 | 13562 | 2114 | 48 | 14382 | 8752 | 12593 | 2006 | | 49 | 14804 | 9314 | 13005 | 2033 | 47 | 13705 | 8013 | 12084 | 1935 | | 48 | 14108 | 8528 | 12479 | 1960 | 46 | 13073 | 7347 | 11602 | 1870 | | 47 | 13460 | 7821 | 11981 | 1894 | 45 | 12482 | 6746 | 11144 | 1811 | | 46 | 12854 | 7182 | 11509 | 1834 | 44 | 11927 | 6200 | 10707 | 1757 | | 45 | 12285 | 6603 | 11059 | 1778 | 43 | 11403 | 5703 | 10290 | 1707 | | 44 | 11750 | 6076 | 10630 | 1727 | 42 | 10909 | 5250 | 9892 | 1661 | | 43 | 11243 | 5596 | 10221 | 1680 | 41 | 10440 | 4835 | 9510 | 1618 | | 42
41
42 | 10764
10309
9875 | 5156
4753
4383 | 9828
9452
9090 | 1636
1595
1557 | 40 | 9994 | 4454 | 9143 | 1578 | IX. (continued). | | | y = 0.1 | 18 | | | | λ=0: | 19 | | |---|-------------------------|-------------------------|-------------------------|----------------------|---|-------------------------|-------------------------|-------------------------|----------------------| | φ | (x) | (y) | (t) | (v) | φ | (x) | (y) | (t) | (v) | | 61‡° | 44123 | 55419 | 26650 | 7705 | 60¾° | 47499 | 60177 | 26921 | 9115 | | 61 | 41775 | 51154 | 25987 | 7003 | 60¼ | 44326 | 34540 | 26163 | 7999 | | 60¾ | 39804 | 47615 | 25384 | 6459 | 60¼ | 41815 | 50122 | 25493 | 7207 | | 60½ | 38107 | 44601 | 24830 | 6023 | 60 | 39739 | 46508 | 24889 | 6608 | | 60¼ | 36621 | 41986 | 24314 | 5662 | 59 ³ | 37972 | 43462 | 24336 | 6134 | | 60 | 35298 | 39684 | 23832 | 5357 | 59 ¹ / ₂ | 36434 | 40839 | 23824 | 5747 | | 59 ³
59 ¹ / ₂
59 ¹ / ₄ | 34108
33026
32037 | 37632
35787
34115 |
23378
22949
22541 | 5094
4866
4664 | 59 1
59
58 1
584 | 35075
33858
32757 | 38543
36507
34683 | 23346
22897
22473 | 5423
5146
4906 | | 59 | 31124 | 32589 | 22152 | 4484 | 58½ | 31752 | 33035 | 22070 | 4696 | | 58 1 | 30279 | 31189 | 21780 | 4323 | 58¼ | 30828 | 31534 | 21688 | 4509 | | 58 <u>1</u> | 29491 | 29897 | 21424 | 4177 | 58 | 29974 | 30161 | 21322 | 4342 | | 58 1 | 28754 | 28701 | 21082 | 4043 | 57½ | 29180 | 28896 | 20972 | 4192 | | 58 | 28063 | 27588 | 20753 | 3922 | 57½ | 28438 | 27726 | 20636 | 4055 | | 57 | 25657 | 23809 | 19547 | 3520 | 57½ | 27743 | 26641 | 20313 | 3930 | | 56 | 23684 | 20826 | 18484 | 3215 | 57 | 27089 | 25629 | 20002 | 3815 | | 55 | 22018 | 18400 | 17532 | 2972 | 56 | 24806 | 22176 | 18858 | 3435 | | 54 | 20580 | 16383 | 16670 | 2774 | 55 | 22923 | 19435 | 17846 | 3144 | | 53 | 19318 | 14677 | 15880 | 2608 | 54 | 21327 | 17196 | 16937 | 2911 | | 52 | 18196 | 13214 | 15154 | 2466 | 53 | 19945 | 15328 | 16112 | 2721 | | 51 | 17188 | 11946 | 14480 | 2343 | 52 | 18730 | 13744 | 15355 | 2560 | | 50 | 16274 | 10837 | 13852 | 2235 | 51 | 17648 | 12382 | 14657 | 2423 | | 49 | 15439 | 9860 | 13264 | 2140 | 50 | 16673 | 11200 | 14009 | 2305 | | 48 | 14672 | 8992 | 12712 | 2055 | 49 | 15788 | 10163 | 13404 | 2200 | | 47 | 13962 | 8217 | 12191 | 1978 | 48 | 14979 | 9248 | 12836 | 2108 | | 46 | 13303 | 7522 | 11698 | 1909 | 47 | 14234 | 8435 | 12303 | 2025 | | 45 | 12688 | 6896 | 11231 | 1846 | 46 | 13545 | 7708 | 11799 | 1951 | | 44 | 12112 | 6330 | 10786 | 1789 | 45 | 12904 | 7056 | 11321 | 1883 | | 43 | 11570 | 5816 | 10362 | 1736 | 44 | 12305 | 6467 | 10868 | 1822 | | 42 | 11059 | 5347 | 9957 | 1687 | 43 | 11743 | 5934 | 10436 | 1766 | | 41
40 | 10576 | 4920
4528 | 9569
9197 | 1642
1600 | 42
41
40 | 11215
10716
10244 | 5450
5008
4605 | 10025
9631
9253 | 1714
1667
1623 | IX. (continued). | | | λ=0:2 | 20 | | | | λ=0. | 20 | | |--|-------------------------|-------------------------|-------------------------|----------------------|--------------------|------------------------|-------------------------|---|------------------------------| | φ | (x) | (بر) | (t) | (v) | φ | (x) | (3) | (t) | (v) | | 60° | 47859 | 59443 | 26438 | 9557 | 30° | 6592 | 1991 | 6165 | 1327 | | 59 ³ / ₄ | 44421 | 53516 | 25667 | 8272 | 29 | 6290 | 1820 | 5901 | 1305 | | 59 ¹ / ₂ | 41759 | 48973 | 24993 | 7390 | 28 | 5997 | 1661 | 5643 | 1285 | | 59 1 | 39590 | 45308 | 24389 | 6736 | 27 | 5714 | 1513 | 5393 | 1265 | | 59 | 37761 | 42249 | 23839 | 6227 | 26 | 5439 | 1376 | 5148 | 1246 | | 58 3 | 36182 | 39633 | 23331 | 5816 | 25 | 5172 | 1249 | 4909 | 1228 | | 58½ | 34794 | 37356 | 22858 | 5474 | 24 | 4912 | 1130 | 4675 | 1212 | | 58¼ | 33556 | 35345 | 22415 | 5185 | 23 | 4659 | 1020 | 4446 | 1196 | | 58 | 32439 | 33550 | 21997 | 4936 | 22 | 4413 | 918·3 | 4221 | 1181 | | 57 ³
57 ¹
57 ¹
57 ¹ | 31424
30492
29633 | 31932
30463
29121 | 21601
21225
20865 | 4718
4525
4353 | 21
20
19 | 4172
3937
3708 | 823·5
735·7
654·4 | 4001
37 ⁸ 5
357 ² | 1167
1153
1141 | | 57 | 28835 | 27887 | 20522 | 4199 | 18 | 3483 | 579°2 | 3364 | 1129 | | 56 | 26123 | 23787 | 19276 | 3707 | 17 | 3263 | 509°8 | 3158 | 1117 | | 55 | 23960 | 20638 | 18191 | 3348 | 16 | 3047 | 445°9 | 2956 | 1107 | | 54 | 22168 | 18122 | 17228 | 3071 | 15 | 2835 | 387·1 | 2756 | 1096 | | 53 | 20641 | 16058 | 16360 | 2850 | 14 | 2627 | 333·3 | 2559 | 1087 | | 52 | 19316 | 14330 | 15570 | 2667 | 13 | 2423 | 284·2 | 2365 | 1078 | | 51 | 18147 | 12860 | 14845 | 2511 | 12 | 2222 | 239·7 | 2173 | 1069 | | 50 | 17103 | 11593 | 14174 | 2381 | 11 | 2024 | 199·4 | 1983 | 1061 | | 49 | 16162 | 10491 | 13550 | 2266 | 10 | 1829 | 163·2 | 1796 | 1054 | | 48 | 15306 | 9523 | 12966 | 2165 | 9 | 1636 | 131.0 | 1610 | 1046 | | 47 | 14522 | 8667 | 12419 | 2075 | 8 | 1447 | 102.6 | 1426 | 1040 | | 46 | 13799 | 7905 | 11903 | 1995 | 7 | 1259 | 77.9 | 1243 | 1033 | | 45 | 13130 | 7224 | 11415 | 1923 | 6 | 1074 | 56·8 | 1062 | 1027 | | 44 | 12506 | 6611 | 10953 | 1858 | 5 | 891 | 39·2 | 883 | 1022 | | 43 | 11924 | 6058 | 10513 | 1798 | 4 | 709 | 24·9 | 704 | 1017 | | 42
41
40 | 11377
10862
10375 | 5557
5101
4685 | 9694
9310 | 1743
1693
1647 | 3
2
+ 1
0 | 530
352
175
0 | 13.9
6.2
1.2 | 527
351
175 | 1012
1008
1004
1000 | | 39 | 9914 | 43°5 | 8943 | 1604 | - 1 | 174 | 13.2 | 174 | 997 | | 38 | 9476 | 3957 | 8590 | 1564 | 2 | 347 | 6.0 | 348 | 994 | | 37 | 9059 | 3637 | 8249 | 1527 | 3 | 519 | 13.2 | 521 | 991 | | 36 | 8661 | 3342 | 7922 | 1493 | 4 | 690 | 24.0 | 694 | 989 | | 35 | 8281 | 3071 | 7605 | 1461 | 5 | 860 | 37.4 | 867 | 987 | | 34 | 7916 | 2820 | 7299 | 1431 | 6 | 1029 | 53.7 | 1040 | 985 | | 33 | 7566 | 2588 | 7002 | 1402 | 7 | 1199 | 73.0 | 1213 | 984 | | 32 | 7229 | 2374 | 6715 | 1376 | 8 | 1367 | 95.2 | 1386 | 983 | | 31 | 6905 | 2175 | 6436 | 1351 | 9 | 1536 | 120.4 | 1560 | 982 | IX. (continued). | | | λ=0: | 20 | | | | λ = 0. | 20 | | |----------------|----------------------|----------------------|----------------------|----------------------|----------|----------------|----------------|----------------|--------------| | φ | (x) | (y) | (t) | (v) | φ | (x) | (y) | (t) | (v) | | 10° | 1704 | 148·5 | 1733 | 981 | 46° | 8567 | 4149 | 9404 | 1184 | | 11 | 1872 | 179·6 | 1908 | 981 | 47 | 8814 | 4410 | 9705 | 1197 | | 12 | 2040 | 213·8 | 2082 | 981 | 48 | 9067 | 4686 | 10017 | 1211 | | 13 | 2208 | 251·1 | 2258 | 982 | 49 | 9326 | 4979 | 10337 | 1225 | | 14 | 2376 | 291·5 | 2434 | 982 | 50 | 9591 | 5289 | 10669 | 1240 | | 15 | 2544 | 251·1 | 2611 | 983 | 51 | 9863 | 5619 | 11011 | 1256 | | 16 | 2713 | 382·0 | 2789 | 985 | 52 | 10142 | 5970 | 11366 | 1273 | | 17 | 2883 | 432·2 | 2969 | 986 | 53 | 10429 | 6344 | 11733 | 1290 | | 18 | 3053 | 485·8 | 3149 | 988 | 54 | 10723 | 6741 | 12114 | 1307 | | 19 | 3224 | 543.0 | 3331 | 990 | 55 | 11026 | 7166 | 12510 | 1326 | | 20 | 3395 | 603.8 | 3515 | 993 | 56 | 11337 | 7619 | 12921 | 1345 | | 21 | 3568 | 668.3 | 3700 | 996 | 57 | 11657 | 8103 | 13350 | 1365 | | 22 | 3741 | 736·7 | 3887 | 999 | 58 | 11988 | 8621 | 13797 | 1386 | | 23 | 3916 | 809·0 | 4076 | 1002 | 59 | 12328 | 9177 | 14263 | 1408 | | 24 | 4092 | 885·6 | 4267 | 1006 | 60 | 12679 | 9774 | 14751 | 1430 | | 25 | 4269 | 966°4 | 4461 | 1010 | 61 | 13042 | 10415 | 15263 | 1453 | | 26 | 4448 | 1052 | 4656 | 1015 | 62 | 13417 | 11105 | 15799 | 1477 | | 27 | 4629 | 1142 | 4855 | 1019 | 63 | 13804 | 11849 | 16362 | 1502 | | 28 | 4811 | 1237 | 5056 | 1024 | 64 | 14205 | 12653 | 16954 | 1528 | | 29 | 4995 | 1337 | 5260 | 1030 | 65 | 14619 | 13523 | 17579 | 1555 | | 30 | 5181 | 1442 | 5467 | 1036 | 66 | 15049 | 14465 | 18240 | 1582 | | 31 | 5370 | 1553 | 5677 | 1042 | 67 | 15494 | 15489 | 18939 | 1611 | | 32 | 5560 | 1670 | 5891 | 1048 | 68 | 15955 | 16602 | 19680 | 1640 | | 33 | 5753 | 1793 | 6109 | 1055 | 69 | 16433 | 17817 | 20469 | 1670 | | 34 | 5949 | 1922 | 6330 | 1062 | 70 · | 16929 | 19144 | 21309 | 1701 | | 35 | 6147 | 2059 | 6556 | 1070 | 71 | 17443 | 20597 | 22207 | 1733 | | 36 | 6349 | 2202 | 6786 | 1078 | 72 · | 17977 | 22194 | 23169 | 1765 | | 37 | 6553 | 2353 | 7021 | 1087 | 73 | 18531 | 23952 | 24204 | 1798 | | 38 | 6761 | 2513 | 7261 | 1096 | 74 | 19106 | 25894 | 25319 | 1832 | | 39 | 6972 | 2681 | 7507 | 1105 | 75 | 19703 | 28046 | 26527 | 1866 | | 40 | 7187 | 2858 | 7758 | 1115 | 76 | 20321 | 30439 | 27840 | 1900 | | 41 | 7406 | 3045 | 8015 | 1125 | 77 | 20963 | 33111 | 29274 | 1934 | | 42 | 7629 | 3242 | 8278 | 1136 | 78 | 21627 | 36109 | 30848 | 1967 | | 43
44
45 | 7856
8088
8324 | 3450
3671
3903 | 8548
8826
9111 | 1147
1159
1171 | 79
80 | 22314
23024 | 39490
43326 | 32586
34520 | 2001
2034 | IX. (continued). | | | λ = 0.3 | 2 2 | | | | λ=0:2 | 24 | | |--|----------------------------------|------------------------------|--------------------------------|------------------------------|---|----------------------------------|------------------------------|--------------------------------|------------------------------| | φ | (x) | (y) | (1) | (v) | $\dot{m{\phi}}$ | (x) | (y) | (t) | (v) | | 58°
57 ³
57 ¹ / ₂ | 41310
39006
37096 | 46280
42610
39596 | 23968
23372
22833 | 7654
6910
6344 | 55°
54¾
54½ | 30686
29679
28760 | 28787
27355
26061 | 20101
19736
19390 | 4923
4691
4489 | | 57 1
57
563 | 35465
34044
32786 | 37049
34850
32921 | 22338
21879
21451 | 5895
5528
5220 | 54 ¹
54
53 ²
53 ² | 27917
27137
26412 | 24884
23806
22813 | 19061
18746
18445 | 4309
4148
4004 | | 56½
56½
56 | 31657
30635
29701 | 31208
29671
28280 | 21047
20666
20304 | 4956
4728
4528 | 53½
53¼
53 | 25736
25102
24506 | 21895
21042
20246 | 18155
17876
17607 | 3872
3753
3643 | | 55 ³
55 ³
55 ⁴ | 28842
28047
27308 | 27012
25850
24778 | 19959
19629
19313 | 4349
4190
4046 | 52
51
50 | 22423
20705
19247 | 17530
15369
13600 | 16617
15738
14945 | 3280
3003
2783 | | 55
54
53 | 26617
24235
22304 | 23787
20446
17833 | 19009
17899
16923 | 3915
3491
3174 | 49
48
47 | 17984
16871
15879 | 12120
10861
9778 | 14222
13556
12940 | 2602
2451
2321 | | 52
51
50 | 20684
19292
18076 | 15721
13971
12495 | 16050
15258
14534 | 2926
2726
2558 | 46
45
44 | 14984
14171
13426 | 8835
8007
7274 | 12366
11829
11323 |
2209
2110
2023 | | 49
48
47
46 | 16997
16030
15154 | 11231
10137
9181 | 13866
13245
12667 | 2417
2295
2188 | 43
42
41
40 | 12739
12102
11510
10955 | 6623
6039
5515
5041 | 10846
10394
9964
9555 | 1945
1875
1812
1754 | | 45
44 | 14354
13620
12941 | 8338
7591
6923 | 12124
11613
11131 | 2094
2010
1935 | | , | γ = 0.5 | 25 | | | 43
42
41
40 | 12311
11722
11171
10653 | 6325
5786
5298
4855 | 10673
10239
9825
9429 | 1867
1806
1749
1698 | φ | (x) | (y) | (t) | (v) | | | | λ=0: | 24 | | 40°
41
42 | 6952
7157
7365 | 2733
2908
3092 | 7627
7876
8130 | 1079
1088
1097 | | φ | (x) | (y) | (t) | (v) | 43
44
45 | 7577
7792
8012 | 3286
3491
3707 | 8391
8658
8933 | 1106
1117
1127 | | 56½°
56¼
56 | 40352
38012
36090 | 43045
39526
36663 | 22908
22331
21812 | 7735
6944
6351 | 46
47
48 | 8236
8465
8698 | 3935
4176
4430 | 9215
9505
9804 | 1138
1150
1162 | | 55 ²
55 ²
55 ² | 34461
33048
31801 | 34258
32193
30387 | 21337
20897
20486 | 5885
5507
5192 | 49
50
51 | 8936
9179
9428 | 4700
4985
5287 | 10112
10429
10757 | 1174
1188
1201 | IX. (continued). | | | λ = 0.3 | 25 | | | | $\gamma = 0.5$ | 26 | | |---|---|---|---|--------------------------------------|--|----------------------------------|------------------------------|---------------------------------|------------------------------| | φ | (x) | (y) | (t) | (v) | φ | (x) | (y) | (t) | (v) | | 52°
53
54 | 9683
9944
10211 | 5607
5947
6308 | 11095
11446
11809 | 1215
1230
1245 | 53½°
53½
53 | 29540
28567
27681 | 26330
25022
23841 | 19156
18811
18483 | 4836
4609
4409 | | 55
56
57 | 10485
10767
11055 | 6693
7102
7538 | 12186
12577
12984 | 1261
1278
1295 | 52½
52½
52½ | 26867
26115
25415 | 22765
21780
20873 | 18171
17873
17586 | 4233
4075
3933 | | 58
59
60 | 11352
11657
11970 | 8004
8501
9034 | 13407
13849
14310 | 1312
1331
1350 | 52
51½
51½ | 24762
24150
23575 | 20033
19253
18526 | 17312
17047
16792 | 3805
3687
3580 | | 61
62
63 | 12293
12625
12967 | 9604
10216
10874 | 14792
15296
15826 | 1370
1390
1411 | 51½
51
50 | 23031
22517
20698 | 17846
17208
14999 | 16545
16306
15421 | 3480
3388
3080 | | 64
65
66 | 13320
13684
14059 | 11581
12344
13168 | 16382
16967
17585 | 1433
1455
1478 | 49
48
47 | 19173
17864
16719 | 13213
11733
10483 | 14626
13905
13244 | 2839
2644
2482 | | 67
68
69 | 14447
14846
15259 | 14059
15024
16073 | 18237
18927
19660 | 1501
1526
1551 | 46
45
44 | 15703
14792
13966 | 9412
8484
7673 | 12632
12063
11531 | 2345
2227
2125 | | 70
71
72 | 15686
16126
16582 | 17214
18459
19820 | 20439
21270
22159 | 1576
1602
1628 | 43
42
41
40 | 13212
12519
11878
11282 | 6957
6322
5754
5245 | 11031
10559
10112
9688 | 2034
1953
1881
1816 | | 73
74
75 | 17052
17538
18039 | 21312
22953
24763 | 23112
24137
25245 | 1655
1682
1709 | | | V = 0.5 | | | | 76
77
78
79
80 | 18557
19091
19642
20210
20794 | 26766
28993
31480
34272
37426 | 26446
27755
29189
30769
32522 | 1736
1763
1790
1816
1842 | φ | (x) | (y) | (t | (v) | | | 1 | λ=0.5 | 26 | | 53½°
53¼
53 | 36958
34872
33147 | 35386
32580
30279 | 20700
20194
19737 | 7288
6570
6026 | | φ | (x) | (y) | (t) | (v) | 52 ³ / ₄
52 ¹ / ₂
52 ¹ / ₄ | 31677
30397
29264 | 28336
26660
25190 | 19318
18928
18564 | 5597
5246
4952 | | 55°
54 ³ / ₁
54 ¹ / ₂ | 38874
36612
34756 | 39352
36137
33522 | 21813
21268
20776 | 7608
6825
6241 | 52
51 ³ / ₂
51 ¹ / ₂ | 28248
27329
26489 | 23885
22713
21652 | 18221
17897
17589 | 4701
4484
4294 | | 54 1
54
53 1
53 1 | 33183
31819
30615 | 31326
29439
27791 | 20326
19910
19522 | 5783
5410
5100 | 51½
51
50¾ | 25716
25001
24336 | 20685
19798
18980 | 17294
17013
16743 | 4125
3974
3838 | IX. (continued). | | | $\lambda = 0$ | 28 | | | | y = 0 | 30 | | |--|----------------------------------|------------------------------|----------------------------------|------------------------------|-------------------|-------------------------|-------------------------|----------------------|----------------------| | φ | (x) | (y) | (t) | (7') | φ | (x) | (y) | (t) | (v) | | 50½°
50½° | 23714
23130
22581 | 18222
17518
16860 | 16483
16233
15992 | 3714
3601
3497 | 39°
38
37 | 11388
10789
10232 | 5187
4710
4283 | 9546
9133
8740 | 1886
1818
1757 | | 49
48
47 | 20659
19069
17716 | 14608
12810
11333 | 15100
14305
13586 | 3154
2891
2682 | 36
35
34 | 9711
9221
8760 | 3897
3547
3231 | 8365
8005
7661 | 1701
1650
1603 | | 46
45
44 | 16542
15506
14580 | 10095
9040
8129 | 12928
12322
11758 | 2510
2366
2243 | 33
32
31 | 8324
7910
7516 | 2942
2678
2437 | 7330
7012
6704 | 1560
1520
1483 | | 43
42
41
40 | 13744
12983
12284
11640 | 7336
6638
6021
5470 | 11232
10737
10271
9830 | 2136
2042
1960
1885 | 30
29
28 | 7141
6783
6440 | 2216
2013
1827 | 6407
6120
5842 | 1449
1417
1387 | | | 1 | y = 0. | 30 | | 27
26
25 | 5795
5490 | 1656
1498
1352 | 5571
5309
5053 | 1359
1333
1309 | | φ | (x) | (y) | (1) | (v) | 2.1
2.3
2.2 | 5196
4912
4638 | 981.3
1095
1519 | 4805
4562
4325 | 1286
1265
1244 | | 52°
51 ³ / ₄
51 ¹ / ₂ | 34743
32892
31340 | 31376
29018
27057 | 19582
19122
18702 | 6836
6213
5732 | 21
20
19 | 4371
4113
3862 | 876.4
779.9
691.0 | 4093
3866
3644 | 1225
1207
1190 | | 511
51
503 | 30003
28831
27787 | 25384
23930
22647 | 18316
17955
17617 | 5347
5028
4759 | 18
17
16 | 3618
3381
3149 | 609·4
534·5
465·9 | 3427
3213
3003 | 1174
1159
1145 | | 50½
50½
50 | 26847
25993
25210 | 20469
19532 | 17298
16995
16707 | 4528
4327
4149 | 15
14
13 | 2923
2702
2486 | 403·2
346·0
294·2 | 2797
2595
2395 | 1131
1119
1107 | | 49 ³ / ₄
49 ¹ / ₂
49 ¹ / ₃ | 24487
23817
23192 | 18675
17886
17158 | 16431
16167
15914 | 3993
3850
3721 | 12
11
10 | 2275
2068
1864 | 247°3
205°1
167°4 | 2198
2004
1813 | 1095
1084
1074 | | 49
48
47 | 22607
20582
18930 | 16482
14191
12386 | 15670
14773
13978 | 3605
3224
2940 | 9
8
7 | 1665
1469
1276 | 134.0
94.7
79.3 | 1623
1436
1251 | 1065
1055
1047 | | 46
45
44 | 17537
16337
15283 | 9696
8660 | 13262
13262
12609
12008 | 2716
2535 | 6
5
4 | 1086
899
714 | 57.7
39.7
25.2 | 1068
887
707 | 1039
1031
1024 | | 43 | 14345 | 7770
6996 | 11450 | 2384
2255
2144 | 3
2
+ 1 | 533
353
176 | 14.0
6.2
1.2 | 528
351
175 | 1017
1011
1006 | | 40 | 12735 | 6318
5719 | 9981 | 2048
1962 | 0 | 0 | 0 | 0 | 1000 | IX. (continued). | | | λ=0. | 30 | | | | $\lambda = 0.3$ | ,0 | | |----------------|----------------------|-------------------------|----------------------|---------------------------|----------------------|----------------------------------|----------------------------------|----------------------------------|------------------------------| | φ | (x) | (1) | (t) | (v) | φ | (x) | (y) | (t) | (v) | | - I° 2 | 174
346
516 | 13.2
6.0
1.2 | 174
347
520 | 99 5
990
986 | 40°
41
42 | 6737
6930
7125 | 2620
2784
2957 | 7504
7745
7991 | 1046
1054
1062 | | 4
5
6 | 685
853
1019 | 23.8
37.0
53.0 | 692
864
1035 | 982
978
975 | 43
44
45 | 7323
7525
7730 | 3139
3330
3531 | 8244
8502
8768 | 1070
1079
1083 | | 7
8
9 | 1185
1349
1513 | 33.2
51.6 | 1206
1377
1548 | 972
970
967 | 46
47
48 | 7938
8151
8367 | 3744
3967
4203 | 9040
9319
9607 | 1098
1119 | | 10
11
12 | 1676
1839
2000 | 145·3
175·4
208·3 | 1719
1890
2061 | 965
964
962 | 49
50
51 | 8588
8813
9042 | 4453
4716
4995 | 9903
10208
10523 | 1129
1141
1153 | | 13
14
15 | 2162
2323
2484 | 244°I
282°8
324°4 | 2233
2406
2579 | 961
960 | 52
53
54 | 9276
9516
9761 | 5289
5601
5932 | 10848
11184
11531 | 1165
1178
1191 | | 16
17
18 | 2645
2805
2966 | 369·0
416·7
467·4 | 2753
2928
3103 | 960
961 | 55
56
57 | 10011
10268
10530 | 6284
6657
7054 | 11892
12265
12653 | 1205
1219
1234 | | 19
20
21 | 3127
3289
3451 | 521·3
578·5
639·0 | 3280
3458
3638 | 961
962
963 |
58
59
60 | 10800
11076
11359 | 7477
7927
8408 | 13057
13477
13915 | 1250
1265
1282 | | 22
23
24 | 3613
3776
3940 | 702·9
770·4
841·5 | 3819
4001
4186 | 965
967
969 | 61
62
63
64 | 11649
11948
12254 | 8921
9471
10060 | 14372
14850
15351 | 1299
1316
1334 | | 25
26
27 | 4104
4269
4435 | 916·4
995·2
1078 | 4372
4560
4750 | 9 72
974
977 | 65
66
67 | 12569
12893
13227 | 10692
11372
12103 | 15877
16429
17011 | 1353
1372
1392 | | 28
29
30 | 4603
4771
4941 | 1165
1257
1353 | 4943
5138
5336 | 981
984
988 | 68
69
70 | 13569
13923
14286 | 13744
14667 | 18274
18961 | 1432
1453
1475 | | 31
32
33 | 5112
5285
5459 | 1454
1560
1671 | 5537
5740
5947 | 993
997
1002 | 71
72
73 | 15045
15442
15850 | 16756
17942
19238 | 20468
21297
22185 | 1497
1519 | | 34
35
36 | 5636
5814
5994 | 1787
1910
2038 | 6158
6371
6589 | 1007 | 74
75
76 | 16271
16704
17149 | 20658
22220
23943 | 23139
24168
25282 | 1563
1586
1609 | | 37
38
39 | 6176
6361
6548 | 2173
2315
2464 . | 6811
7037
7268 | 1025
1032
1039 | 77
78
79
80 | 17607
18078
18561
19057 | 25852
27976
30354
33032 | 26494
27819
29277
30893 | 1631
1653
1675
1696 | IX. (continued). | | | λ=0.3 | 32 | | | | λ=0:3 | 34 | | |---|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|---|-------------------------|-------------------------|-------------------------|------------------------| | φ | (x) | (y) | (t) | (v) | φ | (x) | (y) | (t) | (v) | | 50½°
50½
50 | 32378
30781
29418 | 27524
25595
23963 | 18478
18064
17683 | 6317
5800
5391 | 48½°
48¼
48 | 27459
26418
25486 | 21075
19904
18864 | 16691
16370
16068 | 5030-
4745-
4503 | | 49½
49½
49½ | 28229
27176
26232 | 22552
21314
20213 | 17330
16999
16688 | 5055
4775
4535 | 47 ²
47 ¹
47 ¹ | 24642
23872
23164 | 17931
17087
16318 | 15782
15510
15251 | 4294
4111
3948 | | 49
48 3
48 1
48 <u>1</u> | 25376
24594
23873 | 19224
18328
17510 | 16392
16111
15843 | 4327
4145
3983 | 47
463
46 <u>1</u> | 22509
21900
21330 | 15612
14962
14359 | 15002
14764
14534 | 3803
3673
3554 | | 48 1
48
47 1
47 1 | 23206
22586
22005 | 16760
16067
15425 | 15586
15340
15103 | 3838
3708
3589 | 46 1
46
45 | 20796
20293
18533 | 13798
13275
11482 | 14313
14099
13308 | 3446
3347
3019 | | 47½
47¼
47 | 21460
20947
20461 | 14828
14270
13747 | 14874
14653
14439 | 3481
3381
3289 | 44
43
42 | 17076
15836
14758 | 10050
8873
7884 | 12601
11960
11372 | 2768
2569
2406 | | 46
45
44 | 18752
17324
16101 | 11944
10491
9289 | 13646
12933
12286 | 2983
2745
2554 | 41
40
39 | 13806
12954
12185 | 70.42
6315
5680 | 10828
10321
9846 | 2268
2151
2050 | | 43
42
41 | 15033
14087
13238 | 8275
7407
6656 | 11691
11139
10625 | 2397
2264
2150 | 38
37
36 | 11484
10840
10244 | 5122
4628
4187 | 9399
8976
8575 | 1961
1882
1812 | | 40
39
38 | 12469
11766
11120 | 5999
5420
4906 | 9690
9261 | 2050
1963
1886 | 35
34
33 | 9692
9175
8692 | 3793
3438
3118 | 8194
7829
7481 | 1749
1691
1639 | | 37
36
35 | 10523
9967
9448 | 4447
4036
3665 | 8854
8466
8096 | 1816
1754
1697 | 32
31
30 | 8236
7806
7399 | 2827
2564
2324 | 7147
6825
6516 | 1592
1548
1508 | | 34
33
32
31
30 | 8961
8502
8068
7657
7267 | 3330
3027
2750
2499
2269 | 7743
7403
7077
6763
6460 | 1645
1598
1555
1514
1477 | | | λ=0.3 | 35 | | | | | λ = 0-3 | 34 | | φ | (.v) | (y) | (t) | (v) | | φ | (x) | (3') | (t) | (v) | -
40°
41
42 | 6539
6720
6904 | 2516
2671
2834 | 7389
7623
7862 | 1016
1023
1030 | | 49‡°
49
48‡ | 31586
29992
28636 | 25808
23965
22412 | 17806
17404
17034 | 6321
5789
5370 | 43
44
45 | 7091
7280
7472 | 3005
3184
3373 | 8107
8357
8614 | 1037
1045
1053 | IX. (continued). | |) | /=o.3 | 55 | | | | l = 0.3 | 6 | | |----------------|-------------------------|-------------------------|-------------------------|----------------------|--|-------------------------|----------------------------|-------------------------|----------------------| | φ | (x) | (y) | (t) | (v) | φ | (x) | (y) | (t) | (v) | | 46° | 7667 | 3572 | 8877 | 1062 | 48° | 30527 | 23909 | 17111 | 6217 | | 47 | 7865 | 3781 | 9148 | 1070 | 47 ³ | 28984 | 22203 | 16724 | 5695 | | 48 | 8067 | 4001 | 9425 | 1080 | 47 ¹ / ₂ | 27672 | 20764 | 16369 | 5285 | | 49 | 8272 | 4233 | 9711 | 1089 | 47½ | 26532 | 19525 | 16040 | 4950 | | 50 | 8481 | 4478 | 10005 | 1099 | 47 | 25523 | 18439 | 15731 | 4671 | | 51 | 8694 | 4736 | 10308 | 1110 | 46¾ | 24620 | 17475 | 15441 | 4433 | | 52 | 8911 | 5009 | 10621 | 1121 | 46½ | 23803 | 16609 | 15166 | 4228 | | 53 | 9133 | 5297 | 10944 | 1132 | 46¼ | 23056 | 15826 | 14905 | 4048 | | 54 | 9359 | 5603 | 11278 | 1144 | 46 | 22370 | 15112 | 14655 | 3888 | | 55 | 9589 | 5926 | 11623 | 1156 | 45 ² | 21735 | 14457 | 14416 | 3746 | | 56 | 9825 | 6269 | 11981 | 1168 | 45 ¹ / ₂ | 21144 | 13853 | 14186 | 3617 | | 57 | 10066 | 6633 | 12353 | 1181 | 45 ¹ / ₄ | 20591 | 13293 | 13965 | 3501 | | 58 | 10312 | 7020 | 12739 | 1195 | 45 | 20073 | 12773 | 13752 | 3394 | | 59 | 10564 | 7432 | 13140 | 1209 | 44 | 18271 | 11001 | 12966 | 3047 | | 60 | 10822 | 7870 | 13559 | 1223 | 43 | 16792 | 9597 | 12266 | 2784 | | 61 | 11087 | 8337 | 13995 | 1238 | 42 | 15541 | 8449 | 11632 | 2578 | | 62 | 11358 | 8836 | 14451 | 1253 | 41 | 14457 | 7490 | 11051 | 2409 | | 63 | 11635 | 9369 | 14927 | 1269 | 40 | 13504 | 6676 | 10515 | 2269 | | 64 | 11920 | 9940 | 15427 | 1285 | 39 | 12653 | 5974 | 10015 | 2149 | | 65 | 12212 | 10553 | 15951 | 1302 | 38 | 11885 | 5363 | 9548 | 2046 | | 66 | 12512 | 11211 | 16503 | 1319 | 37 | 11187 | 4827 | 9108 | 1956 | | 67 | 12819 | 11918 | 17084 | 1336 | 36 | 10547 | 4353 | 8692 | 1876 | | 68 | 13135 | 12681 | 17698 | 1354 | 35 | 9956 | 3931 | 8297 | 1805 | | 69 | 13459 | 13505 | 18347 | 1372 | 34 | 9407 | 3554 | 7922 | 1742 | | 70 | 13793 | 14396 | 19036 | 1391 | 33 | 8895 | 3215 | 7563 | 1684 | | 71 | 14135 | 15363 | 19768 | 1410 | 32 | 8416 | 2910 | 7220 | 1632 | | 72 | 14486 | 16414 | 20549 | 1429 | 31 | 7965 | 2634 | 6891 | 1584 | | 73
74
75 | 14847
15218
15599 | 17559
18811
20185 | 21384
22280
23245 | 1448
1467
1486 | 30 | 7539 | $\frac{2383}{\lambda = 0}$ | 6575
38 | 1540 | | 76
77
78 | 15989
16390
16801 | 21696
23366
25221 | 24289
25422
26660 | 1506
1525
1544 | φ | (x) | (y) | | (v) | | 79
80 | 17222 | 27291
29618 | 28020
29525 | 1562
1580 | 47°
46 ³
46 ¹ / ₄ | 30981
29236
27787 | 23758
21894
20360 | 16798
16395
16029 | 6660
6016
5527 | | | | | | | 461
46
453 | 26549
25468
24510 | 19060
17937
16949 | 15692
15379
15085 | 5139
4821
4555 | IX. (continued). | | | λ = oʻ | 38 | | | | $\lambda = 0.7$ | 40 | | |--|----------------------------------|----------------------------------|----------------------------------|------------------------------|--|----------------------|-------------------------|----------------------|----------------------| | φ | (x) | (1) | (t) | (v) | φ | (x) | (y) | (1) | (v) | | 45½° | 23651 | 16070 | 14808 | 4328 | 42 ^{3°} 42 ¹ 42 ¹ 42 ¹ | 18955 | 11211 | 12829 | 3345 | | 45¼ | 22871 | 15280 | 14546 | 4131 | | 18481 | 10775 | 12633 | 3247 | | 45 | 22157 | 14563 | 14296 | 3958 | | 18034 | 10367 | 12444 | 3157 | | 44 ³ | 21501 | 13909 | 14057 | 3804 | 42 | 17611 | 9984 | 12261 | 3074 | | 44 ¹ / ₂ | 20892 | 13309 | 13828 | 3667 | 41 | 16114 | 8659 | 11578 | 2794 | | 44 ¹ / ₄ | 20325 | 12754 | 13608 | 3543 | 40 | 14859 | 7586 | 10963 | 2577 | | 44 | 19795 | 12240 | 13396 | 3430 | 39 | 13780 | 6696 | 10401 | 2402 | | 43 | 17963 | 10501 | 12617 | 3065 | 38 | 12834 | 5944 | 9882 | 2257 | | 42 | 16471 | 9132 | 11925 | 2793 | 37 | 11994 | 5299 | 9399 | 2134 | | 41 | 15214 | 8020 | 11300 | 2580 | 36 | 11238 | 4740 | 8947 | 2029 | | 40 | 14130 | 7094 | 10728 | 2408 | 35 | 10552 | 4250 | 8522 | 1938 | | 39 | 13179 | 6309 | 10200 | 2265 | 34 | 9924 | 3819 | 8120 | 1857 | | 38 | 12332 | 5635 | 9708 | 2144 | 33 | 9346 | 3435 | 7739 | 1785 | | 37 | 11569 | 5049 | 9248 | 2039 | 32 | 8810 | 3094 | 7377 | 1721 | | 36 | 10876 | 4536 | 8816 | 1948 | 31 | 8310 | 2787 | 7 030 | 1664 | | 35 | 10241 | 4083 | 8407 | 1868 | 30 | 7842 | 2512 | 6699 | 1611 | | 34 | 9655 | 3681 | 8019 | 1797 | 29 | 7403 | 2263 | 6380 | 1564 | | 33 | 9112 | 3321 | 7650 | 1732 | 28 | 6988 | 2038 | 6074 | 1520 | | 32 | 8606 | 2998 | 7297 | 1675 | 27 | 6596 | 1834 | 5779 | 1480 | | 31 | 8132 | 2708 | 6960 | 1622 | 26 | 6223 | 1648 | 5494 | 1443 | | 30 | 7686 | 2445 | 6636 | 1574 | 25 | 5869 | 1479 | 5219 | 1408 | | | | λ=0.5 | to | | 24
23
22 | 5530
5207
4897 | 1324
1184
1055 | 4952
4693
4441 |
1377
1347
1319 | | φ | (.v) | (y) | (t) | (v) | 21
20
19 | 4599
4312
4036 | 937·8
830·6
732·8 | 4196
3957
3724 | 1294
1270
1247 | | 46°
45 ²
45 ¹
45 ¹ | 31301
29352
27773
26446 | 23464
21454
19840
18496 | 16461
16042
15667
15325 | 7091
6312
5741
5300 | 18
17
16 | 3769
3511
3261 | 643.2
562.1
488.0 | 3496
3274
3056 | 1226
1206
1188 | | 45
44 ³
44 ³ | 25304
24300
23406 | 17348
16349
15466 | 15008
14713
14436 | 4945
4653
4406 | 15
14
13 | 3019
2783
2554 | 359°9
304°9 | 2842
2633
2427 | 1170
1153
1138 | | 44‡ | 22600 | 14678 | 14173 | 4194 | 12 | 2331 | 255.5 | 2225 | 1123 | | 44 | 21867 | 13966 | 13924 | 4009 | 11 | 2114 | 211.5 | 2026 | 1109 | | 43¾ | 21194 | 13320 | 13686 | 3846 | 10 | 1901 | 171.6 | 1831 | 1096 | | 43½ | 20573 | 12728 | 13459 | 3701 | 9 | 1694 | 137°2 | 1638 | 1084 | | 43¼ | 19997 | 12183 | 13241 | 3570 | 8 | 1491 | 106°9 | 1447 | 1072 | | 43 | 19459 | 11679 | 13031 | 3453 | 7 | 1293 | 80°7 | 1260 | 1061 | IX. (continued). | | | λ=0.7 | 10 | | | | λ=0.7 | 10 | | |------------------|------------------------|---------------------|------------------------|------------------------------|----------------|----------------------|----------------------|----------------------|-------------------| | φ | (x) | (y) | (1) | (v) | φ | (x) | (y) | (t) | (v) | | 6° 5 4 | 1098 | 58·5 | 1074 | 1051 | 34° | 5362 | 1672 | 6002 | 960 | | | 907 | 40·2 | 891 | 1041 | 35 | 5524 | 1783 | 6206 | 964 | | | 720 | 25·4 | 709 | 1033 | 36 | 5687 | 1899 | 6413 | 968 | | 3
2
1
0 | 536
354
176
0 | 14·1
6·2
1·5 | 530
352
175
0 | 1023
1015
1007
1000 | 37
38
39 | 5851
6017
6185 | 2021
2148
2282 | 6623
6838
7057 | 973
978
983 | | 1
2
3 | 173
344
513 | 13.4
6.0
13.4 | 174
347
519 | 993
987
981 | 40
41
42 | 6355
6526
6700 | 2422
2568
2722 | 7280
7508
7740 | 989
1001 | | 4 | 681 | 23.6 | 690 | 975 | 43 | 6876 | 2883 | 7978 | 1007 | | 5 | 846 | 36.6 | 861 | 970 | 44 | 7054 | 3052 | 8221 | 1014 | | 6 | 1009 | 52.3 | 1030 | 966 | 45 | 7235 | 3230 | 8470 | 1021 | | 7 | 1171 | 70·8 | 1200 | 961 | 46 | 7418 | 3416 | 8725 | 1029 | | 8 | 1332 | 91·9 | 1368 | 958 | 47 | 7604 | 3613 | 8987 | 1036 | | 9 | 1491 | 115·7 | 1537 | 954 | 48 | 7793 | 3819 | 9256 | 1045 | | 10 | 1649 | 142·2 | 1705 | 950 | 49 | 7985 | 4036 | 9532 | 1053 | | 11 | 1806 | 171·3 | 1874 | 947 | 50 | 8180 | 4264 | 9816 | 1062 | | 12 | 1963 | 203·1 | 2042 | 945 | 51 | 8378 | 4505 | 10109 | 1071 | | 13 | 2118 | 237·5 | 2211 | 942 | 52 | 8581 | 4759 | 10411 | 1091 | | 14 | 2273 | 274·6 | 2380 | 940 | 53 | 8786 | 5028 | 10722 | | | 15 | 2427 | 314·5 | 2549 | 938 | 54 | 8996 | 5311 | 11044 | | | 16 | 2580 | 357.0 | 2719 | 937 | 55 | 9210 | 5611 | 11376 | 1112 | | 17 | 2733 | 402.4 | 2890 | 936 | 56 | 9428 | 5928 | 11721 | 1123 | | 18 | 2886 | 450.5 | 3061 | 935 | 57 | 9650 | 6264 | 12078 | 1135 | | 19 | 3038 | 501.2 | 3233 | 935 | 58 | 9877 | 6621 | 12448 | 1147 | | 20 | 3191 | 525.2 | 3406 | 934 | 59 | 10109 | 7000 | 12834 | 1159 | | 21 | 3343 | 501.2 | 3580 | 934 | 60 | 10347 | 7402 | 13235 | 1172 | | 22 | 3495 | 672·5 | 3755 | 935 | 61 | 10589 | 7831 | 13652 | 1185 | | 23 | 3648 | 735·7 | 3932 | 935 | 62 | 10837 | 8287 | 14088 | 1199 | | 24 | 3800 | 802·1 | 4110 | 936 | 63 | 11091 | 8775 | 14544 | 1213 | | 25 | 3954 | 871.9 | 4289 | 937 | 64 | 11350 | 9296 | 15021 | 12^7 | | 26 | 4107 | 945.1 | 4471 | 939 | 65 | 11616 | 9853 | 15522 | 1242 | | 27 | 4261 | 1022 | 4654 | 940 | 66 | 11888 | 10451 | 16047 | 1256 | | 28 | 4416 | 1102 | 4839 | 942 | 67 | 12167 | 11092 | 16601 | 1272 | | 29 | 4571 | 1187 | 5027 | 945 | 68 | 12453 | 11783 | 17185 | 1288 | | 30 | 4728 | 1275 | 5216 | 947 | 69 | 12746 | 12527 | 17802 | 1304 | | 31 | 4885 | 1368 | 5409 | 950 | 70 | 13046 | 13330 | 18456 | 1320 | | 32 | 5043 | 1464 | 5603 | 953 | 71 | 13354 | 14200 | 19150 | 1336 | | 33 | 5202 | 1566 | 5801 | 957 | 72 | 13670 | 15143 | 19890 | 1353 | IX. (continued). | | | \ = 0 [.] 4 | .0 | | | | $\lambda = 0.7$ | 14 | | |--|-------------------------|---------------------------|-------------------------|----------------------|--|----------------------------------|-------------------------|-------------------------|------------------------------| | ϕ | (x) | (y) | (1) | (v) | φ | (x) | (y) | (1) | (v) | | 73°
74
75 | 13993
14325
14665 | 16169
17289
18514 | 20681
21528
22439 | 1372
1387
1403 | 43½°
43¼
43 | 27235
25799
24585 | 18385
17027
15890 | 14871
14526
14211 | 6008
5485
5077 | | 76
77
78 | 15012
15369
15733 | 19861
21345
22991 | 23424
24493
25659 | 1420
1437
1453 | 42 ³ / ₄
42 ¹ / ₂
42 ¹ / ₄ | 23534
22608
21780 | 14914
14062
13307 | 13919
13646
13389 | 4747
4474
4241 | | 79
80 | 16106
16487 | 24824
26881 | 26939
28355 | 1469
1485 | 42
41 ³ / ₄
41 ¹ / ₂ | 21033
20351
19725 | 12631
12020
11463 | 13145
12913
12692 | 4041
3867
3712 | | | 1 | λ=0.4 | .2 | | 41 1
41
403
403 | 19146
18608
18105 | 10953
10483
10048 | 12481
12277
12081 | 3575
3451
3339 | | φ | (x) | ('') | (t) | (v) | 40½
40¼
40 | 17633
17190
16771 | 9644
9267
8913 | 11892 | 3237
3143 | | 44½°
44⅓
44 | 27597
26202
25012 | 19185
17820
16666 | 15282
14937
14620 | 5908
5419
5034 | 39 38 | 15295 | 7696
6716 | 10875 | 3°57
2770
2549 | | 43 ⁸ / ₄
43 ¹ / ₂
43 ¹ / ₄ | 23977
23059
22237 | 15670
14796
14019 | 14325
14048
13788 | 4719
4456
4232 | 37
36
35 | 13009
12088
11270
10536 | 5906
5224
4641 | 9742
9243
8779 | 2372
2227
2104 | | 43
42 ³ / ₄
42 ¹ / ₂ | 21492
20811
20184 | 13320
12688
12111 | 13541
13305
13081 | 4037
3867
3716 | 34
33
32
31 | 9871
9263
8702 | 3696
3308
2965 | 7937
7550
7183 | 1999
1908
1828
1757 | | 421
42
41 | 19603
19062
17212 | 11581
11092
9454 | 12865
12658
11900 | 3581
3460
3071 | 30 | 8183 | 2659 | 6834 | 1693 | | 40
39 | 15721
14474 | 8179
7151 | 11229
10625 | 2786
2566 | | | y = 0.7 | 15 | | | 38 | 13405 | 6300
5582 | 9563 | 2390 | φ | (x) | (y) | (t) | (v) | | 36
35 | 11639 | 49 ⁶ 7
4435 | 9090
8646 | 2121
2016 | -
40° | 6184 | 2335 | 7177 | 963 | | 34
33
32 | 9598
9028 | 3970
3560
3197 | 8229
7835
7461 | 1924
1844
1772 | 41
42 | 6347
6511 | 2474
2620 | 7399
7625 | 968
974 | | 31
30 | 8499
8007 | 2873
2583 | 7105
6765 | 1708
1651 | 43
44
45 | 6678
6846
7017 | 2772
2932
3100 | 7856
8093
8335 | 980
986
992 | IX. (continued). | | , | \= o'4 | 15 | | | | $\lambda = 0.4$ | <u>,</u> 6 | | |----------------|-------------------------|-------------------------|-------------------------|----------------------|--|-------------------------|----------------------------------|-------------------------|----------------------| | φ | (x) | (y) | (t) | (v) | φ | (x) | (y) | (t) | (v) | | 46° | 7190 | 3276 | 8582 | 998 | 42½° | 26673 | 17443 | 14432 | 6027 | | 47 | 7365 | 3460 | 8837 | 1005 | 42¼ | 25232 | 16127 | 14093 | 5488 | | 48 | 7543 | 3654 | 9097 | 1013 | 424 | 24019 | 15031 | 13783 | 5070 | | 49 | 7723 | 3858 | 9365 | 1020 | 413 | 22973 | 14092 | 13496 | 4734 | | 50 | 7906 | 4072 | 9640 | 1028 | 412 | 22053 | 13275 | 13228 | 4456 | | 51 | 8092 | 4298 | 9924 | 1037 | 414 | 21232 | 12552 | 12976 | 4222 | | 52 | 8281 | 4536 | 10215 | 1045 | 41 | 20492 | 11906 | 12737 | 4019 | | 53 | 8473 | 4786 | 10516 | 1054 | 40 ³ / ₄ | 19818 | 11323 | 12510 | 3844 | | 54 | 8669 | 5051 | 10827 | 1063 | 40 ¹ / ₂ | 19200 | 10792 | 12294 | 3688 | | 55
56
57 | 8868
9071
9278 | 5330
5625
5937 | 11148
11480
11825 | 1073
1083
1093 | 40 1
40
39 1
394 | 18629
18098
17603 | 10306
9859
9445 | 12087
11888
11696 | 3550
3426
3314 | | 58 | 9489 | 6268 | 12182 | 1104 | 39½ | 17139 | 9061 | 11511 | 3211 | | 59 | 9703 | 6619 | 12552 | 1115 | 39¼ | 16702 | 8703 | 11333 | 3118 | | 60 | 9923 | 6991 | 12938 | 1127 | 39 | 16290 | 8367 | 11160 | 3032 | | 61 | 10147 | 73 ⁸ 7 | 13339 | 1138 | 38 | 14839 | 7213 | 10517 | 2745 | | 62 | 10375 | 7808 | 13758 | 1150 | 37 | 13630 | 6284 | 9938 | 2526 | | 63 | 10609 | 8257 | 14195 | 1163 | 36 | 12595 | 5518 | 9409 | 2350 | | 64 | 10847 | 8735 | 14653 | 1176 | 35 | 11691 | 4873 | 8922 | 2205 | | 65 | 11091 | 9247 | 15132 | 1189 | 34 | 10890 | 4322 | 8468 | 2083 | | 66 | 11341 | 9795 | 15635 | 1202 | 33 | 10170 | 3846 | 8043 | 1979 | | 67 | 11596 | 10382 | 16165 | 1216 | 32 | 9518 | 3430 | 7643 | 1889 | | 68 | 11857 | 11012 | 16723 | 1230 | 31 | 8921 | 3064 | 7264 | 1810 | | 69 | 12124 | 11690 | 17312 | 1244 | 30 | 8372 | 2741 | 6905 | 1739 | | 70
71
72 | 12397
12677
12963 | 12422
13212
14068 | 17936
18598
19302 | 1259
1273
1288 | | | λ=0.7 | 18 | | | 73
74
75 | 13256
13556
13863 | 14997
16010
17116 | 20055
20860
21726 | 1303
1318
1333 | φ | (x) | (y) | (t) | (v) | | 76 | 14176 | 18329 | 22661 | 1348 | 41½° | 25913 | 16376 | 13970 | 5959 | | 77 | 14497 | 19666 | 23675 | 1363 | 41¼ | 24504 | 15135 | 13639 | 5425 | | 78 | 14825 | 21144 | 24781 | 1377 | 41 | 23319 | 14100 | 13337 | 5011 | | 79
80 | 15159 | 22 7 90
24633 | 25993
27334 | 1391
1405 | 40 ³ / ₄
40 ¹
/ ₂
40 ¹ / ₄ | 22296
21398
20597 | 13216
12445
11 7 63 | 13058
12797
12552 | 4679
4403
4171 | IX. (continued). | | | $\lambda = 0.7$ | 4 8 | | | | λ = ο΄ | 5 | | |---|---|---|---|-----------------------------------|--------------------|-------------------------|-------------------------|------------------------|------------------------------| | φ | (x) | (y) | (1) | (v) | φ | (x) | (y) | (t) | (v) | | 40°
39 ³ / ₄
39 ¹ / ₂ | 19874
19216
18613 | 11154
10605
10105 | 12320
12099
11888 | 3972
3798
3644 | 36¾°
36¼
36¼ | 14849
14498
14163 | 6999
6738
6492 | 10246
10092
9942 | 2873
2801
2735 | | 39 1
39
38 1 | 18055
17537
17053 | 9647
9226
8836 | 11686
11493
11306 | 3508
33 ⁸ 5
3274 | 36
35
34 | 13844
12698
11715 | 6259
5441
4765 | 9796
9246
8744 | 2673
2460
2290 | | 38½
38¼
38 | 16600
16174
15771 | 8474
8136
7820 | 11126
10952
10784 | 3173
3081
2996 | 33
32
31 | 10856
10093
9408 | 4196
3710
3290 | 8280
7847
7442 | 2150
2033
1932 | | 37
36
35 | 14355
13174
12163 | 6733
5859
5137 | 10157
9592
9077 | 2713
2496
2322 | 30
29
28 | 8787
8218
7694 | 2924
2602
2318 | 7059
6697
6353 | 1844
1767
1699 | | 34
33
32 | 11280
10497
9794 | 4530
4012
3563 | 8600
8157
7742 | 2180
2060
1957 | 27
26
25 | 7208
6756
6332 | 2065
1839
1636 | 6025
5711
5410 | 1638
1584
1534 | | 31
30 | 9156
8573 | 3173
2829 | 7350
6980 | 1868
1790 | 24
23
22 | 5933
5557
5200 | 1455
1291
1144 | 5120
4840
4570 | 1489
1448
1410 | | | | λ=0; | 5 | | 21
20
19 | 4862
4540
4232 | 1010
889·8
780·9 | 4309
4056
3810 | 1375
1343
1313 | | φ | (x) | (y) | (t) | (v) | 18
17
16 | 3938
3656
3384 | 682·3
593·3
512·8 | 3571
3338
3111 | 1285
1259
1235 | | 41°
40 ³
40 ¹
40 ¹
40 ¹ | 28738
26617
24972
23630
22497 | 18464
16628
15217
14076
13120 | 14241
13839
13486
13169
12878 | 7506
6499
5810
5301 | 15
14
13 | 3123
2870
2627 | 316.6
316.6 | 2890
2673
2461 | 1213
1192
1172 | | 39 ³
39 ¹ / ₂
39 ¹ / ₄ | 21517
20654
19883 | 12302
11587
10954 | 12609
12357
12119 | 4904
4584
4319
4094 | 12
11
10 | 2391
2162
1940 | 264·3
217·8
176·6 | 2253
2049
1849 | 1153
1136
1120 | | 39
38 ³
38 ¹
38 ¹ | 19186
18552
17969 | 10387
9876
9410 | 11895
11681
11477 | 3900
3731
3582 | 9
8
7 | 1725
1515
1310 | 140.2
100.1
85.5 | 1652
1459
1268 | 1104
1090
1076 | | 381
38
373 | 17430
16929
16461 | 8983
8590
8226 | 11281
11093
10912 | 3449
3330
3221 | 6
5
4 | 916
725 | 59.5
40.7
25.7 | 1080
895
712 | 1063
1051
1040 | | 37½
37¼
37 | 16022
15609
15219 | 7888
7572
7277 | 10737
10568
10405 | 3123
3033
2949 | 3
2
1
0 | 538
356
176
0 | 6.2
1.2
0 | 531
352
175
0 | 1029
1019
1009
1000 | IX. (continued). | | | y = 0 | 5 | | | | y = 0. | 5 | | |----------------|----------------------|----------------------|----------------------|-------------------|----------------------|---|----------------------------------|----------------------------------|------------------------------| | φ | (x) | (y) | (t) | (v) | φ | (x) | (1) | (t) | (v) | | 1° 2 3 | 173 | 13.3 | 174 | 992 | 40° | 6024 | 2254 | 7079 | 940 | | | 343 | 6.0 | 346 | 984 | 41 | 6179 | 2386 | 7295 | 944 | | | 511 | 1.2 | 517 | 976 | 42 | 6335 | 2525 | 7516 | 949 | | 4 | 676 | 23°4 | 688 | 969 | 43 | 6493 | 2669 | 7741 | 954 | | 5 | 839 | 36°2 | 857 | 963 | 44 | 6653 | 2821 | 7971 | 959 | | 6 | 1000 | 51°6 | 1025 | 956 | 45 | 6814 | 2980 | 8207 | 965 | | 7 | 1158 | 69.7 | 1192 | 951 | 46 | 6978 | 3146 | 8448 | 971 | | 8 | 1315 | 90.4 | 1359 | 945 | 47 | 7143 | 3321 | 869 5 | 977 | | 9 | 1470 | 113.6 | 1526 | 940 | 48 | 7311 | 3504 | 8948 | 984 | | 10 | 1624 | 139·3 | 1692 | 936 | 49 | 7481 | 3696 | 9208 | 990 | | 11 | 1776 | 167·5 | 1857 | 932 | 50 | 7653 | 3898 | 9475 | 998 | | 12 | 1927 | 198·2 | 2023 | 928 | 51 | 7828 | 4110 | 9750 | 1005 | | 13 | 2077 | 231°3 | 2189 | 924 | 52 | 8006 | 4333 | 10033 | 1013 | | 14 | 2225 | 267°0 | 2354 | 921 | 53 | 8186 | 4569 | 10324 | 1021 | | 15 | 2373 | 305°2 | 2520 | 918 | 54 | 8370 | 4816 | 10625 | 1029 | | 16 | 2520 | 345.9 | 2686 | 916 | 55 | 8556 | 5078 | 10936 | 1038 | | 17 | 2666 | 389.2 | 2853 | 913 | 56 | 8746 | 5354 | 11257 | 1047 | | 18 | 2811 | 435.0 | 3020 | 912 | 57 | 8939 | 5645 | 11589 | 1056 | | 19 | 2956 | 483.4 | 3187 | 910 | 58 | 9135 | 5954 | 11934 | 1066 | | 20 | 3100 | 534.5 | 3356 | 909 | 59 | 9335 | 6280 | 12292 | 1076 | | 21 | 3244 | 588.3 | 3525 | 90 7 | 60 | 9539 | 6627 | 12663 | 1086 | | 22 | 3388 | 644.9 | 3695 | 907 | 61 | 9747 | 6994 | 13050 | 1097 | | 23 | 3531 | 704.3 | 3866 | 906 | 62 | 9959 | 7385 | 13453 | 1108 | | 24 | 3674 | 766.6 | 4039 | 906 | 63 | 10176 | 7800 | 13874 | 1119 | | 25 | 3818 | 831·9 | 4213 | 906 | 64 | 10396 | 8243 | 14314 | 1131 | | 26 | 3961 | 900·3 | 4388 | 907 | 65 | 10622 | 8716 | 14775 | 1142 | | 27 | 4104 | 971·8 | 4565 | 907 | 66 | 10852 | 9221 | 15258 | 1155 | | 28 | 4248 | 1047 | 4743 | 908 | 67 | 11087 | 9762 | 15767 | 1167 | | 29 | 4392 | 1125 | 4924 | 909 | 68 | 11327 | 10342 | 16302 | 1179 | | 30 | 4537 | 1207 | 5106 | 911 | 69 | 11573 | 10965 | 16867 | 1192 | | 31 | 4682 | 1292 | 5291 | 912 | 70 | 11824 | 11636 | 17464 | 1205 | | 32 | 4827 | 1381 | 5478 | 914 | 71 | 12080 | 12361 | 18098 | 1218 | | 33 | 4974 | 1474 | 5668 | 917 | 72 | 12342 | 13144 | 18772 | 1232 | | 34
35
36 | 5121
5268
5417 | 1572
1673
1779 | 5860
6055
6253 | 919
922
925 | 73
74
75
76 | 12883
13163 | 13994
14918
1 5 926 | 19491
20261
21088 | 1245
1259
1272 | | 37
38
39 | 5567
5718
5870 | 1890
2006
2127 | 6454
6658
6867 | 928
932
936 | 77
78
79
80 | 13740
13740
14037
14340
14650 | 18245
19588
21080
22750 | 22946
23999
25154
26430 | 1299
1312
1325
1337 | IX. (continued). | |) | γ=0.2 | 5 | | | 2 | \ = 0.6 | <u>, </u> | | |---|-------------------------|-----------------------|-------------------------|----------------------|--------------------------------|-------------------------|----------------------|--|----------------------| | φ | (x) | (y) | (t) | (v) | φ | (x) | (y) | (t) | (v) | | 38½° | 24976 | 14445 | 12857 | 6390 | 36 ³ / ₂ | 26084 | 14566 | 12462 | 7665 | | 38¼ | 23391 | 13190 | 12522 | 5698 | 36 ¹ / ₂ | 23919 | 12956 | 12080 | 6500 | | 38 | 22103 | 12178 | 12220 | 5189 | 36 ¹ / ₄ | 22295 | 11760 | 11749 | 5740 | | $37\frac{3}{4}$ $37\frac{1}{2}$ $37\frac{1}{4}$ | 21018 | 11335 | 11945 | 4795 | 36 | 20996 | 10812 | 11455 | 5196 | | | 20082 | 10613 | 11690 | 4478 | 35 ³ / ₂ | 19914 | 10029 | 11187 | 4780 | | | 19258 | 9984 | 11451 | 4216 | 35 ¹ / ₂ | 18986 | 9364 | 10939 | 4450 | | 37 | 18524 | 9428 | 11227 | 3995 | 35 ¹ | 18175 | 8788 | 10709 | 4179 | | 36 ³ / ₄ | 17861 | 8931 | 11014 | 3804 | 35 | 17455 | 8281 | 10492 | 3952 | | 36 ¹ / ₂ | 17257 | 8482 | 10812 | 3638 | 34 ³ | 16807 | 7830 | 10287 | 3758 | | 36 1
36
35 1
35 1 | 16703
16191
15715 | 8074
7700
7356 | 10619
10434
10256 | 3492
3361
3244 | 34½
34¼
34 | 16219
15680
15183 | 7424
7055
6718 | 10092
9907
9729 | 3589
3441
3310 | | 35½ | 15271 | 7037 | 10085 | 3138 | 33 ³ / ₂ | 14723 | 6409 | 9558 | 3192 | | 35¾ | 14854 | 6742 | 9919 | 3042 | 33 ¹ / ₂ | 14293 | 6123 | 9394 | 3085 | | 35 | 14462 | 6466 | 9759 | 2954 | 33 ¹ / ₄ | 13891 | 5858 | 9235 | 2989 | | 34 | 13091 | 5523 | 9166 | 2663 | 33 | 13512 | 5611 | 9082 | 2901 | | 33 | 11957 | 4772 | 8632 | 2443 | 32 | 12193 | 4770 | 8512 | 2612 | | 32 | 10991 | 4156 | 8145 | 2268 | 31 | 11103 | 4102 | 8001 | 2393 | | 31 | 10149 | 3640 | 7696 | 2126 | 30 | 10176 | 3556 | 7534 | 2220 | | 30 | 9405 | 3202 | 7278 | 2006 | 29 | 9371 | 3100 | 7104 | 2080 | | 29 | 8739 | 2824 | 6886 | 1905 | 28 | 8659 | 2713 | 6703 | 1963 | | 28 | 8135 | 2496 | 6517 | 1817 | 27 | 8021 | 2381 | 6326 | 1863 | | 27 | 7583 | 2209 | 6167 | 1740 | 26 | 7444 | 2093 | 5972 | 1776 | | 26 | 7076 | 1956 | 5834 | 1672 | 25 | 6917 | 1841 | 5636 | 1701 | | 25 | 6606 | 1732 | 5517 | 1611 | 24 | 6431 | 1620 | 5316 | 1634 | | 24 | 6168 | 1532 | 5213 | 1557 | 23 | 5982 | 1425 | 5011 | 1575 | | 23 | 5759 | 1354 | 4922 | 1507 | 22 | 5564 | 1252 | 4718 | 1522 | | 22
21
20 | 5374
5011
4668 | 1195
1052
923'3 | 4641
4371
4109 | 1463
1422
1384 | 21
20
19 | 5173
4805
4458 | 959.9
959.9 | 4437
4167
3906 | 1474
1430
1390 | | 19 | 4342 | 807·8 | 3856 | 1350 | 18 | 4130 | 727·1 | 3653 | 1354 | | 18 | 4031 | 703·9 | 3611 | 1320 | 17 | 3818 | 628·8 | 3409 | 1320 | | 17 | 3735 | 610·4 | 3372 | 1289 | 16 | 3521 | 540·8 | 3171 | 1289 | | 16 | 3451
3179 | 526·4
450·9 | 3140
2914 | 1261
1236 | 15
14
13 | 3238
2966
2706 | 391·9
329·4 | 2940
2716
2496 | 1260
1234
1209 | IX. (continued). | | | λ=0.6 | 5 | | | | λ=0.0 | 5 | | |----------------|------------------------|--------------------|------------------------|------------------------------|----------------
----------------------|----------------------|-------------------------|----------------------| | ø | (x) | (3.) | (1) | (v) | φ | (x) | (y) | (t) | (v) | | 12° | 2456 | 273.9 | 2282 | 1186 | 28° | 4096 | 996·7 | 4654 | 877 | | 11 | 2215 | 224.8 | 2073 | 1164 | 29 | 4230 | 10 7 0 | 4829 | 877 | | 10 | 1982 | 181.7 | 1868 | 1144 | 30 | 4365 | 1146 | 5005 | 878 | | 9 | 1757 | 144·1 | 1667 | 1126 | 31 | 4499 | 1225 | 5183 | 879 | | 8 | 1540 | 111·5 | 1470 | 1108 | 32 | 4634 | 1308 | 5363 | 880 | | 7 | 1329 | 83·7 | 1277 | 1091 | 33 | 4769 | 1394 | 5545 | 881 | | 6 | 1124 | 60.4 | 1086 | 1076 | 34 | 4905 | 1484 | 5729 | 883 | | 5 | 924 | 41.2 | 899 | 1061 | 35 | 5041 | 1578 | 5916 | 885 | | 4 | 730 | 25.9 | 714 | 1047 | 36 | 5178 | 1675 | 6106 | 887 | | 3
2
1 | 541
357
176 | 14·3
6·3
1·5 | 532
353
175 | 1034
1022
1011
1000 | 37
38
39 | 5316
5454
5593 | 1777
1883
1994 | 6299
6494
6694 | 889
892
894 | | 1 2 3 | 0
173
342
508 | 1.2
2.3
1.2 | 0
174
346
516 | 990
980
971 | 40
41
42 | 5734
5875
6017 | 2109
2230
2356 | 6897
7103
7314 | 898
901
905 | | 4 | 672 | 23.5 | 685 | 963 | 43 | 6160 | 2487 | 7528 | 909 | | 5 | 832 | 32.8 | 853 | 955 | 44 | 6305 | 2625 | 7747 | 913 | | 6 | 990 | 23.5 | 1020 | 947 | 45 | 6451 | 2768 | 7971 | 917 | | 7
8
9 | 1146
1299
1450 | 68·7
88·9 | 1186
1351
1515 | 940
934
928 | 46
47
48 | 6599
6748
6899 | 2918
3076
3240 | 8200
8435
8675 | 922
927
932 | | IO | 1599 | 136·5 | 1679 | 922 | 49 | 7051 | 3413 | 8921 | 938 | | II | 1747 | 163·8 | 1842 | 917 | 50 | 7206 | 3593 | 9174 | 944 | | I2 | 1893 | 193·5 | 2005 | 912 | 51 | 7362 | 37 ⁸ 3 | 9434 | 950 | | 13 | 2037 | 225.2 | 2167 | 907 | 52 | 7521 | 3982 | 9701 | 956 | | 14 | 2180 | 259.8 | 2330 | 903 | 53 | 7681 | 4192 | 9976 | 963 | | 15 | 2322 | 296.2 | 2493 | 899 | 54 | 7844 | 4412 | 10259 | 970 | | 16 | 2462 | 335.5 | 2655 | 896 | 55 | 8009 | 4643 | 10552 | 977 | | 17 | 2602 | 376.8 | 2818 | 893 | 56 | 8177 | 4888 | 10854 | 984 | | 18 | 2741 | 420.5 | 2981 | 890 | 57 | 8347 | 5145 | 11166 | 992 | | 19
20
21 | 2878
3015
3152 | 466·6
515·1 | 3144
3309
3473 | 887
885
883 | 58
59
60 | 8520
8696
8875 | 5417
5704
6008 | 11490
11825
12174 | 1000
1008
1016 | | 22 | 3288 | 619·6 | 3639 | 881 | 61 | 9057 | 6330 | 12536 | 1026 | | 23 | 3423 | 675·7 | 3805 | 880 | 62 | 9242 | 6671 | 12912 | 1035 | | 24 | 3558 | 734·3 | 3972 | 879 | 63 | 9431 | 7033 | 13305 | 1044 | | 25 | 3693 | 795.7 | 4141 | 878 | 64 | 9623 | 7418 | 13715 | 1054 | | 26 | 3827 | 859.9 | 4311 | 878 | 65 | 9819 | 7829 | 14145 | 1064 | | 27 | 3962 | 926.8 | 4482 | 877 | 66 | 10018 | 8266 | 14595 | 1074 | IX. (continued). | | | λ=0.0 | 5 | | | | λ=0.6 | 55 | | | |---|-------------------------|-------------------------|-------------------------|----------------------|---|----------------------------------|--------------------------------|----------------------------------|-----------------------------------|--| | φ | (x) | (y) | (t) | (v) | φ | (x) | (3) | (1) | (v) | | | 67°
68
69 | 10221
10428
10640 | 8734
9234
9770 | 15067
15564
16088 | 1084
1095
1105 | 27°
26
25 | 8546
7877
7276 | 2590
2256
1970 | 6508
6126
5768 | 2016
1904
1808 | | | 70
71
72 | 10855
11075
11298 | 10346
10967
11636 | 16642
17228
17852 | 1116
1127
1138 | 24
23
22 | 6732
6235
5776 | 1722
1505
1315 | 5429
5108
4802 | 1725
1653
1589 | | | 73
74
75 | 11527
11760
11997 | 12361
13147
14004 | 18516
19226
19988 | 1150
1161
1172 | 21
20
19 | 5352
4956
4585 | 1148
1000
868·8 | 4509
4228
3959 | 1532
1481
1434 | | | 76
77
78 | 12239
12486
12737 | 14940
15968
17102 | 20809
21698
22666 | 1183
1194
1205 | 18
17
16 | 4237
3908
3596 | 752·1
648·4
556·0 | 3699
3447
3204 | 1392
1354
1319 | | | 79
80 | 12993
13253 | 18360
19765 | 23726
24897 | 1216
1226 | 15 | 3300 | 473'9 | 2968 | 1287 | | | _ | | λ=0.0 | 55 | | λ=0.4 | | | | | | | φ | (x) | (y) | (t) | (v) | φ | (x) | (y) | (t) | (v) | | | 34½
34⅓
34 | 21805
20392
19244 | 10898
9932
9153 | 11170
10869
10599 | 6030
5379
4901 | 33‡°
33
32¾
32½ | 24731
22230
20481
19135 | 12342
10709
9579
8717 | 11197
10803
10475
10187 | 8443
6832
5889
5250 | | | 33 ³
33 ³
33 ¹ | 18276
17441
16705 | 8504
7948
7463 | 10352
10122
9908 | 4530
4231
3985 | 32 ¹ / ₃₂
31 ³ / ₄ | 18041
17120
16324 | 8024
7445
6951 | 9928
9692
9472 | 4782
44 2 0
4128 | | | 33
323
323
322 | 16049
15457
14917 | 7035
6652
6307 | 9706
9514
9332 | 3776
3597
3440 | 31½
31¼
31 | 15625
15000
14437 | 6520
6139
5799 | 9267
9074
8891 | 3887
3683
3508 | | | 321
32
313 | 14421
13963
13538 | 5992
5705
5440 | 9158
8991
8831 | 3302
3180
3069 | 30 ³
30 ¹
30 ¹ | 13924
13452
13017 | 5492
5213
4957 | 8716
8550
8390 | 3355
3221
3101 | | | 31½
31¼
31 | 13140
12767
12416 | 5195
4968
4756 | 8676
8527
8382 | 2969
2879
2796 | 30
29 ³
29 ¹ / ₂ | 12612
12234
11879 | 4722
4505
4303 | 8236
8088
7945 | 2993
2896
2807 | | | 30
29
28 | 11187
10170
9302 | 4031
3455
2984 | 7845
7361
6918 | 2522
2315
2150 | 29.1
29
28 | 11545
11230
10118 | 4115
3940
3336 | 7807
7672
7171 | 2726
2652
2404 | | IX. (continued). | | | y = 0. | 7 | | | | y = 0 | 7 | | |------------------|----------------------|----------------------|----------------------|------------------------------|-----------------|----------------------|----------------------|----------------------|-------------------| | φ | (x) | (y) | (1) | (v) | φ | (x) | (y) | (t) | (7') | | 27°
26
25 | 9190
8393
7696 | 2852
2455
2122 | 6718
6301
5915 | 2214
2063
1938 | 13°
14
15 | 1999
2137
2274 | 253.1
288.3 | 2147
2306
2466 | 891
886
881 | | 24 | 7077 | 1840 | 5553 | 1833 | 16 | 2409 | 325.7 | 2625 | 877 | | 23 | 6519 | 1597 | 5213 | 1743 | 17 | 2542 | 365.3 | 2784 | 873 | | 22 | 6013 | 1388 | 4891 | 1666 | 18 | 2675 | 407.1 | 2943 | 869 | | 21 | 5548 | 1205 | 4585 | 1597 | 19 | 2806 | 451.0 | 3103 | 866 | | 20 | 5120 | 1044 | 4293 | 1537 | 20 | 2937 | 497.2 | 3263 | 863 | | 19 | 4722 | 903·6 | 4014 | 1483 | 21 | 3066 | 545.7 | 3424 | 860 | | 18 | 4351 | 779'4 | 3745 | 1435 | 22 | 3195 | 596·4 | 3585 | 858 | | 17 | 4003 | 669'6 | 3487 | 1391 | 23 | 3323 | 649·4 | 3747 | 856 | | 16 | 3675 | 572'4 | 3237 | 1351 | 24 | 3451 | 704·9 | 3909 | 854 | | 15 | 3365 | 486·5 | 2996 | 1314 | 25 | 3578 | 762·8 | 4073 | 852 | | 14 | 3071 | 410·5 | 2762 | 1281 | 26 | 3704 | 823·2 | 4238 | 851 | | 13 | 2792 | 343·4 | 2535 | 1250 | 27 | 3831 | 886·1 | 4403 | 850 | | 12 | 2525 | 284·2 | 2314 | 1222 | 28 | 3957 | 951·7 | 4571 | 849 | | 11 | 2270 | 232·4 | 2099 | 1196 | 29 | 4082 | 1020 | 4739 | 849 | | 10 | 2026 | 187·1 | 1889 | 1171 | 30 | 4208 | 1091 | 4909 | 849 | | 9 | 1791 | 147·8 | 1683 | 1148 | 31 | 4334 | 1165 | 5081 | 849 | | 8 | 1565 | 114·0 | 1483 | 1127 | 32 | 4460 | 1242 | 5255 | 849 | | 7 | 1347 | 85·3 | 1286 | 1107 | 33 | 4585 | 1323 | 5431 | 850 | | 6
5
4 | 933
736 | 61·3
41·7
26·2 | 1093
901
717 | 1039
1072
1055 | 34
35
36 | 4712
4838
4965 | 1406
1493
1583 | 5609
5789
5972 | 851
852
853 | | 3
2
1
0 | 544
358
177 | 14.4
6.3
1.2 | 534
354
176 | 1040
1026
1013
1000 | 37
38
39 | 5092
5219
5348 | 1677
1775
1877 | 6157
6345
6536 | 854
856
858 | | 1 | 172 | 13.1 | 173 | 988 | 40 | 5477 | 1984 | 6731 | 861 | | 2 | 341 | | 345 | 977 | 41 | 5606 | 2094 | 6928 | 863 | | 3 | 506 | | 515 | 967 | 42 | 5737 | 2210 | 7130 | 866 | | 4 | 667 | 23.0 | 683 | 957 | 43 | 5868 | 2330 | 7335 | 869 | | 5 | 825 | 35.4 | 850 | 947 | 44 | 6001 | 2456 | 7545 | 872 | | 6 | 980 | 50.3 | 1015 | 939 | 45 | 6134 | 2587 | 7759 | 876 | | 7 | 1133 | 67·7 | 1179 | 931 | 46 | 6268 | 2724 | 7977 | 880 | | 8 | 1283 | 87·4 | 1342 | 923 | 47 | 6404 | 2867 | 8201 | 884 | | 9 | 1430 | 109·5 | 1504 | 916 | 48 | 6541 | 3016 | 8430 | 888 | | 10 | 1575 | 189.1 | 1666 | 909 | 49 | 6679 | 3173 | 8664 | 893 | | 11 | 1719 | 190.3 | 1827 | 903 | 50 | 6819 | 3336 | 8905 | 897 | | 12 | 1860 | 133.8 | 1987 | 897 | 51 | 6961 | 3508 | 9152 | 902 | IX. (continued). | | | λ=0.2 | 7 | | | 2 | λ=0. | 75 | | |----------------|-------------------------|-------------------------|-------------------------|----------------------|---|-------------------------|----------------------|-----------------------|----------------------| | φ | (x) | (y) | (1) | (v) | φ | (x) | ('') | (1) | (v) | | 52° | 7104 | 3688 | 9405 | 908 | 29 ³ ° | 14298 | 5528 | 8587 | 3678 | | 53 | 7248 | 3876 | 9666 | 913 | 29 ¹ ⁄ ₂ | 13737 | 5209 | 8407 | 3496 | | 54 | 7395 | 4074 | 9935 | 919 | 29 ¹ ⁄ ₄ | 13228 | 4923 | 8236 | 3338 | | 55 | 7543 | 4282 | 10212 | 925 | 29 | 12762 | 4663 | 8073 | 3199 | | 56 | 7693 | 4501 | 10498 | 932 | 28 ³ / ₄ | 12333 | 4426 | 7917 | 3076 | | 57 | 7846 | 4732 | 10794 | 938 | 28 ¹ / ₂ | 11935 | 4209 | 7766 | 2966 | | 58 | 8000 | 4974 | 11100 | 945 | 281 | 11564 | 4009 | 7622 | 286 7 | | 59 | 8157 | 5231 | 11417 | 952 | 28 | 11217 | 3823 | 7482 | 2777 | | 60 | 8317 | 5501 | 11745 | 959 | 27 | 10014 | 3196 | 6966 | 2486 | | 61 | 8479 | 5787 | 12087 | 96
7 | 26 | 9030 | 2706 | 6503 | 2269 | | 62 | 8643 | 6090 | 12442 | 975 | 25 | 8199 | 2309 | 6081 | 2100 | | 63 | 8810 | 6412 | 12812 | 983 | 24 | 74 80 | 1981 | 5692 | 1964 | | 64 | 8980 | 6752 | 13198 | 991 | 23 | 6846 | 1705 | 5329 | 1850 | | 65 | 9153 | 7115 | 13601 | 999 | 22 | 6280 | 1470 | 4989 | 1755 | | 66 | 9329 | 7501 | 14024 | 1008 | 21 | 5768 | 1269 | 4667 | 1672 | | 67 | 9508 | 7912 | 14467 | 1017 | 20 | 5301 | 1094 | 4363 | 1600 | | 68 | 9690 | 8352 | 14933 | 1026 | 19 | 4872 | 942.0 | 4072 | 1537 | | 69 | 9875 | 8822 | 15424 | 1035 | 18 | 4474 | 809.1 | 3795 | 1481 | | 70 | 10064 | 93 27 | 15942 | 1044 | 17 | 4105 | 692°5 | 3528 | 1430 | | 71 | 10256 | 9870 | 16491 | 1054 | 16 | 3759 | 590°0 | 3272 | 1385 | | 72 | 10451 | 10454 | 17073 | 1063 | 15 | 3434 | 499°9 | 3025 | 1344 | | 73
74
75 | 10651
10853
11060 | 11086
11771
12516 | 17693
18356
19066 | 1073
1083
1092 | | | λ = 0.{ | 3 | | | 76
77
78 | 11270
11483
11701 | 13328
14219
15200 | 19831
20659
21560 | 1102
1111
1121 | φ | (x) | (3) | (t) | (71) | | 79
80 | 11922
12146 | 16288
17501 | 22546
23633 | 1130 | 30°
29 ³ / ₄
29 ¹ / ₂ | 20497
18699
17357 | 8S50
7817
7054 | 9720
9398
9119 | 6999
5914
5214 | | | | λ=0.2 | 75 | | 29½
29‡
29 | 16286 | 6451 | 8871
8645 | 4714 | | φ | (x) | (y) | (t) | (2') | 283 | 15395 | 5955
5534 | 8437 | 4335 | | 31°
304 | 18513
17376 | 8007
7327 | 9693
9433 | 5376
4855 | 28½
28½
28
28 | 13967
13376
12845 | 5171
4851
4567 | \$243
8060
7887 | 3787
3580
3404 | | 30½ | 16433 | 6768 | 9197 | 4460 | 27 ³ | 12362 | 4312 | 7723 | 3251 | | 30½ | 15626 | 6296 | 8980 | 4147 | 27 ¹ / ₂ | 11920 | 4081 | 7566 | 3116 | | 30 | 14922 | 5887 | 8777 | 3892 | 27 ¹ / ₄ | 11513 | 3870 | 7416 | 2997 | ${\bf IX.}\ (continued).$ | | | λ=0.8 | 3 | | |) | \=o:8 | 35 | | |---|-------------------------|-------------------------|------------------------|------------------------------|--|---|--------------------------------------|--------------------------------------|--------------------------------------| | φ | (x) | (y) | (<i>t</i>) | (v) | φ | (x) | (y) | (t) | (v) | | 27°
263
261
261 | 11135
10783
10452 | 3676
3498
3332 | 7272
7133
6999 | 2891
2795
2707 | 28½°
28
27¾ | 16942
15809
14885 | 6586
5981
5491 | 8740
8488
8260 | 5392
4823
4402 | | 26 ¹ / ₂₆
25 ³ / ₄ | 10142
9849
9572 | 3178
3035
2900 | 6869
6743
6621 | 2628
2554
2487 | 27½
27½
27½
27 | 14103
13426
12830 | 5082
4732
4426 | 8052
7859
7677 | 4075
3810
3591 | | 25½
25½
25½
25 | 9309
9059
8820 | 2774
2655
2543 | 6502
6386
6274 | 2425
2367
2312 | 26 ³ / ₄
26 ¹ / ₂
26 ¹ / ₄ | 12296
11814
11374 | 4156
3914
3696 | 7506
7344
7189 | 3406
3246
3106 | | 24
23
22 | 7962
7228
6585 | 2152
1832
1566 | 5849
5458
5096 | 2127
1980
1860 | 26
25 ³ / ₄
25 ¹ / ₂ | 10970
10596
10248 | 349 7
3316
3149 | 7042
6900
6763 | 2984
2874
2775 | | 21
20
19 | 6015
5502
5036 | 1341
1150
984·5 | 4757
4437
4135 | 1759
1672
1597 | 25 ¹ / ₂₅
25
24 | 9923
9617
8555 | 2995
2852
2367 | 6631
6504
6031 | 2686
2605
2340 | | 18
17
16 | 4609
4215
3849 | 841.6
717.3
608.9 | 3847
3572
3309 | 1532
1474
1422 | 23
22
21 | 7682
6940
6296 | 1987
1679
1426 | 5605
5216
4855 | 2142
1986
1860 | | 15
14
13 | 3507
3187
2886 | 358·9
358·9 | 3055
2811
2575 | 1376
1334
1296 | 20
19
18 | 5726
5217
4755 | 1213
1032
877:5 | 4519
4202
3903 | 1755
1665
1589 | | 12
11
10 | 2601
2330
2073 | 295.6
240.6
192.9 | 2347
2125
1909 | 1261
1229
1200 | 17
16
15 | 4333
3945
3585 | 744'4
629'3
529'5 | 3619
3347
3087 | 1522
1463
1410 | | 9
8
7 | 1827
1592
1367 | 151·8
116·7
87·0 | 1700
1495
1295 | 1173
1148
1124 | | | λ=0.6 | 9 | | | 6
5
4 | 943
742 | 62·3
42·3
26·4 | 1099
908
720 | 1103
1083
1064 | φ | (x) | (y) | (t) | (v) | | 3
2
1
0 | 547
359
177
0 | 14.6
6.3
1.6
0 | 535
354
176
0 | 1046
1030
1015
1000 | 27½
27¼
27
26¾
26½ | 19528
17512
16090
14992
14096 | 7703
6658
5930
5373
4924 | 8909
8575
8296
8050
7829 | 7561
6150
5315
4747
4328 | | | 4 | | | | 26‡
26
25¾ | 13341
12688
12113 | 4550
4229
3950 | 7627
7439
7262 | 4003
3742
3525 | IX. (continued). | | | y = 0.δ |) | | | | y=0.è |) | | |---------------------------------|-------------------------|-------------------------|------------------------|------------------------------|----------------|----------------------|--|----------------------|-------------------| | φ | (x) | (y) | (1) | (v) | φ | (.v) | (3) | (t) | (v) | | 25½°
25½
25 | 11599
11135
10712 | 3704
3484
3285 | 7097
6939
6789 | 3342
3184
3047 | 7°
8 | 1109
1253
1393 | 65·8
84·7
105·7 | 1167
1326
1485 | 912
902
893 | | 24 ³ / ₄ | 10323 | 3105 | 6645 | 2926 | 10 | 1531 | 128·8 | 1642 | 884 | | 24 ¹ / ₂ | 9963 | 2940 | 6508 | 2818 | 11 | 1666 | 153·8 | 1798 | 876 | | 24 ¹ / ₄ | 9629 | 2789 | 6375 | 2721 | 12 | 1799 | 180·8 | 1953 | 869 | | 24 | 9316 | 2649 | 6247 | 2633 | 13 | 1930 | 209·8 | 2108 | 861 | | 23 ³ / ₄ | 9023 | 2519 | 6123 | 2553 | 14 | 2058 | 240·6 | 2262 | 855 | | 23 ¹ / ₂ | 8747 | 2398 | 6004 | 2480 | 15 | 2185 | 273·4 | 2416 | 849 | | 23 ¹ / ₂₃ | 8486 | 2285 | 5887 | 2413 | 16 | 2310 | 308·0 | 2569 | 843 | | 23 | 8238 | 2179 | 5774 | 2351 | 17 | 2433 | 344·5 | 2722 | 838 | | 22 | 7361 | 1816 | 5351 | 2142 | 18 | 2555 | 382·9 | 2875 | 833 | | 21 | 6621 | 1524 | 4965 | 1981 | 19 | 2675 | 423·1 | 3027 | 828 | | 20 | 5981 | 1285 | 4608 | 1851 | 20 | 2794 | 465·3 | 3180 | 824 | | 19 | 5418 | 1085 | 4276 | 1743 | 21 | 2912 | 509·3 | 3333 | 820 | | 18
17
16 | 4916
4462
4049 | 917·1
774·0
651·4 | 3963
3668
3388 | 1652
1574
1506 | 22
23
24 | 3028
3144
3259 | 555°3
653°2 | 3487
3641
3795 | 816
813
810 | | 15 | 3668 | 545·8 | 3121 | 1447 | 25 | 3373 | 705·2 | 3950 | 807 | | 14 | 3316 | 454·8 | 2865 | 1394 | 26 | 3487 | 759·3 | 4106 | 805 | | 13 | 2989 | 376·1 | 2619 | 1347 | 27 | 3599 | 815·5 | 4263 | 803 | | 12
11
10 | 2682
2394
2123 | 308·1
308·1 | 2382
2153
1932 | 1304
1266
1230 | 28
29
30 | 3711
3823
3934 | 873 [.] 9
934 [.] 5
997 [.] 5 | 4420
4579
4739 | 801
799
798 | | 9 | 1865 | 156·0 | 1717 | 1198 | 31 | 4045 | 1063 | 4901 | 797 | | 8 | 1621 | 119·4 | 1508 | 1169 | 32 | 4156 | 1131 | 5064 | 796 | | 7 | 1388 | 88·8 | 1305 | 1142 | 33 | 4267 | 1201 | 5228 | 796 | | 6 | 1165 | 63.4 | 1106 | 1117 | 34 | 4377 | 1274 | 5395 | 795 | | 5 | 952 | 42.8 | 912 | 1094 | 35 | 4488 | 1350 | 5563 | 795 | | 4 | 747 | 26.7 | 723 | 1072 | 36 | 4598 | 1429 | 5734 | 795 | | 3
2
1
0 | 550
361
177
0 | 14·7
6·4
1·6 | 537
355
176
0 | 1052
1034
1016
1000 | 37
38
39 | 4708
4819
4930 | 1511
1595
1684 | 5907
6082
6259 | 796
796
797 | | 1 | 172 | 1.5 | 173 | 985 | 40 | 5041 | 1775 | 6440 | 799 | | 2 | 339 | 2.9 | 344 | 971 | 41 | 5153 | 1870 | 6623 | 800 | | 3 | 501 | 1.2 | 512 | 957 | 42 | 5264 | 1969 | 6810 | 801 | | 4 | 659 | 22.6 | 678 | 945 | 43 | 5377 | 2072 | 7000 | 803 | | 5 | 813 | 34.7 | 843 | 933 | 44 | 5490 | 2180 | 7193 | 805 | | 6 | 963 | 49.1 | 1006 | 922 | 45 | 5603 | 2291 | 7391 | 808 | IX. (continued). | | | y = 0.8 |) | | | , | λ=o.č | 95 | • | |----------------|----------------------|-----------------------|-------------------------|-------------------|---|-------|-------|------|------| | φ | (x) | (y) | (t) | (v) | φ | (x) | (y) | (t) | (v) | | 46° | 5717 | 2407 | 7592 | 810 | 26° | 16125 | 5758 | 8057 | 5724 | | 47 | 5832 | 2528 | 7798 | 813 | 25 ³ / ₄ | 14878 | 5153 | 7798 | 5007 | | 48 | 5948 | 2655 | 8008 | 816 | 25 ¹ / ₂ | 13895 | 4682 | 7569 | 4506 | | 49 | 6065 | 2787 | 8223 | 819 | 25 ¹ / ₂₅ | 13084 | 4297 | 7361 | 4129 | | 50 | 6182 | 2924 | 8444 | 823 | 25 | 12395 | 3974 | 7169 | 3832 | | 51 | 6301 | 3068 | 8670 | 826 | 24 ³ / ₄ | 11794 | 3696 | 6991 | 3592 | | 52 | 6421 | 3219 | 8902 | 830 | 24½ | 11263 | 3452 | 6823 | 3391 | | 53 | 6541 | 3376 | 9141 | 834 | 24¼ | 10787 | 3236 | 6665 | 3220 | | 54 | 6664 | 3541 | 9386 | 838 | 24 | 10355 | 3043 | 6514 | 3073 | | 55 | 678 7 | 3714 | 9639 | 843 | $23\frac{3}{4} \\ 23\frac{1}{2} \\ 23\frac{1}{4}$ | 9961 | 2868 | 6371 | 2944 | | 56 | 6912 | 3895 | 9899 | 847 | | 9597 | 2709 | 6234 | 2830 | | 57 | 7 038 | 4086 | 10168 | 852 | | 9261 | 2564 | 6102 | 2727 | | 58 | 7165 | 4286 | 10446 | 857 | 23 | 8947 | 2430 | 5974 | 2636 | | 59 | 7294 | 4497 | 10733 | 863 | 22 | 7872 | 1984 | 5506 | 2343 | | 60 | 7425 | 4719 | 11031 | 869 | 21 | 7002 | 1641 | 5087 | 2129 | | 61 | 7558 | 4953 | 11340 | 874 | 20 | 6273 | 1368 | 4706 | 1964 | | 62 | 7692 | 5200 | 11661 | 880 | 19 | 5645 | 1146 | 4355 | 1833 | | 63 | 7828 | 5462 | 11995 | 886 | 18 | 5094 | 961·5 | 4028 | 1724 | | 64 | 7966 | 5739 | 12343 | 893 | 17 | 4603 | 806·5 | 3721 | 1633 | | 65 | 8107 | 6033 | 12706 | 899 | 16 | 4160 | 675·3 | 3431 | 1555 | | 66 | 8249 | 6345 | 13086 | 906 | 15 | 3757 | 563·4 | 3156 | 1487 | | 67
68
69 |
8393
8540
8689 | 6677
7031
7409 | 13484
13902
14342 | 913
920
927 | | | | | | | 70
71
72 | 8840
8993
9149 | 7814
8247
8714 | 14806
15296
15817 | 934
942
949 | | | | | | | 73
74
75 | 9308
9469
9633 | 9217
9761
10351 | 16370
16960
17593 | 958
964
972 | | | | | | IX. (continued). | | | $\gamma = 1$ | 0 | | | | $\lambda = 1$ | ľ | | |-------|----------------|--------------|--------------|--------------|-----------|--------------|----------------|--------------|------------| | φ | (x) | (1') | (1) | (v) | φ | (x) | (יע) | (t) | (v) | | 2510 | 17685 | 6312 | 8079 | 7314 | 23‡° | 15625 | 5037 | 7305 | 6688 | | 25 | 15804 | 5430 | 7763 | 5931 | 23 | 14026 | 4353
3868 | 7018 | 5513 | | 243 | 14484 | 4818 | 7499 | 5118 | 223 | 12875 | 3868 | 6775 | 4797 | | 241 | 13467
12638 | 4351
3976 | 7267
7059 | 4567
4162 | 221 | 11976 | 3493 | 6561 | 4302 | | 241 | 12030 | 3970 | 7039 | 4102 | 221 | 11239 | 3189 | 6367 | 3934 | | 24 | 11940 | 3664 | 6868 | 3848 | 22 | 10614 | 2935 | 6189 | 3646 | | 233 | 11337 | 3397 | 6690 | 3595 | | | '' | | | | 231 | 10806 | 3164 | 6524 | 3386 | 213 | 10071 | 2717 | 6023 | 3413 | | | | | 6-60 | | 2112 | 9592 | 2527 | 5867 | 3219 | | 231 | 10332
9904 | 2959 | 6368 | 3210
3058 | 214 | 9163 | 2359 | 5720 | 3055 | | 23 | 9514 | 2777 | 6077 | 2926 | 21 | 8775 | 2209 | 5581 | 2913 | | , | 75.4 | | , | / | 203 | 8421 | 2074 | 5448 | 2700 | | 221 | 9156 | 2462 | 5942 | 2809 | 201 | 8094 | 1951 | 5320 | 2680 | | 221 | 8824 | 2326 | 5812 | 2705 | | | | 0 | | | 22 | 8516 | 2201 | 5687 | 2612 | 201 | 7792 | 1839 | 5198
5080 | 2583 | | 213 | 8228 | 2085 | 5566 | 2528 | 20
193 | 7511 | 1736
1641 | 4966 | 2496 | | 213 | 7957 | 1978 | 5449 | 2451 | 194 | /-40 | 1041 | 4900 | 24.0 | | 211 | 7703 | 1878 | 5336 | 2381 | 191 | 7002 | 1553 | 4856 | 2343 | | | | | | - | 19‡ | 6769 | 1471 | 4749 | 2277 | | 21 | 7462 | 1785 | 5226 | 2317 | 19 | 6549 | 1395 | 4645 | 2216 | | 20 | 6613 | 1468 | 4815 | 1938 | 18 | 5771 | 1,725 | 4257 | 2013 | | 19 | 5903 | 1210 | 4442 | 1930 | 17 | 5119 | 928.8 | 4257
3903 | 1857 | | 18 | 5293 | 1012 | 4098 | 1806 | 16 | 4558 | 762.5 | 3577 | 1732 | | 17 | 4758 | 842.8 | 3777 | 1698 | | | | | 1 | | 16 | 4281 | 701.6 | 3477 | 1608 | 15 | 4066 | 625.8 | 3273 | 1630 | | 15 | 3852 | 582.5 | 3193 | 1530 | 14 | 3627
3231 | 512·3
417·2 | 2987
2717 | 1544 | | 14 | 3461 | 481.2 | 2923 | 1530 | 1,2 | 3231 | 41/2 | 2/1/ | 1470 | | 13 | 3103 | 395.4 | 2666 | 1404 | 12 | 2870 | 337.2 | 2460 | 1406 | | | | | | , , | 11 | 2539 | 269.8 | 2215 | 1350 | | 12 | 2772 | 321.9 | 2419 | 1352 | 10 | 2233 | 213.0 | 1979 | 1300 | | 11 01 | 2464
2176 | 259.2 | 1955 | 1306 | | 1948 | 165.2 | 1752 | 1256 | | 10 | 21/0 | 205 0 | 1955 | 1204 | 9
8 | 1682 | 165.3 | 1753 | 1256 | | 9 | 1905 | 160.2 | 1735 | 1226 | 7 | 1432 | 92.5 | 1325 | 1180 | | 8 | 1650 | 122.4 | 1521 | 1192 | | | - | | | | 7 | 1409 | 90.6 | 1314 | 1160 | 6 | 1195 | 65.6 | 1120 | 1147 | | 6 | 1180 | 64.5 | | 1130 | 5 | 972 | 44.0 | 922 | 1117 | | 5 | 962 | 43.4 | 917 | 1132 | 4 | 759 | 27.3 | 729 | 1090 | | 1 4 | 753 | 27.0 | 726 | 1001 | 3 | 557 | 14.9 | 540 | 1065 | | | | | | | 3 2 | 363 | 6.4 | 356 | 1041 | | 3 | 554 | 14.8 | 539 | 1058 | 1 | 178 | 1.6 | 176 | 1020 | | 2 | 362 | 6.4
1.6 | 356 | 1038 | 0 | 0 | 0 | 0 | 1000 | | 1 0 | 178 | 0 | 176 | 1000 | 1 2 | 171
336 | 1·5
5·8 | 173
343 | 981
964 | | | | | | | 3 | 496 | 12.8 | 510 | 948 | | 1 | | | , | 1 | ľ | 1,7 | | 1 3.5 | 1 | IX. (continued). | | | $\lambda = 1$ | I | | | | y = 1. | I | | |----------------|----------------------|-------------------------|------------------------|-------------------|--|------------------------------|------------------------------|----------------------------------|--------------------------| | φ | (x) | (1) | (t) | (v) | φ | (x) | (1) | (t) | (v) | | 4° 5 6 | 650
800
946 | 22·2
34·0
48·0 | 674
836
996 | 933
919
906 | 43°
44
45 | 4977
5075
5174 | 1869
1962
2059 | 6714
6895
7079 | 751
752
753 | | 7
8
9 | 1087
1224
1358 | 64·1
82·2
102·2 | 1155
1311
1465 | 894
882
871 | 46
47
48 | 5273
5373
5473 | 2160
2265
2375 | 7267
7458
7654 | 755
757
759 | | 10
11
12 | 1489
1617
1743 | 124·I
147·9
173·3 | 1619
1771
1922 | 861
852
843 | 49
50
51 | 5574
5676
5778 | 2489
2608
2731 | 7854
8059
8269 | 761
764
766 | | 13
14
15 | 1865
1986
2104 | 200.2
220.4
260.0 | 207.1
222.1
2369 | 834
827
819 | 52
53
54 | 5881
5984
6089 | 2861
2996
3137 | 8484
8705
8932 | 769
772
776 | | 16
17
18 | 2220
2335
2447 | 361.6
326.1
361.6 | 2517
2664
2811 | 812
806
800 | 55
56
57 | 6194
6301
6408 | 3285
3440
3602 | 9166
9406
9654 | 779
783
787 | | 19
20
21 | 2558
2667
2775 | 398·7
437·4
477·8 | 2958
3104
3251 | 794
789
784 | 58
59
60 | 6517
6626
6737 | 3773
3952
4140 | 9911
10175
10449 | 791
795
799 | | 22
23
24 | 2882
2988
3092 | 263.6
213.0 | 3397
3544
3692 | 780
776
772 | 61
62
63 | 6849
6963
7078 | 4338
4547
4768 | 10734
11029
11335 | 804
809
814 | | 25
26
27 | 3196
3299
3400 | 656·2
705·2
755·9 | 3840
3988
4137 | 768
765
762 | 64
65
66 | 7194
7312
7431 | 5002
5249
5511 | 11655
11988
12336 | 819
824
830 | | 28
29
30 | 3501
3602
3702 | 808·5
863·0
919·5 | 4286
4437
4589 | 760
757
755 | 67
68
69
70 | 7552
7675
7799
7926 | 5789
6086
6401
6739 | 12701
13083
13485
13909 | 836
841
847
853 | | 31
32
33 | 3801
3900
3998 | 978·0
1039
1101 | 4742
4896
5051 | 753
752
751 | - 1 | | y = 1.5 | | | | 34
35
36 | 4097
4195
4293 | 1166
1234
1303 | 5208
5367
5527 | 750
749
748 | φ | (x) | (y) | (t) | (21) | | 37
38
39 | 4390
4488
4585 | 1376
1451
1528 | 5690
5854
6021 | 748
748
748 | 21½°
21¼ | 13864 | 4059
3524 | 6640
6378 | 6133 | | 40
41
42 | 4683
4781
4879 | 1609
1692
1779 | 6190
6362
6536 | 748
749
750 | 21
21
20
20
20
20
20 | 11490
10694
10035 | 3524
3135
2831
2583 | 6154
5954
5773 | 45°3
4°59
37°24 | IX. (continued). | | | $\lambda = 1$ | 2 | | | | $\lambda = i$ | 3 | | |-------------|------------------------|-------------------------|------------------------|------------------------------|------------------|------------------------|-------------------------|------------------------|-------------------------------------| | φ | (x) | (v) | (1) | (7') | φ | (x) | (3) | (1) | (v) | | 201° | 9473 | 2375 | 5606 | 3460 | 183° | 8569 | 1966 | 5127 | 3327 | | 20 | 8984 | 2195 | 5450 | 3246 | 18½ | 8116 | 1813 | 4978 | 3122 | | 193 | 8550 | 2038 | 5304 | 3065 | 18½ | 7714 | 1679 | 4839 | 2951 | | 19½ | 8161 | 1899 | 5166 | 2912 | 18 | 7354 | 1561 | 4707 | 2804 | | 19½ | 7807 | 1775 | 5034 | 2780 | 17章 | 7026 | 1456 | 4581 | 2678 | | 19 | 7484 | 1663 | 4908 | 2664 | 17章 | 6726 | 1360 | 4461 | 2567 | | 183 | 7186 | 1561 | 4788 | 2562 | 17 1 | 6450 | 1274 | 4346 | 2469 | | 18½ | 6910 | 1468 | 4672 | 2470 | 17 | 6193 | 1195 | 4235 | 2381 | | 18¼ | 6653 | 1383 | 4561 | 2388 | 16 1 | 5954 | 1122 | 4129 | 2302 | | 18 | 6412 | 1304 | 4453 | 2313 | 16½ | 5730 | 936.0 | 4026 | 2230 | | 17 | 5578 | 1041 | 4°53 | 2071 | 16¼ | 5520 | 993.2 | 3926 | 2165 | | 16 | 4895 | 838·2 | 3693 | 1891 | 16 | 5321 | 1022 | 3829 | 2104 | | 15 | 4317 | 677·8 | 3363 | 1752 | 15 | 4622 | 742.0 | 3466 | 1906 | | 14 | 3817 | 548·2 | 3058 | 1639 | 14 | 4039 | 591.1 | 3137 | 1754 | | 13 | 3375 | 442·1 | 2773 | 1545 | 13 | 3539 | 470.9 | 2833 | 1634 | | 12 | 2980 | 354'4 | 2503 | 1466 | 12 | 3101 | 373·8 | 2550 | 1536 | | 11 | 2622 | 281'5 | 2248 | 1399 | 11 | 2712 | 294·5 | 2284 | 1453 | | 10 | 2295 | 220'9 | 2005 | 1340 | 10 | 2361 | 229·5 | 2033 | 1383 | | 9 | 1994 | 170°5 | 1773 | 1288 | 9 | 2043 | 176·1 | 1793 | 1322 | | 8 | 1715 | 128°8 | 1550 | 1241 | 8 | 1750 | 132·3 | 1565 | 1269 | | 7 | 1455 | 94°5 | 1335 | 1200 | 7 | 1479 | 96·7 | 1346 | 1222 | | 6 | 1211 | 66·7 | 1128 | 1163 | 6 | 1228 | 68·o | 1135 | 1180 | | 5 | 982 | 44·7 | 927 | 1130 | 5 | 993 | 45·3 | 931 | 1142 | | 4 | 765 | 27·6 | 732 | 1099 | 4 | 772 | 27·9 | 734 | 1108 | | 3
2
I | 560
365
178
0 | 15.0
6.2
1.6
0 | 542
357
176
0 | 1071
1046
1022
1000 | 3
2
1
0 | 563
366
179
0 | 15·1
6·5
1·6
0 | 543
358
177
0 | 1078
1049
1024
1000
978 | | | | λ = ι ·ͺ | 3 | | 3 4 | 334
491
642 | 5.8
12.6 | 342
507
670 | 958
939
922 | | φ | (x) | (J') | (1) | (v) | 5 | 788
929 | 33·3
46·9 | 830
988 | 906
891 | | 20° | 12597 | 3391
2940 | 6108
5860 | 5844 | 7
8
9 | 1065
1198
1326 | 62·4
79·8
99·0 | 1143
1296
1447 | 877
864
852 | | 19½ | 10428 | 2611 | 5647 | 4316 | 10 | 1451 | 119.9 | 1597 | 840 | | 19½ | 9696 | 2354 | 5458 | 3896 | 11 | 1572 | 142.4 | 1745 | 829 | | 19 | 9088 | 2143 | 5286 | 3578 | 12 | 1691 | 166.5 | 1892 | 819 | IX. (continued). | | | $\lambda = 1.3$ | 3 | | | | $\lambda = 1.3$ | 3 | | |----------------|----------------------|-------------------------|----------------------|-------------------|--------------------------------|----------------------|-----------------|----------------------|----------------------| | φ | (x) | (1) | (t) | (v) | φ | (x) | (y) | (t) | (v) | | 13° 14 | 1807 | 192·2 | 2038 | 810 | 52° | 5441 | 2578 | 8129 | 720 | | | 1920 | 219·4 | 2182 | 801 | 53 | 5532 | 2696 | 8335 | 722 | | | 2031 |
248·1 | 2326 | 793 | 54 | 5623 | 2820 | 8548 | 725 | | 16 | 2140 | 278·2 | 2469 | 785 | 55 | 5715 | 2949 | 8766 | 728 | | 17 | 2246 | 309·8 | 2611 | 778 | 56 | 5808 | 3084 | 8991 | 731 | | 18 | 2351 | 342·8 | 2753 | 771 | 57 | 5902 | 3226 | 9222 | 734 | | 19 | 2454 | 377°2 | 2894 | 765 | 58 | 5996 | 3374 | 9461 | 737 | | 20 | 2555 | 413°1 | 3035 | 759 | 59 | 6092 | 3530 | 9708 | 741 | | 21 | 2655 | 450°4 | 3176 | 753 | 60 | 6188 | 3693 | 9964 | 745 | | 22 | 2753 | 489·1 | 3317 | 748 | 61 | 6285 | 3865 | 10228 | 748 | | 23 | 2850 | 529·3 | 3458 | 743 | 62 | 6383 | 4046 | 10503 | 752 | | 24 | 2946 | 571·0 | 3599 | 739 | 63 | 6483 | 4237 | 10788 | 757 | | 25
26
27 | 3041
3135
3228 | 614.5
628.9
702.1 | 3740
3882
4024 | 735
731
727 | 64
65 | 6583
6685 | 4439
4652 | 11085
11394 | 761
766 | | 28
29
30 | 3320
3411
3502 | 753.0
802.5
853.7 | 4167
4311
4455 | 724
721
719 | | | γ=1.7 | 1 | | | 31
32
33 | 3591
3681
3770 | 906·7
961·4
1018 | 4600
4747
4895 | 716
714
713 | φ | (x) | (y) | (t) | (v) | | 34 | 3858 | 1076 | 5044 | 711 | 18 ³⁰ | 11923 | 3004 | 5724 | 5942 | | 35 | 3946 | 1137 | 5194 | 710 | 18 ¹ / ₂ | 10655 | 2576 | 5476 | 4920 | | 36 | 4034 | 1200 | 5346 | 709 | 18 ¹ / ₄ | 9736 | 2271 | 5265 | 4291 | | 37 | 4121 | 1264 | 5500 | 708 | 18 | 9016 | 2035 | 5079 | 3853 | | 38 | 4209 | 1331 | 5655 | 707 | 173 | 8424 | 1844 | 4910 | 3527 | | 39 | 4296 | 1401 | 5813 | 706 | 173 | 7921 | 1685 | 4754 | 3271 | | 40 | 4383 | 1472 | 5973 | 706 | 17½ | 7484 | 1548 | 4610 | 3064 | | 41 | 4470 | 1547 | 6135 | 706 | 17 | 7098 | 1429 | 4474 | 2891 | | 42 | 4557 | 1624 | 6299 | 707 | 16¾ | 6751 | 1324 | 4345 | 2745 | | 43 | 4644 | 1704 | 6467 | 707 | 16½ | 6438 | 1230 | 4223 | 2619 | | 44 | 4731 | 1787 | 6637 | 708 | 16½ | 6151 | 1146 | 4107 | 2508 | | 45 | 4819 | 1873 | 6810 | 709 | 16 | 5888 | 1070 | 3995 | 2411 | | 46
47
48 | 4907
4995
5083 | 1962
2055
2151 | 6987
7167
7351 | 710
711
712 | 15½
15½
15¼ | 5643
5416
5203 | 936·5
877·9 | 3888
3784
3684 | 2323
2245
2174 | | 49 | 5172 | 2251 | 7538 | 714 | 15 | 5003 | 823.8 | 3587 | 2109 | | 50 | 5261 | 2356 | 7730 | 716 | 14 | 4305 | 643.2 | 3227 | 1898 | | 51 | 5351 | 2465 | 7927 | 718 | 13 | 3729 | 504.8 | 2901 | 1741 | IX. (continued). | | | y = 1.7 | | | | | λ = 1 . | 5 | | |---|----------------------|-------------------------|------------------------|------------------------------|----------------|----------------------|-------------------------|------------------------|------------------------------| | φ | (x) | (y) | (1) | (v) | φ | (x) | (3) | (t) | (v) | | 12°
11
10 | 3239
2812
2434 | 396.0
309.1
396.0 | 2601
2323
2062 | 1616
1515
1431 | 6°
5
4 | 1263
1015
785 | 70·6
46·6
28·5 | 1150
941
740 | 1217
1169
1128 | | 9
8
7 | 2095
1787
1505 | 182·1
136·0
98·9 | 1815
1581
1357 | 1359
1298
1245 | 3
2
I | 570
369
179 | 15.4
6.6
1.6 | 546
359
177
0 | 1091
1058
1027
1000 | | 6
5
4 | 1245
1004
778 | 69°2
46°0
28°2 | 936
737 | 1197
1155
1118 | 1
2
3 | 170
332
487 | 1·5
5·7
12·4 | 172
341
505 | 975
952
931 | | 3
2
1 | 567
368
179 | 15.5
6.2
1.6
0 | 545
358
177
0 | 1084
1053
1026
1000 | 4
5
6 | 635
777
914 | 21.5
32.7
45.8 | 666
824
979 | 911
893
877 | | | | y = ι.: | 5 | | 7
8
9 | 1046
1173
1296 | 60·8
77·6
95·9 | 1132
1282
1430 | 861
847
833 | | φ | (x) | (y) | (t) | (v) | 10
11
12 | 1415
1531
1644 | 115.9
137.4
160.3 | 1577
1721
1864 | 820
809
7 98 | | 17 ^{3°} | 12110
10532 | 2932
2431 | 5513
5238 | 6843
5333 | 13
14
15 | 1753
1860
1965 | 184.6
210.5
237.5 | 2006
2146
2286 | 787
778
769 | | 17‡
17
163 | 9485
8701
8073 | 2103
1861
1671 | 5015
4821
4648 | 4518
3989
3611 | 16
17
18 | 2067
2167
2264 | 265·5
295·1
325·9 | 2424
2562
2699 | 760
752
745 | | 16½
10¼
16 | 7550
7102
6710 | 1515
1383
1270 | 4491
4345
4209 | 3323
3094
2906 | 19
20
21 | 2360
2455
2547 | 358·0
391·4
426·0 | 2835
2972
3107 | 738
732
726 | | 15 ³
15 ¹ / ₂
15 ¹ / ₂ | 6362
6048
5763 | 1171
1083
1004 | 4081
3959
3844 | 2749
2615
2499 | 22
23
24 | 2638
2728
2817 | 462.0
499.2
537.6 | 3243
3378
3514 | 720
715
710 | | 15
14
13 | 5502
4632
3953 | 933·8
708·6
545·3 | 3733
3331
2977 | 2396
2085
1870 | 25
26
27 | 2904
2990
3076 | 577.5
618.6
661.1 | 3650
3785
3922 | 705
701
697 | | 12
11
10 | 3396
2924
2513 | 421·7
325·4
249·3 | 2658
2365
2093 | 1710
1585
1484 | 28
29
30 | 3160
3243
3326 | 705.0
750.4
797.2 | 4059
4196
4334 | 693
690
687 | | 9
8
7 | 2151
1826
1532 | 188.6
140.0
101.3 | 1838
1597
1368 | 1400
1329
1269 | 31
32
33 | 3408
3490
3571 | 845.6
895.5
947.0 | 4473
4613
4754 | 684
682
680 | IX. (continued). | | | y = 1 | 5 | | | | y = 1.6 | 5 | | |-------------------|----------------------|----------------------|----------------------|----------------------|---------------------------------------|------------------------------|------------------------------|-----------------------------------|------------------------------| | φ | (x) | (1) | (t) | (v) | φ | (x) | (y) | (1) | (v) | | 34°
35
36 | 3651
3731
3811 | 1000
1055
1112 | 4896
5039
5184 | 678
676
675 | 15°
14 1
14 <u>1</u> | 6206
5872
5572 | 1094
1005
926·8 | 3918
3793
3 ⁶ 75 | 2845
2689
2556 | | 37
38
39 | 3890
3969
4048 | 1171
1231
1294 | 5330
5478
5628 | 673
672
671 | 14½
14
13¾ | 5300
5051
4821 | 857·0
794·3
737·5 | 3562
3455
3351 | 244I
2340
225I | | 40
41
42 | 4126
4205
4283 | 1359
1426
1495 | 5780
5934
6090 | 671
670
670 | 13½
13¼
13 | 4608
4409
4223 | 685.9
638.6
595.2 | 3252
3157
3064 | 2171
2100
2034 | | 43
44
45 | 4362
4440
4519 | 1567
1641
1718 | 6249
6410
6574 | 670
670
671 | 12
11
10 | 3578
3049
2600 | 451·8
344·1
260·9 | 2720
2410
2126 | 1822
1666
1543 | | 46
47
48 | 4597
4676
4755 | 1798
1882
1968 | 6741
6912
7085 | 672
672
673 | 9
8
7 | 2211
1868
1560 | 195.7
144.3
103.7 | 1862
1614
1381 | 1445
1363
1294 | | 49
50
51 | 4834
4914
4994 | 2057
2151
2248 | 7263
7444
7630 | 675
676
678 | 6
5
4 | 1282
1027
792 | 71.9
47.4
28.8 | 947
744 | 1235
1183
1138 | | 52
53
54 | 5074
5155
5236 | 2349
2454
2564 | 7820
8015
8215 | 679
681
683 | 3
2
1 | 574
370
180 | 1.6
6.6
12.2 | 548
360
177 | 1098
1062
1029
1000 | | 55
56
57 | 5318
5400
5483 | 2678
2798
2923 | 8421
8633
8851 | 686
688
691 | | | y = 1.7 | | 1000 | | 58
59
60 | 5567
5651
5736 | 3054
3192
3337 | 9076
9308
9548 | 694
697
700 | φ | (x) | (y) | (t) | (v) | | | | y = 1.0 | 5 | | 1510 | 8910 | 1789 | 4554 | 4884 | | φ | (x) | (y) | (1) | (v) | 15½
15
14¾
14½ | 8025
7352
6810
6356 | 1545
1363
1219
1101 | 4350
4173
4014
3868 | 4173
3702
3362
3100 | | 16½°
16½
16 | 9924
8890
8125 | 2153
1849
1628 | 4927
4706
4516 | 5320
4472
3932 | 14 <u>1</u>
14
133 | 5965
5622
5316 | 1000
914.0
838.6 | 3734
3607
3489 | 2891
2720
2575 | | 15½
15½
15‡ | 7517
7013
6582 | 1455
1314
1195 | 4346
4192
4050 | 3550
3260
3032 | 13½
13¼
13 | 5041
4790
4560 | 771·8
712·2
658·5 | 3376
3268
3165 | 2452
2344
2250 | IX. (continued). | | | $y = i \cdot i$ | 7 | | | | λ = 1.2 | 7 | | |-------------|-------------------|-------------------|-------------------|------------------------------|----------------|----------------------|------------------------|----------------------|-------------------| | φ | (x) | (y) | (t) | (v) | φ | (x) | (y) | (t) | (v) | | 12° | 3793 | 488·1 | 2791 | 1961 | 25° | 2781 | 545°I | 3567 | 679 | | 11 | 3191 | 365·6 | 2460 | 1761 | 26 | 2861 | 583°2 | 3697 | 674 | | 10 | 2697 | 273·8 | 2162 | 1611 | 27 | 2939 | 622°6 | 3829 | 670 | | 9 | 2277 | 203·5 | 1887 | 1494 | 28 | 3017 | 663·1 | 3960 | 666 | | 8 | 1913 | 148·9 | 1632 | 1400 | 29 | 3094 | 705·0 | 4092 | 663 | | 7 | 1590 | 106·4 | 1393 | 1321 | 30 | 3171 | 748·1 | 4225 | 659 | | 5 4 | 1301 | 73'4 | 1167 | 1255 | 31 | 3246 | 792.6 | 4358 | 656 | | | 1039 | 48'1 | 952 | 1198 | 32 | 3321 | 838.5 | 4492 | 654 | | | 799 | 29'2 | 747 | 1148 | 33 | 3395 | 885.8 | 4627 | 651 | | 3
2
I | 577
372
180 | 1.6
6.6
1.6 | 550
360
177 | 1105
1066
1031
1000 | 34
35
36 | 3469
3542
3615 | 934°5
984°9
1037 | 4763
4900
5039 | 649
647
645 | | 1 | 170 | 1.2 | 172 | 972 | 37 | 3688 | 1090 | 5178 | 643 | | 2 | 330 | 5.7 | 339 | 946 | 38 | 3760 | 1146 | 5320 | 642 | | 3 | 482 | 12.3 | 503 | 923 | 39 | 3832 | 1203 | 5463 | 641 | | 4
5
6 | 627
766
898 | 32.0
44.8 | 662
818
971 | 901
881
863 | 40
41
42 | 3903
3975
4046 | 1262
1323
1386 | 5608
5754
5903 | 640
639
639 | | 7 | 1026 | 59°3 | 1121 | 846 | 43 | 4117 | 1451 | 6055 | 639 | | 8 | 1148 | 75°5 | 1268 | 830 | 44
 4188 | 1519 | 6208 | 639 | | 9 | 1266 | 93°1 | 1414 | 816 | 45 | 4260 | 1589 | 6365 | 639 | | 10 | 1381 | 112·2 | 1557 | 802 | 46 | 4331 | 1661 | 6524 | 639 | | 11 | 1491 | 132·7 | 1698 | 790 | 47 | 4402 | 1736 | 6686 | 640 | | 12 | 1598 | 154·5 | 1838 | 778 | 48 | 4474 | 1814 | 6851 | 640 | | 13 | 1702 | 177·6 | 1976 | 767 | 49 | 4545 | 1895 | 7020 | 641 | | 14 | 1804 | 201·9 | 2112 | 756 | 50 | 4617 | 1980 | 7192 | 642 | | 15 | 1902 | 227·4 | 2248 | 747 | 51 | 4689 | 2067 | 7369 | 643 | | 16 | 1998 | 310.8 | 2382 | 738 | 52 | 4762 | 2158 | 7549 | 645 | | 17 | 2092 | 524.0 | 2516 | 729 | 53 | 4834 | 2253 | 7734 | 646 | | 18 | 2184 | 524.0 | 2649 | 722 | 54 | 4908 | 2352 | 7924 | 648 | | 19 | 2274 | 340·8 | 2781 | 714 | 55 | 4981 | 2455 | 8119 | 650 | | 20 | 2362 | 372·1 | 2913 | 707 | 56 | 5055 | 2562 | 8320 | 652 | | 21 | 2449 | 404·4 | 3044 | 701 | 57 | 5129 | 2675 | 8526 | 654 | | 22 | 2534 | 437'9 | 3175 | 695 | 58 | 5204 | 2793 | 8739 | 657 | | 23 | 2617 | 472'5 | 3305 | 689 | 59 | 5280 | 2916 | 8959 | 659 | | 24 | 2700 | 508'2 | 3436 | 684 | 60 | 5356 | 3045 | 9186 | 662 | IX. (continued). | | | y = 1.8 | | | | | y = 1.è |) | | |---|------------------------------|-------------------------------|------------------------------|------------------------------|-----------------------|------------------------|--------------------------|------------------------|-----------------------------| | φ | (x) | (y) | (<i>t</i>) | (v) | φ | (x) | (y) | (1) | (v) | | 14½°
14½
14
13¾ | 7729
7034
6484
6029 | 1417
1239
1101
988·2 | 4148
3969
3809
3664 | 4263
3743
3376
3099 | 9°
8
7 | 2428
2012
1655 | 221.2
159.3
112.5 | 1944
1671
1420 | 1610
1482
1381 | | 13½
13¼
13 | 5639
5300
4999 | 893.9
813.5
743.0 | 3530
3405
3287 | 2880
2702
2553 | 6
5
4 | 1342
1064
813 | 76·5
49·7
29·9 | 963
753 | 1298
1229
1171 | | $12\frac{3}{4} \\ 12\frac{1}{2} \\ 12\frac{1}{4}$ | 4729
4484
4259 | 681·2
626·3
577·0 | 3176
3070
2968 | 2427
2317
2221 | 3
2
1
0
1 | 375
181
0
169 | 6·7
1·6
0 | 553
362
178
0 | 1075
1035
1000
969 | | 12
11
10 | 4052
3356
2805 | 532.6
390.6
538.4 | 2871
2516
2200 | 2136
1873
1688 | 3 | 328
478
620 | 20.8 | 338
500
658 | 940
915
891 | | 9
8
7 | 2349
1961
1622 | 153.9
109.2 | 1915
1651
1406 | 1549
1439
1350 | 4
5
6 | 755
884 | 31.2 | 812
963 | 870
850 | | 6 5 4 | 1321
1051
806 | 74.9
48.9
29.5 | 957
750 | 1276
1213
1159 | 7
8
9 | 1007
1126
1239 | 57°9
73°5
90°5 | 1111
1255
1398 | 832
815
799 | | 3
2
1 | 581
373
180 | 15.7
6.7
1.6 | 551
361
177 | 1112
1070
1033 | 10
11
12 | 1349
1454
1557 | 108·8
128·4
149·1 | 1538
1676
1812 | 785
772
759 | | 0 | 0 | 0 | 0 | 1000 | 13
14
15 | 1656
1752
1845 | 171.1
194.5
1218.3 | 1947
2080
2212 | 747
737
727 | | | 1. | y = 1.6 | 9 | | 16
17 | 1936
2025 | 243.5
269.8 | 2343
2473 | 717
708 | | φ | (x) | (y) | (<i>t</i>) | (v) | 18 | 2111 | 325.4 | 2602 | 700
692 | | 14°
133 | 8142
7240 | 1475 | 4116
3912 | 4980
4170 | 20
21 | 2279
2360 | 354.7
385.0 | 2857
2984 | 685
678 | | 13½
13¼
13 | 6576
6051
5616 | 966·5
865·0 | 3737
3581
3440 | 3659
3298
3027 | 22
23
24 | 2439
2517
2594 | 416·3
448·7
482·1 | 3111
3237
3363 | 672
666
661 | | $12\frac{3}{4}$ $12\frac{1}{2}$ $12\frac{1}{4}$ | 5244
4921
4634 | 780·2
707·7
644·7 | 3310
3188
3073 | 2813
2638
2493 | 25
26
27 | 2670
2744
2818 | 516·5
552·0
588·6 | 3490
3616
3742 | 655
651
646 | | 12
11
10 | 4376
3548
2926 | 589.4
420.6
305.1 | 2965
2577
2242 | 2369
2011
1777 | 28
29
30 | 2890
2962
3032 | 626·3
665·1
705·1 | 3869
3996
4124 | 642
638
635 | IX. (continued). | | | y = 1.6 |) | | | | $\lambda = 2$ |) | | |---|------------------------------|---------------------------------|------------------------------|------------------------------|--------------------------------------|------------------------|-------------------------|------------------------|------------------------------| | ڼ | (x) | (y) | (1) | (v) | φ | (x) | (y) | (1) | (v) | | 31°
32
33 | 3102
3171
3240 | 746·3
788·7
832·4 | 4252
4381
4511 | 631
628
626 | 10
11
11 [‡] 0 | 3998
3780
3065 | 500°0
457°2
324°4 | 2747
2648
2289 | 2285
2184
1882 | | 34
35
36 | 3308
3376
3443 | 877·5
923·9
971·7 | 4641
4773
4906 | 623
621
619 | 9
8
7 | 2515
2068
1691 | 232·1
165·1
115·4 | 1975
1693
1434 | 1679
1529
1414 | | 37
38
39 | 3509
3576
3642 | 1021
1072
1124 | 5040
5176
5313 | 617
616
614 | 6
5
4 | 1365
1077
821 | 78·2
50·5
30·2 | 1194
969
757 | 1322
1245
1181 | | 40
41
42 | 3708
3773
3838 | 1179
1235
1293 | 5452
5592
5735 | 613
612
612 | 3
2
1 | 588
376
181 | 16·0
6·7
1·6 | 555
362
178 | 1126
1079
1037
1000 | | 43
44
45 | 3904
3969
4034 | 1352
1414
1478 | 5880
6027
6176 | 611
611 | | | $\lambda = 2$ | | 1333 | | 46
47
48 | 4099
4164
4229 | 1544
1613
1684 | 6328
6483
6641 | 611 | ϕ | (x) | (y) | (t) | (2') | | 49
50
51 | 4295
4360
4426 | 1758
1835
1914 | 6802
6967
7135 | 612
613
614 | 12½°
12½ | 6556
5909 | 1027
885·1 | 3544
3372 | 4137
3596 | | 52
53
54 | 4492
4558
4624 | 1997
2083
2173 | 7308
7484
7665 | 615
616
618 | 12 $11\frac{3}{4}$ $11\frac{1}{2}$ | 5404
4990
4639 | 776·7
689·6
617·4 | 3221
3083
2957 | 3223
2947
2731 | | 55
56
57 | 4691
4758
4826 | 2267
2365
2467 | 7851
8042
8239 | 619
621
623 | 11 1
11
10 <u>3</u> | 4335
4066
3826 | 556·2
503·3
457·1 | 2840
2729
2625 | 2556
2411
2288 | | | 1 | $\lambda = 2$ |) | | 10}
10} | 3608
3409
3226 | 379.7
347.0 | 2526
2431
2340 | 2183
2090
2008 | | φ | (x) | ('') | (t) | (7') | 9
8
7 | 2611
2127
1728 | 244.0
171.2
118.8 | 2009
1715
1449 | 1757
1381
1450 | | $ \begin{array}{c} 13^{\circ} \\ 12\frac{9}{4} \\ 12\frac{1}{4} \end{array} $ | 6608
6015
5540
5142 | 1068
932.7
826.1
738.9 | 3650
3485
3338
3203 | 3924
3471
3146
2897 | 6
5
4 | 1387
1091
828 | 80.0
51.3
30.6 | 975
760 | 1346
1263
1193 | | 12
113
113
113 | 4801
4503
4237 | 665.6
602.8
548.1 | 3078
2962
2852 | 2700
2537
2401 | 3
2
I
0 | 592
378
181
0 | 16·2
6·8
1·6 | 557
363
178
0 | 1134
1083
1039
1000 | IX. (continued). | | | λ = 2'1 | [| | | | λ = 2 ' | | | |----------------|----------------------|-------------------------|----------------------|-------------------|--------------------------------|------------------------------|------------------------------|------------------------------|------------------------------| | φ | (x) | (y) | (t) | (v) | φ | (x) | (y) | (t) | (v) | | 1° 2 3 | 169 | 1.2 | 171 | 965 | 40° | 3535 | 1106 | 5310 | 590 | | | 326 | 2.6 | 337 | 934 | 41 | 3595 | 1158 | 5446 | 589 | | | 474 | 15.0 | 498 | 906 | 42 | 3656 | 1211 | 5583 | 588 | | 4 | 613 | 20·5 | 654 | 881 | 43 | 3716 | 1267 | 5722 | 587 | | 5 | 745 | 30·9 | 807 | 858 | 44 | 3776 | 1324 | 5863 | 587 | | 6 | 871 | 43·0 | 955 | 837 | 45 | 3836 | 1383 | 6006 | 586 | | 7 | 990 | 56·6 | 1101 | 818 | 46 | 3896 | 1444 | 6152 | 586 | | 8 | 1104 | 71·6 | 1243 | 800 | 47 | 3956 | 1507 | 6301 | 586 | | 9 | 1214 | 88·0 | 1383 | 784 | 48 | 4015 | 1572 | 6452 | 586 | | 10 | 1319 | 105·6 | 1520 | 769 | 49 | 4076 | 1640 | 6607 | 587 | | 11 | 1420 | 124·3 | 1655 | 755 | 50 | 4136 | 1710 | 6765 | 587 | | 12 | 1518 | 144·2 | 1789 | 742 | 51 | 4196 | 1784 | 6926 | 588 | | 13
14
15 | 1612
1704
1793 | 165·1
187·1
210·0 | 1920
2050
2179 | 730
718
708 | 52
53
54
55 | 4257
4317
4378
4439 | 1860
1939
2021
2107 | 7091
7260
7433
7611 | 589
590
591
593 | | 16
17
18 | 1879
1963
2045 | 234.0
258.8
284.6 | 2306
2432
2558 | 698
689
680 | | | $\lambda = 2^{-2}$ | 2 | | | 19
20
21 | 2125
2203
2279 | 367.5
367.5 | 2682
2806
2929 | 672
665
658 | φ | (x) | (y) | (t) | (v) | | 22 | 2354 | 396·9 | 3052 | 651 | 12° | 6398 | 965·9 | 3419 | 4254 | | 23 | 2427 | 427·3 | 3174 | 645 | 11 ³ / ₄ | 5723 | 823·9 | 3243 | 3652 | | 24 | 2499 | 458·6 | 3297 | 639 | 11 ¹ / ₂ | 5207 | 717·6 | 3090 | 3249 | | 25 | 2570 | 490·9 | 3419 | 634 | 11½ | 4788 | 633.4 | 2952 | 2955 | | 26 | 2640 | 524·1 | 3541 | 629 | 11 | 4437 | 564.3 | 2826 | 2729 | | 27 | 2708 | 558·3 | 3663 | 625 | 10¾ | 4134 | 506.0 | 2709 | 2548 | | 28 | 2776 | 593°5 | 3786 | 620 | 10½ | 3867 | 456·0 | 2600 | 2398 | | 29 | 2842 | 629°7 | 3908 | 616 | 10¼ | 3630 | 412·5 | 2496 | 2272 | | 30 | 2908 | 667°0 | 4031 | 613 | 10 | 3415 | 374·2 | 2398 | 2164 | | 31 | 2973 | 705·3 | 4155 | 609 | 9 | 2720 | 257·6 | 2045 · | 1848 | | 32 | 3038 | 744·8 | 4279 | 606 | 8 | 2193 | 178·5 | 1739 | 1639 | | 33 | 3102 | 785·4 | 4405 | 603 | 7 | 1768 | 122·5 | 1464 | 1488 | | 34
35
36 | 3165
3227
3290 | 827·3
870·4
914·7 | 4530
4657
4785 | 600
598
596 | 6
5
4 | 1411
1105
836 | 31.0
25.5
81.8 | 981
763 | 1373
1280
1205 |
 37
38
39 | 3351
3413
3474 | 960·5
1008
1056 | 4915
5045
5177 | 594
592
591 | 3
2
I
0 | 596
379
182
0 | 0
1.6
6.8
16.3 | 558
364
178
0 | 1142
1088
1041
1000 | IX. (continued). | | | $\lambda = 2$ | 3 | | | | $\lambda = 2$ | 3 | | |--|------------------------|-------------------------|----------------------|----------------------|----------------------------|--------------------------------------|--------------------------------------|--------------------------------------|---------------------------------| | φ | (x) | (y) | (t) | (v) | φ | (x) | (y) | (1) | (v) | | 11½°
11½
11 | 6129
5459
4951 | 885·7
750·9
650·9 | 3273
3099
2947 | 4248
3628
3217 | 16°
17
18 | 1826
1905
1983 | 225·2
248·8
273·2 | 2271
2394
2516 | 681
671
662 | | 10\frac{3}{4} | 4541 | 507.9 | 2811 | 2693 | 19
20 | 2059
2132 | 298.5 | 2637
2758 | 654
646 | | 10
10 | 3903
3645 | 453°9
407°7 | 2572
2464 | 2512 2363 | 21 | 2204 | 351.6 | 2877 | 639
632 | | 9 ²
9 ¹
9 ¹ | 3414
3206
3017 | 367·5
332·3 | 2362
2265
2173 | 2237
2130
2036 | 23
24 | 2344
2412 | 408.0 | 3116
3234 | 626
620. | | 94 | 2843 | 273.1 | 2085 | 1954 | 25
26
27 | 2479
2544
2608 | 467.8
499.0 | 3352
3471
3589 | 615
610
605 | | 7 | 1810 | 126·4
83·8 | 1480 | 1530 | 28
29 | 2672
2734 | 564·1 | 3708
3827 | 600
596 | | 5 4 | 1120
844 | 23.5 | 987
767 | 1299 | 30
31 | 2796 | 633.0 | 3946
4066 | 593
589 | | 3
2
1 | 600
381
182 | 16·4
6·8 | 560
364
178 | 1150
1092
1043 | 32
33 | 2917
2977 | 705·8
743·7 | 4186 | 586
583 | | 0
I
2 | 0
168
324
470 | 0
1.4
5.5 | 0
171
336 | 962
929
899 | 34
35
36 | 3036
3094
3152 | 782·8
823·0
864·3 | 4429
4551
4675 | 580
578
575 | | 3
4
5
6 | 606
735 | 20.5 | 496
651
801 | 872
848 | 37
38
39 | 3210
3267
3324 | 906.0
950.8
906.9 | 4799
4925
5053 | 573
571
570 | | 6
7
8 | 973
1084 | 55°3
69°8 | 948
1091
1231 | 825
805
786 | 40
41
42 | 3380
3437 | 1043
1091
1140 | 5181
5312 | 568
567
566 | | 9 | 1190 | 85.6 | 1368 | 769 | 43 | 3493
3549 | 1191 | 5444 | 565 | | 11 12 | 1388
1482 | 139.6 | 1503
1635
1766 | 754
739
726 | 44
45 | 3660
3660 | 1244 | 5714
5852 | 565
564 | | 13
14
15 | 1572
1659
1744 | 159.6
180.6
202.4 | 1894
2021
2147 | 713
701
691 | 46
47
48
49
50 | 3716
3771
3827
3882
3938 | 1356
1414
1475
1537
1603 | 5992
6135
6281
6430
6581 | 564
564
564
564
565 | IX. (continued). | | | | | | _ | | | | | |-------------------------------|--------------|-----------------|--------------|--------------|----------|--------------|----------------|--------------|------------| | | | $\lambda = 2.7$ | 1 | | | | $\lambda = 2$ | 5 | | | φ | (x) | (y) | (t) | (v) | φ | (x) | (y) | (t) | (v) | | ΙΙ° | 5760 | 791.7 | 3111 | 4120 | 3° | 608 | 16.7 | 564 | 1166 | | 103 | 5129 | 670.3 | 2942 | 3528 | 2 | 384 | 6.9 | 366 | 1101 | | 101 | 4647 | 579.9 | 2794
2662 | 3134
2848 | I
O | 183 | 1.6 | 179 | 1047 | | 10 | 4259
3932 | 508.7 | 2541 | 2628 | ı | 167 | 0 | 171 | 959 | | • | 3932 | 4304 | 2341 | 2020 | 2 | 322 | 5.2 | 335 | 923 | | 93 | 3651 | 401.2 | 2428 | 2452 | 3 | 466 | 11.7 | 493 | 891 | | $9\frac{1}{2}$ | 3404 | 359.6 | 2323 | 2308 | | | | | | | 91 | 3184 | 323.3 | 2224 | 2186 | 4 | 600 | 19.9 | 647 | 863 | | | 2986 | 291.4 | 2130 | 2082 | 5
6 | 726
845 | 29.8 | 796
940 | 837
814 | | 9
83 | 2805 | 263.5 | 2040 | 1991 | Ŭ | 045 | 413 | 940 | 014 | | 81 | 2639 | 238.0 | 1954 | 1911 | 7 8 | 957 | 54.1 | 1801 | 793 | | | | | | | | 1064 | 68.2 | 1219 | 773 | | 81 | 2486 | 215.4 | 1871 | 1840 | 9 | 1166 | 83.4 | 1354 | 756 | | 8 | 2343
1856 | 195.0 | 1791 | 1776 | 10 | 1264 | 99.7 | 1486 | 720 | | 7 | 1050 | 130.4 | 1497 | 1575 | 11 | 1357 | 117.0 | 1616 | 739 | | 6 | 1464 | 85.9 | 1234 | 1430 | 12 | 1447 | 135.3 | 1744 | 710 | | 5 | 1135 | 54.1 | 993 | 1319 | | | 050 | | 1 | | 4 | 852 | 31.8 | 771 | 1230 | 13 | 1534 | 154.4 | 1870 | 698 | | | | -6.6 | | 0 | 14 | 1617 | 174.2 | 1994 | 686 | | 3 | 604
382 | 16.6 | 562
365 | 1158 | 15. | 1698 | 195.4 | 2117 | 675 | | +1 | 182 | 1.6 | 178 | 1045 | 16 | 1776 | 217.0 | 2238 | 664 | | 0 | 0 | 0 | 0 | 1000 | 17 | 1852 | 239.5 | 2358 | 655 | | - | 1 | | | 1 | 18 | 1926 | 262.8 | 2477 | 646 | | | | $\lambda = 2$ | ξ | | 19 | 1997 | 286.8 | 2595 | 637 | | | | , | , | | 20 | 2067 | 311.6 | 2712 | 629 | | Ī | | 1 | 1 | 1 | 21 | 2136 | 337.1 | 2829 | 622 | | ϕ | (x) | (y) | (t) | (v) | 22 | 2203 | 363.4 | 2945 | 615 | | . | ` ′ | | 1 | , , | 23 | 2268 | 390.2 | 3060 | 608 | | | | | | | 24 | 2332 | 418.3 | 3176 | 603 | | 10 ¹ ° | 4754 | 586.8 | 2774 | 3370 | | | | | | | 10 | 4312 | 507.9 | 2633
2506 | 3010 | 25
26 | 2395
2456 | 447.0 | 3291
3406 | 597
592 | | 9 ³ / ₂ | 3952
3648 | 393.7 | 2389 | 2745 | 27 | 2517 | 506.6 | 3521 | 587 | | 92 | 3385 | 350.3 | 2281 | 2374 | ' | -5-7 | 3-00 | 3322 | 3-1 | | | 33.3 | 05 5 | | | 28 | 2576 | 537.7 | 3636 | 583 | | 9
8 3 | 3154 | 313.0 | 2179 | 2237 | 29 | 2635 | 569.6 | 3751 | 578 | | 83 | 2947 | 280.7 | 2083 | 2122 | 30 | 2693 | 602.4 | 3867 | 574 | | $8\frac{1}{2}$ | 2759 | 252.3 | 1991 | 2022 | 31 | 2750 | 636.2 | 3983 | 571 | | 81 | 2589 | 227.2 | 1904 | 1936 | 32 | 2807 | 670.8 | 4099 | 568 | | 8 | 2432 | 204.7 | 1820 | 1859 | 33 | 2863 | 706.4 | 4216 | 564 | | 7 | 1906 | 135.3 | 1515 | 1625 | | | | | -6- | | | | 00. | | | 34 | 2918 | 743'I | 4334 | 562 | | 6 | 1492 | 88.1 | 1245 | 1461 | 35 | 2973 | 780.7
819.4 | 4453
4572 | 559
557 | | 5 4 | 1151
861 | 35.5
22.1 | 774 | 1339 | 36 | 3027 | 0194 | 43/2 | 337 | | 4 | 001 | 322 | 114 | 1-43 | 1 | | 1 | } | | IX. (continued). | | | $\lambda = 2$ | 5 | | | | $\lambda = 2$ | 7 | | |--|----------------------|-------------------------|----------------------|----------------------|-----------------|----------------------|-------------------------|----------------------|----------------------| | φ | (x) | (y) | (1) | (v) | φ | (x) | (y) | (t) | (v) | | 37°
38 | 3081
3134 | 859·3 | 4693
4815 | 555
553 | 9½°
9¼ | 4383
3952 | 500°1
428°9 | 2564
2425 | 3340
2966 | | 39 | 3188 | 942.6 | 4938 | 551 | 9
8 <u>3</u> | 3603
3311 | 372.3 | 2300 | 2695
2486 | | 40
41
42 | 3240
3293
3345 | 986·1
1031
1077 | 5062
5188
5316 | 549
548
547 | 8 <u>1</u> | 3060 | 289.1 | 2080 | 2320 | | 43 | 3397 | 1125 | 5445 | 546 | 8±
8
7± | 2839
2642
2465 | 256.6
228.5
204.0 | 1981
1887
1799 | 2183
2067
1969 | | 44
45 | 3449
3501 | 1174 | 5577
5710 | 545
545 | | | 182.3 | 1799 | 1883 | | 46 | 3553 | 1278 | 5846 | 544 | 7½
7½
7 | 2303
2154
2017 | 163.1 | 1633 | 1807 | | 47
48 | 3604
3656 | 1333 | 5984
6124 | 544
544 | 6 | 1553 | 92.9 | 1269 | 1531 | | 49
50 | 3708
3760 | 1447 | 6267
6414 | 544
545 | 5 | 1185 | 23.1
23.1 | 1014
782 | 1383 | | | | $\lambda = 2.0$ | 5 | | 3 2 | 616
387 | 17.0 | 568
367 | 1183 | | . | 1 , , | l , , | 1 40 | | I
O | 183 | 1.6 | 179 | 1051 | | φ | (x) | (y) | (t) | (v) | I
2 | 167
320 | 1.4
2.4 | 171
334 | 956
918 | | 100 | 4855 | 592.5 | 2751 | 3627 | 3 | 461 | 11.6 | 492 | 884 | | $9\frac{3}{4}$ $9\frac{1}{2}$ $9\frac{1}{4}$ | 4354
3959
3632 | 384.5
202.3 | 2601
2468
2347 | 3175
2859
2621 | 4
5
6 | 593
716
832 | 19.6
29.3
40.5 | 643
791
933 | 854
827
803 | | 9
83 | 3354 | 339.5 | 2235 | 2434 | 7 8 | 942 | 52·9
66·6 | 1072 | 781 | | 81/2 | 3112
2897 | 301.4 | 2033 | 2283 | 9 | 1045 | 81.3 | 1208 | 761
743 | | 81
8
73 | 2704
2530
2370 | 240·8
215·8
193·7 | 1940
1852
1768 | 2048
1955
1874 | 10
11
12 | 1238
1328
1414 | 97.0 | 1471
1598
1723 | 726·
710
696 | | 7½
7¼
7 | 2223
2086
1959 | 174°0
156°3
140°4 | 1687
1609
1534 | 1802
1737
1679 | 13 | 1497 | 149.7
168.8
188.8 | 1847
1968
2088 | 683
671
660 | | 6 | 1522
1167 | 90°4
56°2 | 1256 | 1495
1360 | 16 | 1654 | 209.5 | 2207 | 649 | | 4 | 869 | 32.7 | 778 | 1257 | 17
18 | 1802
1872 | 230.0 | 2324
2440 | 639
630 | | 3 2 | 612
385 | 7.0 | 566
367 | 1174 | 19 | 1940 | 276.0 | 2555 | 622 | | 0 | 183 | 0.0 | 0 | 1049 | 20
21 | 2007
2072 | 323.8 | 2669
2783 | 614 | IX. (continued). | | | λ = 2.7 | 7 | | | | $\lambda = 2.8$ | 3 | | |----------------------|----------------------|-------------------------|----------------------|----------------------|-----------------------------------|----------------------|-------------------------|----------------------|------------------------------| | φ | (x) | (y) | (t) | (7') | φ | (x) | (y) | (t) | (v) | | 22°
23
24 | 2135
2197
2258 | 348·8
374·4
400·8 | 2896
3008
3121 | 599
593
587 | 8‡°
8
7 3 | 2997
2771
2572 | 275·5
243·3
215·7 | 2026
1926
1832 | 2348
2202
2079 | | 25
26
27 | 2317
2376
2433 | 428·0
455·8
484·4 | 3233
3345
3456 | 581
576
571 | 7½
7¼
7 | 2393
2230
2081 | 191·7
170·7
152·1 | 1742
1657
1576 | 1976
1886
1808 | | 28
29
30 | 2490
2545
2600 | 513·8
543·9
574·9 | 3568
3680
3792 | 566
562
558 | 6
5
4 | 1588
1203
888 | 95·6
58·5
33·6 | 1281
1021
786 | 1570
1406
1286 | | 31
32
33 | 2654
2707
2760 | 606·7
639·3
672·9 | 3905
4018
4132 |
554
551
548 | 3
2
1 | 621
389
184 | 17·2
7·0
1·6 | 570
368
179 | 1191
1116
1053
1000 | | 34
35
36 | 2812
2863
2915 | 707·3
742·8
779·2 | 4246
4361
4477 | 545
542
540 | 0 0 0 0 100 | | | | | | 37
38
39 | 2965
3015
3065 | 816·6
855·2
894·9 | 4594
4712
4831 | 538
536
534 | | 1 | $\lambda = 2$ | 9 | 1 | | 40
41
42 | 3115
3164
3213 | 935.7
977.8
1021 | 4952
5074
5197 | 532
531
530 | φ | (x) | (y) | (t) | (v) | | 43
44
45 | 3262
3311
3359 | 1066
1112
1160 | 5323
5450
5579 | 529
528
527 | 9°
8¾
8½ | 4378
3882
3498 | 480·5
402·9
344·7 | 2475
2326
2195 | 3636
3141
2805 | | 46
47
48 | 3408
3456
3504 | 1209
1260
1313 | 5710
5844
5980 | 527
526
526 | 8 <u>1</u>
8
7 1 | 3186
2922
2694 | 298·6
261·0
229·4 | 2077
1969
1868 | 2557
2366
2212 | | 49
50 | 3553
3601 | 1368 | 6118
6260 | 526
526 | 7½
7½
7 | 2493
2313
2151 | 158·9
158·9 | 1773
1684
1599 | 2084
1976
1884 | | | 1 | $\lambda = 2.8$ | 3 | 1 | 6
5
4 | 1623
1221
897 | 98·5
59·7
34·1 | 1294
1028
790 | 1612
1431
1301 | | φ | (x) | (y) | (t) | (v) | 3
2
I | 625
390
184 | 17·4
7·1
1·6 | 572
369
179 | 1200
1121
1055 | | 9½°
9¼
9
8¾ | 5029
4393
3927 | 597.2
492.0
417.2 | 2691
2522
2378 | 4191
3496
3062 | 0 | 0 166 | 0 1.4 | 0 | 953
912 | | 81 | 3559
3256 | 359.7 | 2250 | 2757
2528 | 3 | 318
458 | 5.4 | 333
489 | 877 | IX. (continued). | φ 4° | (x) | (y) | | | | | | | | |----------------|--------------------------------|-------------------------|--------------------------------|--|-----------------|----------------------|--|----------------------|-------------------| | 4° | | (3) | (t) | (v) | φ | (x) | (y) | (t) | (v) | | 5 | 5 ⁸ 7
708
821 | 19·4
28·8
39·7 | 640
7 ⁸ 5
926 | 846
817
792 | 40°
41
42 | 3000
3047
3093 | 890·3
930·0
970·8 | 4850
4968
5088 | 516
515
514 | | 7
8
9 | 927
1028
1123 | 51·8
65·1
79·3 | 1064
1197
1328 | 770
749
730 | 43
44
45 | 3139
3185
3230 | 1013
1056
1101 | 5210
5333
5458 | 513
512
511 | | 10
11
12 | 1214
1301
1384 | 94.5
110.6
127.5 | 1455
1581
1704 | 713
697
683 | 46
47
48 | 3276
3321
3367 | 1148
1196
1245 | 5586
5715
5847 | 510
510
510 | | 13
14
15 | 1464
1540
1614 | 145°1
163°6
182°7 | 1824
1943
2061 | 669
657
645 | 49
50 | 3412
3457 | 1296
1350 | 5981
6118 | 510
510 | | 16
17
18 | 1686
1755
1822 | 202·5
223·0
244·2 | 2177
2291
2405 | 635
625
616 | | | $\lambda = 3$ | 0 | | | 19 | 1887
1951 | 266.0
288.5 | 2517
2629 | 607
599 | | , | · J | | | | | 2013 | 311.6 | 2740 | 591 | φ | (x) | (y) | (<i>t</i>) | (v) | | 23 | 2073
2132
2189 | 335°3
359°8
384°8 | 2850
2960
3069 | 5 ⁸ 4
57 ⁸
57 ² | 9°
83 | 5106
4337 | 585·1
465·0 | 2606
2421 | 4735
3748 | | | 2246
2302 | 410 [.] 6 | 3178
3287 | 566
561 | 81 | 3816 | 385.9 | 2269 | 3198 | | 27 | 2356 | 464.1 | 3396 | 556 | 8 <u>1</u>
8 | 3421
3103 | 327·7
282·3 | 2136
2017 | 2835
2573 | | | 2409
2462 | 491.9
520.4 | 3505
3614 | 55 I
547 | 73 | 2837 | 245.2 | 1909 | 2373 | | 30 | 2514 | 549.7 | 3723 | 543 | 7½
7¼ | 2608
2407 | 214 [.] 9
188 [.] 9 | 1808
1713 | 2213
2081 | | | 2565 | 579 [.] 8 | 3833
3943 | 539
536 | 7 | 2228 | 166.2 | 1624 | 1970 | | | 2665 | 642.4 | 4053 | 532 | 6
5 | 1661 | 101.6 | 1308
1036 | 1657
1457 | | | 2714 | 674.9 | 4164 | 529 | 4 | 907 | 34.6 | 794 | 1316 | | | 2763
2811 | 708·4
742·8 | 4276
4389 | 527 | , | 629 | 17.5 | 572 | 1200 | | | | · · | | 524 | 3 2 | 392 | 17·5 | 573
370 | 1209
1126 | | | 2859 | 778.1 | 4502 | 522 | 1 | 184 | 1.6 | 179 | 1057 | | - | 2906
2953 | 814·5
851·8 | 4617 4733 | 520
518 | 0 | 0 | 0 | 0 | 1000 | IX. (continued). | | | $\lambda = 3$ | I | | | | $\lambda = 3$ | I | . • | |---|------------------------------|----------------------------------|------------------------------|------------------------------|-----------------|------------------------------|-------------------------|----------------------|--------------------------| | φ | (x) | (y) | (t) | (v) | φ | (x) | (y) | (t) | (v) | | 8½°
8¼
8
7¾ | 4263
3727
3327
3008 | 445.5
366.5
309.3
265.1 | 2361
2207
2073
1954 | 3823
3230
2849
2575 | 19°
20
21 | 1838
1899
1958 | 256·8
278·2
300·3 | 2482
2591
2699 | 593
585
578 | | 7½
7½
7¼
7 | 2742
2514
2315 | 229.5 | 1846
1745
1651 | 2368
2204
2070 | 22
23
24 | 2015
2071
2126 | 346.5
340.1 | 2807
2914
3021 | 571
564
558 | | 6 ³ / ₄
6 ¹ / ₂
6 ¹ / ₄ | 2138
1979
1835 | 135.3
119.2 | 1563
1479
1399 | 1958
1862
1779 | 25
26
27 | 2180
2233
2284 | 394·6
419·7
445·5 | 3127
3233
3340 | 552
547
542 | | 6
5
4 | 1702
1262
917 | 105.0
65.3
32.1 | 1322
1044
798 | 1707
1485
1332 | 28
29
30 | 2335
2385
2435 | 471.9
499.1
526.9 | 3446
3552
3659 | 537
533
529 | | 3
2
I | 634
394
185 | 17.7
7.2
1.6 | 575
371
180 | 1219
1131
1059 | 31
32
33 | 2483
2531
2578 | 555.4
584.7
614.7 | 3765
3872
3980 | 525
521
518 | | 0
I
2
3 | 0
166
316
454 | 0
1.4
5.3 | 0
170
332
487 | 950
907
870 | 34
35
36 | 2625
2671
2716
2761 | 645.6
677.3
709.8 | 4088
4197
4307 | 515
513
510
508 | | 4
5
6 | 581
699
809 | 19°1
28°4
39°0 | 636
780
920 | 837
808
782 | 37
38
39 | 2806
2851
2895 | 743'2
777'6
813'0 | 4417
4529
4641 | 506
504 | | 7
8
9 | 913
1011
1103 | 50·8
63·6
77·4 | 1055
1187
1315 | 759
738
718 | 40
41
42 | 2939
2982 | 849·3
886·8
925·4 | 4755
4870
4987 | 502
501
499 | | 10
11
12 | 1191
1275
1355 | 92·1
107·6
123·9 | 1441
1564
1684 | 701
685
670 | 43
44
45 | 3026
3069
3112 | 965°2
1006
1049 | 5105
5224
5346 | 498
497
496 | | 13
14
15 | 1432
1505
1577 | 140·9
158·6
177·0 | 1803
1920
2035 | 657
644
632 | 46
47
48 | 3155
3198
3240 | 1092
1137
1184 | 5469
5595
5723 | 496
495
495 | | 16
17
18 | 1645
1711
1776 | 196·0
215·7
235·9 | 2148
2261
2372 | 621
612
602 | 49 50 | 3283
3326 | 1232 | 5853
5986 | 495
495 | 1X. (continued). | | | $\lambda = 3.5$ | ! | | | | $\lambda = 3.3$ | 3 | | |--|------------------------|-------------------------|------------------------|------------------------------|----------------|----------------------|-------------------------|----------------------|-------------------| | φ | (x) | (y) | (t) | (v) | φ | (x) | (5) | (t) | (v) | | 8‡°
8
73 | 4158
3617
3218 | 422°1
344°8
289°5 | 2295
2140
2007 | 3852
3233
2840 | 1° 2 | 165
314
450 | 1.4
2.3 | 170
331
485 | 947
902
863 | | 7½
7½
7 | 2901
2638
2414 | 247·I
213·I
185·0 | 1888
1780
1680 | 2562
2353
2187 | 4
5
6 | 575
691
798 | 18·8
27·9
38·3 | 633
776
913 | 829
799
772 | | $6\frac{3}{4}$ $6\frac{1}{2}$ $6\frac{1}{4}$ | 2218
2045
1889 | 161.4
141.5
123.8 | 1587
1500
1417 | 2052
1940
1844 | 7
8
9 | 899
994
1084 | 49·8
62·2
75·6 | 1047
1177
1303 | 748
727
707 | | 6
5
4 | 1747
1283
927 | 108·6
63·7
35·6 | 1338
1052
802 | 1761
1514
1349 | 10
11
12 | 1169
1250
1327 | 89·9
104·9
120·6 | 1427
1548
1666 | 689
673
658 | | 3
2
1 | 639
395
185 | 17·9
7·2
1·6 | 577
371
180 | 1229
1136
1061
1000 | 13
14
15 | 1401
1472
1540 | 137.0
154.0
171.7 | 1783
1897
2010 | 644
632
620 | | | | $\lambda = 3$ | | 1000 | 16
17
18 | 1606
1670
1731 | 190°0
208°8
228°2 | 2121
2231
2340 | 609
599
589 | | φ | (x) | (3) | (t) | (v) | 19
20
21 | 1791
1849
1906 | 248·2
268·8
289·9 | 2448
2554
2660 | 581
573
565 | | 8°
7 ³ / ₂ | 4021
3487
3094 | 395'4
321'4
268'9 | 2223
2069
1937 | 3834
3207
2813 | 22
23
24 | 1961
2014
2067 | 333.8
311.6 | 2766
2870
2975 | 558
551
545 | | 71
7
63 | 2784
2527
2308 | 228·6
196·5 | 1819 | 2535
2326
2162 | 25
26
27 | 2118
2168
2218 | 380°0
403°9
428°5 | 3078
3182
3286 | 539
534
529 | | 61
61
6 | 2116
1947 | 147·8
128·9 | 1522
1436 | 2028
1916 | 28
29
30 | 2266
2314
2361 | 453.7
479.5
506.0 | 3389
3493
3597 | 524
520
516 | | 5
4 | 1795
1306
938 | 36·2 | 1354
1061
807 | 1546
1367 | 31
32
33 | 2407
2452
2497 | 289.2
261.0
233.1 | 3701
3805
3910 | 512
508
505 | | 3 2 1 0 | 643
397
186
0 | 18·0
7·2
1·7
0 | 580
372
180
0 | 1238
1141
1063
1000 | 34
35
36 | 2541
2585
2628 | 618·8
648·9
679·8 | 4016
4122
4228 | 502
499
497 | 1X. (continued). | | | $\lambda = 3.4$ | } | | | | $\lambda =
3.5$ | 5 | | |---|------------------------------|----------------------------------|------------------------------|------------------------------|----------------------|----------------------|-------------------------|------------------------------|-------------------| | φ | (x) | ('') | (t) | (v) | φ | (x) | (y) | (t) | (v) | | 74
71
74
74 | 3856
3340
2959
2658 | 366·1
296·9
247·7
210·0 | 2145
1994
1864
1749 | 3769
3155
2768
2496 | 4°
5
6 | 569
682
788 | 18·6
27·5
37·6 | 630
771
907 | 821
790
763 | | 63
61
61 | 2409
2197
2012 | 180·0
155·3
134·5 | 1644
1547
1456 | 2290
2129
1997 | 7
8
9 | 886
978
1065 | 48·8
60·9
73·9 | 1039
1167
1292 | 738
716
696 | | 6
5
4 | 1847
1330
949 | 116·9
66·8
36·7 | 1371
1070
811 | 1887
1579
1385 | IO
II
I2 | 1148
1226
1301 | 87·7
102·3
117·4 | 1413
1532
1649 | 678
662
647 | | 3
2
1 | 648
399
186 | 18·2
7·3
1·7 | 582
373
180 | 1248
1146
1065
1000 | 13
14
15 | 1372
1441
1507 | 133·3
149·7
166·7 | 1763
1875
1986 | 633
620
608 | | | | y = 3.2 | | 1000 | 16
17
18 | 1570
1631
1690 | 184.3
205.4
221.1 | 2095
2203
2310 | 597
587
578 | | φ | (x) | (y) | (t) | (v) | 19
20
21 | 1747
1803
1857 | 240°3
260°0
280°2 | 2415
2520
2623 | 569
561
553 | | 7 ^{3°} 7 ¹ 7 ¹ 7 | 4428
3669
3179
2816 | 437°I
335°3
271°8
226°4 | 2246
2063
1915
1789 | 4789
3664
3080
2709 | 22
23
24 | 1910
1961
2012 | 301.0
322.2
344.0 | 2726
2829
2931
3033 | 546
539
533 | | 6 ³ / ₄
6 ¹ / ₂
6 ¹ / ₄ | 2527
2288
2083 | 191.6
163.7
140.7 | 1676
1573
1478 | 2445
2246
2089 | 25
26
27
28 | 2109
2156
2202 | 389·3
412·8
436·8 | 3134
3235
3336 | 522
517
512 | | 6
5
4 | 1904
1355
961 | 121·7
68·5
37·3 | 1389
1079
816 | 1961
1614
1403 | 30
31 | 2247
2292
2336 | 461.4
486.7
512.6 | 3438
3539
3641 | 508
504
500 | | 3 2 | 653
401
186 | 18·4
7·3
1·6 | 584
374
180 | 1259
1151
1067 | 32
33
34 | 2379
2422
2464 | 594.5
594.5 | 3743
3845
3948 | 496
493
490 | | 0 1 2 3 | 0
165
312
446 | 0
1.4
2.3 | 0
170
330
483 | 1000
944
897
856 | 35
36 | 2506
2547 | 622·3 | 4051
4156 | 487
485 | IX. (continued). | | | $\lambda = 3.7$ | 7 | | | | $\lambda = 3.6$ |) | | |--|------------------------------|----------------------------------|------------------------------|------------------------------|---|--------------------------|------------------------------|-----------------------|------------------------------| | φ | (x) | (y) | (t) | (v) | φ | (x) | (y) | (t) | (v) | | 7° 6 ³ / ₄ 6 ¹ / ₂ 6 ¹ / ₄ | 3254
2832
2511
2253 | 273'4
222'4
185'1
156'2 | 1890
1753
1634
1527 | 3375
2882
2556
2320 | $1\frac{1}{2}^{\circ}$ 1 $0\frac{1}{2}$ 0 | 293
188
90 | 4.0
1.7
0.4
0 | 277
181
89
0 | 1121
1076
1036
1000 | | 6
5 ³ / ₄
5 ¹ / ₂ | 2036
1850
1687 | 133.0
113.8
97.7 | 1430
1339
1254 | 2140
1996
1877 | 1
2
3 | 164
309
439 | 1.4
2.5
10.9 | 169
328
479 | 938
887
844 | | 5 ¹ / ₄
5
4 ¹ / ₂ | 1541
1410
1180 | 84·0
72·2
53·1 | 1174
1098
956 | 1778
1693
1553 | 4
5
6 | 558
667
768
861 | 18·1
26·7
36·3 | 624
762
895 | 806
774
745 | | 4
3½
3 | 985
814
663 | 38·6
27·4
18·8 | 825
703
588 | 1444
1354
1280 | 7
8
9 | 949 | 47.0
58.5
70.8
83.8 | 1148
1269 | 697
676
658 | | $2\frac{1}{2}$ 2 $1\frac{1}{2}$ | 527
404
291 | 7.4
3.9 | 479
375
276 | 1217
1162
1114 | 11 12 | 1182
1252
1319 | 97.4 | 1503
1615
1726 | 641
626 | | 1
O ¹ / ₂
O | 187
90
0 | 1.7
0.4
0 | 181
89
0 | 1072
1034
1000 | 14
15
16 | 1383
1444
1503 | 141.7 | 1834
1941
2047 | 599
587
576 | | | | 1 | | 1 | 17
18 | 1560
1615 | 190.7 | 2150 | 565
556 | | - | 1 | y = 3.6 | <u> </u> | 1 | 19
20
21 | 1668
1719
1769 | 225·8
244·0
262·6 | 2354
2455
2555 | 547
539
531 | | φ | (x) | (y) | (t) | (v) | 22
23
24 | 1818
1865
1911 | 281.8
301.4
321.4 | 2654
2752
2850 | 524
517
511 | | 6½°
6¼
6
5¾ | 2827
2476
2202
1976 | 176.9
147.4
124.5 | 1711
1586
1476
1377 | 3043
2650
2379
2176 | 25
26
27 | 1956
2000
2043 | 342·0
363·0
384·6 | 2948
3045
3142 | 505
500
495 | | 5½
54
5 | 1785
1618
1471 | 105·3
89·7
76·4 | 1285
1200
1119 | 2018
1890
1784 | 28
29
30 | 2086
2127
2168 | 406·6
429·2
452·3 | 3239
3336
3433 | 490
486
482 | | 4½
4
3½ | 1220
1011
831 | 55°5
40°0
28°2 | 971
835
710 | 1616
1488
1386 | 31
32
33 | 2208
2248
2287 | 476·0
500·3
525·1 | 3530
3627
3725 | 478
475
47,1 | | 3
21
2
2 | 674
534
407 | 19·2
12·5
7·5 | 593
482
377 | 1303
1233
1173 | 34
35
36 | 2326
2364
2401 | 550·6
576·8
603·6 | 3823
3922
4022 | 468
465
463 | IX. (continued). | |) | λ = 4·1 | | | | 7 | $\lambda = 4.3$ | 3 | | |---|------------------------------|----------------------------------|------------------------------|------------------------------|----------------|-----------------------|-------------------------|------------------------|------------------------------| | φ | (x) | (y) | (t) | (v) | φ | (x) | (y) | (t) | (v) | | 6½°
6
5¾
5½ | 2797
2421
2135
1904 | 207·3
166·9
137·4
114·6 | 1663
1534
1422
1321 | 3179
2721
2417
2196 | I ½° I O½ O I | 297
189
91
0 | 4°I
I°7
O°4
O | 279
182
089
0 | 1136
1085
1040
1000 | | 5 1
5
4 2 | 1710
1542
1396 | 96·4
81·4
68·8 | 1228
1143
1062 | 2027
1891
1780 | 3 | 305
433 | 2.1 | 326
475 | 933
877
831 | | 4 ¹ / ₂
4
3 ¹ / ₂ | 1265
1039
849 | 58·2
41·4
29·0 | 987
846
717 | 1686
1536
1419 | 4
5
6 | 548
652
749 | 17·6
25·9
35·1 | 617
753
883 | 792
758
728 | | 3
21
2 | 685
540
411 | 19.6
12.7
7.6 | 597
485
379 | 1326
1249
1184 | 7
8
9 | 838
921
999 | 45°3
56°2
67°9 | 1009
1130
1248 | 702
679
658 | | 1½
I
O½ | 295
188
91 | 4.0
1.4
0.4 | 278
181
89 | 1129
1080
1038 | 10
11
12 | 1073
1142
1208 | 80.3
93.0
100.4 | 1363
1475
1584 | 639
622
606 | | 0 | 0 | 0 | 0 | 1000 | 13
14
15 | 1270
1330
1388 | 120·3
134·6
149·5 | 1691
1797
1900 | 592
579
567 | | | 1 | $\lambda = 4$ | 3 | | 16
17 | 1443
1496 | 164.7
180.4 | 2002
2102 | 556
546 | | φ | (x) | (y) | (t) | (v) | 18 | 1547
1596 | 196.2 | 2201 | 536
528 | | 6° 5\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | 2737
2344 | 195.8 | 1607
1476 | 3272
2760 | 20
21 | 1644
1690 | 230.0 | 2396
2492 | 519
512 | | 5½
5½
5¼ | 2052 | 126.5 | 1362
1261 | 2432
2198 | 22
23
24 | 1736
1779
1822 | 265.1
283.3
301.9 | 2587
2682
2776 | 505
498
492 | | 5
4 ³ / ₄
4 ¹ / ₂ | 1625
1460
1315 | 87·1
73·0
61·3 | 1169
1083
1004 | 2021
1881
1766 | 25
26
27 | 1864
1905
1944 | 320°9
340°3
360°2 | 2870
2963
3057 | 486
481
476 | | 4 ¹ / ₄
3 ¹ / ₂ | 1186
1070
869 | 51.4
43.1
51.4 | 929
857
724 | 1670
1589
1456 | 28
29
30 | 1984
2022
2060 | 380·6
401·4
422·7 | 3150
3243
3336 | 471
467
463 | | 3 2 2 2 | 697
548
415 | 20°1
12°9
7°7 | 602
488
380 | 1351
1267
1196 | 30 | 2000 | 422 / | 3330 | 4-3 | IX. (continued). | | | $\lambda = 4.5$ | 5 | | | | $\lambda = 4.7$ | 7 | | |-------------------------------------|------------|-----------------|------------|--------------|-------|------|-----------------|------------|------------| | φ | (x) | (3) | (1) | (v) | φ | (x) | (y) | (1) | (v) | | 5 ^{3°} | 2641 | 181.4 | 1544 | 3310 | 110 | 301 | 4.1 | 280 | 1152 | | $\frac{51}{2}$ | 2244 | 142.2 | 1412 | 2764 | 1 | 191 | i.7 | 182 | 1094 | | 5½
5¼ | 1953 | 114.8 | 1299 | 2422 | οį | 91 | 0.4 | 89 | 1044 | | 5 | 1722 | 94.1 | 1198 | 2182 | 0 | _0 | 0 | 0 | 1000 | | ., | | 0 | | | 1 | 162 | 1.4 | 168 | 927 | | 43 | 1532 | 77.8 | 1107 | 2002
1860 | 2 | 302 | 2.0 | 324 | 868 | | $\frac{4\frac{1}{2}}{4\frac{1}{4}}$ | 1370 | 64.7 | 1022 | 1744 | 3 | 426 | 10.4 | 472 | 020 | | 41 | 1220 | 53.9 | 943 | 1/44 | 4 | 538 | 17.2 | 611 | 779 | | 4 | 1103 | 44.9 | 869 | 1648 | | 639 | 25.1 | | 743 | | 33 | 991 | 37.2 | 799 | 1567 | 5 6 | 731 | 34.0 | 745
872 | 713 | | $\frac{31}{2}$ | 889 | 30.8 | 732 | 1495 | | ,,, | 3. | | ' ' | | | | • | | | 7 8 | 816 | 43.7 | 995 | 686 | | 3 | 709 | 20.2 | 607 | 1378 | | 896 | 54.5 | 1114 | 662 | | $2\frac{1}{2}$ | 554 | 13.1 | 491
382 | 1285 | 9 | 970 | 65.2 | 1228 | 641 | | 2 | 419 | 7.8 | 382 | 1208 | I | | -6 | | | | - 1 | | | | | 10 | 1039 | 76.9 | 1340 | 622 | | I 1/2 | 299
190 | 4·1 | 279
182 | 1144 | 11 12 | 1105 | 89.0 | 1449 | 605
589 | | ol | 91 | 0.4 | 89 | 1042 | 12 | 1107 | 101 / | 1555 | 509 | |
0 | 0 | 0 | 0 | 1000 | 13 | 1226 | 114.8 | 1659 | 575 | | | - | } | | | 14 | 1282 | 128.3 | 1761 | 562 | | | | | | | 15 | 1336 | 142.2 | 1861 | 550 | | | | $\lambda = 4$ | 7 | | | | | | | | | | | | | 16 | 1388 | 156.2 | 1960 | 539 | | | 1 | 1 | 1 | | 17 | 1437 | 171.2 | 2057 | 528 | | φ | (x) | ('') | (1) | (v) | 18 | 1485 | 186.3 | 2153 | 519 | | | , , | | , , | . , | 19 | 1531 | 201.7 | 2247 | 510 | | | | | | | 20 | 1576 | 217.6 | 2341 | 502 | | 5½° | 2515 | 165.0 | 1474 | 3286 | 21 | 1619 | 233.7 | 2434 | 494 | | 5‡ | 2125 | 128.3 | 1343 | 2733 | | | | | | | 5 2 | 1841 | 102.7 | 1232 | 2389 | 22 | 1661 | 250.3 | 2526 | 487 | | 43 | 1618 | 83.6 | 1133 | 2149 | 23 | 1702 | 267.2 | 2617 | 481 | | .1 | 1422 | 68.7 | 1043 | 1969 | 24 | 1742 | 284.2 | 2708 | 475 | | $\frac{4\frac{1}{2}}{4\frac{1}{4}}$ | 1433 | 56.7 | 960 | 1828 | 25 | 1781 | 302.2 | 2799 | 469 | | 44 | 1140 | 46.8 | 882 | 1714 | 26 | 1819 | 320.3 | 2889 | 464 | | 7 | | 4-3 | | -/4 | 27 | 1856 | 338.8 | 2979 | 459 | | 33 | 1019 | 38.6 | 809 | 1618 | | | 33 | | 137 | | $3\frac{1}{2}$ | 910 | 31.8 | 740 | 1537 | 28 | 1892 | 357.7 | 3068 | 454 | | 31 | 812 | 26.0 | 675 | 1467 | 29 | 1928 | 377'1 | 3158 | 450 | | | | | | | 30 | 1963 | 396.8 | 3248 | 446 | | 3 | 722 | 21.0 | 612 | 1406 | | | | | | | 2 2 | 562 | 13.3 | 494 | 1304 | | | | | | | 2 | 423 | 7.9 | 384 | 1221 | 1 | | | | | 1X. (continued). | | | λ = 4°9 |) | | | | λ = 5·1 | | | |---|------------------------|---|--------------------------|----------------------|---|------------------------------|---|------------------------------|------------------------------| | φ | (x) | (y) | (t) | (v) | φ | (x) | (3) | (t) | (v) | | 54°
5
4‡ | 2362
1991
1720 | 147·2
113·9
90·7 | 1399
1271
1162 | 3205
2668
2335 | 4°
5
6 | 528
625
714 | 16·8
24·5
33·0 | 606
737
862 | 766
729
698 | | 4½
4¼
4 | 1506
1330
1180 | 73 [.] 4
59 [.] 9
49 [.] 1 | 1065
977
896 | 2101
1926
1788 | 7
8
9 | 796
872
942 | 42·3
52·3
62·8 | 982
1098
1210 | 671
647
625 | | 3 ³ / ₄
3 ¹ / ₂
3 ¹ / ₄ | 1049
934
830 | 40°2
32°9
26°8 | 820
749
682 | 1677
1584
1505 | 10
11
12 | 1008
1071
1129 | 73 [.] 9
85 [.] 4
97 [.] 4 | 1319
1425
1529 | 606
589
573 | | 3
2 ¹ / ₂
2 | 735
570
427 | 21.6
13.6
8.0 | 617
497
386 | 1436
1323
1234 | 13
14
15 | 1185
1238
1289 | 109·8
122·5
135·6 | 1630
1729
1826 | 559
546
533 | | I 1/2 I O 1/2 | 303
191
91 | 4·2
1·7
0·4 | . 281
183
89 | 1160
1098
1046 | 16
17
18 | 1338
1384
1429 | 149°1
163°0
177°1 | 1922
2016
2109 | 522
512
503 | | 0 | 0 | 0 | 0 | 1000 | 19
20
21 | 1473
1515
1555 | 206.2
191.6 | 2201
2291
2381 | 494
486
479 | | | 1 | $\lambda = 5.1$ | [| | 22
23
24 | 1595
1633
1670 | 237.2
253.0
269.2 | 2470
2559
2647 | 472
465
459 | | φ | (x) | (y) | (t) | (v) | | | $\lambda = 5.3$ | 3 | | | 5°
41
41
42 | 2192
1848
1594 | 129°0
99°6
79°0 | 1319
1196
1090 | 3076
2578
2263 | φ | (x) | ('') | (t) | (v) | | 4 ¹ / ₄ 3 ³ / ₁ | 1393 | 41.9
41.9 | 996
911
832
758 | 1874
1742 | 5°
4½
4½
4¼ | 2485
2011
1698
1464 | 151·8
111·3
85·9
67·9 | 1380
1236
1119
1018 | 3756
2919
2470
2180 | | 3½
3¼
3 | 959
849
750 | 34.0
22.1 | 689 | 1634
1545
1468 | 44
4
3 3 | 1276 | 54·4
43·8 | 927
845 | 1973 | | 2 1 2 2 2 2 | 578
432 | 13.8 | 501
388 | 1344 | $\frac{3\frac{1}{2}}{3\frac{1}{4}}$ | 986
869
765 | 35°3
28°4
22°7 | 768
697
629 | 1690
1588
1502 | | 1 1 2 I O 2 | 305
192
92 | 4·2
1·7
0·4 | 282
183
89 | 1169
1103
1048 | 3
21
2 | 586
436 | 14°1
8°2 | 504
390 | 1366
1261 | | 0
1
2
3 | 0
161
299
420 | 0
1,4
2,0 | 0
167
323
468 | 921
- 859
808 | $ \begin{array}{c c} $ | 307
193
91 | 4.5
1.4
0.4
0 | 283
183
89
0 | 1177
1108
1050
1000 | IX. (continued). | | | $\lambda = 5.5$ | 5 | | | | $\lambda = 5.7$ | 7 | | |---|------------------------------|-------------------------------|-----------------------------|-------------------------------------|---|------------------------------|-------------------------------|----------------------------|------------------------------| | φ | (x) | (v) | (t) | (v) | φ | (x) | (y) | (t) | (v) | | 44
4½
4¼
44
4 | 2238
1828
1547
1333 | 127·8
94·6
73·1
57·7 | 1287
1153
1042
945 | 3443
2746
2352
2089 | 4½°
4¼
4
3¾ | 2001
1650
1401
1207 | 106·4
79·5
61·5
48·4 | 1193
1069
965
873 | 3143
2572
2229
1995 | | 3 ⁴ / ₂
3 ¹ / ₂
3 ¹ / ₄ | 1161
1016
891 | 46·0
36·7
29·4 | 858
778
7 04 | 1899
1753
1636 | $\frac{3\frac{1}{2}}{3\frac{1}{4}}$ | 1049
915
799 | 38·3
30·4
24·1 | 790
713
642 | 1822
1688
1579 | | 3
21/2
2 | 781
595
440 | 23.4
14.4
8.3 | 635
508
391 | 1539
1389
1275 | $2\frac{3}{4}$ $2\frac{1}{2}$ 2 | 696
604
445 | 18·9
14·7
8·4 | 575
511
394 | 1489
1413
1290 | | 1 ½
I
O½
O | 309
194
92
0
160 | 4'3
1'8
0'4
0 | 284
184
90
0 | 1186
1113
1052
1000
916 | $1\frac{1}{2}$ 1 $0\frac{1}{2}$ 0 | 311
195
92
0 | 4.3
1.8
0.4
0 | 285
184
90
0 | 1194
1118
1054
1000 | | 3 | 296
414 | 4.0
10.0 | 321
46 5 | 850
798 | | | $\lambda = 5.6$ | 9 | | | 5
6 | 519
613
699 | 16.4
23.8
32.0 | 600
729
852 | 754
716
684 | φ | (x) | (y) | (t) | (v) | | 7
8
9 | 777
850
91 7 | 41.0
50.2
60.6 | 969
1083
1192 | 657
632
611 | 4½°
4¼
4 | 2247
1780
1480 | 123.6
87.7
66.1 | 1244
1101
987 | 3782
2867
2402 | | 10
11
12 | 980
1039
1095 | 71°1
82°1
93°4 | 1299
1402
1503 | 591
574
558 | $\frac{4}{3^{\frac{3}{4}}}$ $\frac{3^{\frac{1}{2}}}{3^{\frac{1}{4}}}$ | 1259
1085
940 | 31.2
40.1
21.1 | 889
801
722 | 2108
1901
1745 | | 13
14
15 | 1148
1198
1247 | 105.2 | 1601
1698
1792 | 544
531
519 | 3
23
23
25 | 817
709
614 | 19.4 | 648
580 | 1622
1521
1438 | | 16
17
18 | 1293
1337
1379 | 142·5
155·5
168·9 | 1885
1977
2067 | 508
498
488 | 2
1½ | 450
313 | 8.6 | 515
395
286 | 1305 | | 19
20
21 | 1420
1459
1497 | 182.6
196.5 | 2156
2244
2331 | 480
472
464 | 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 195
92
0
159 | 0°4
0 1°3 | 185
90
0
166 | 1122
1056
1000
911 | | 22
23
24 | 1535
1571
1606 | 225.4
240.3
255.5 | 2418
2503
2589 | 457
451
445 | 3 4 5 6 | 293
408
510
601 | 4.8
9.8
16.0
23.2 | 319
461
595
721 | 787
742
704 | | | | | | | 6 | 683 | 31.1 | 842 | 671 | IX. (continued). | | | $\lambda = 5$ | 9 | | | | $\lambda = 6$ | 3 | | |-------------------------------|-----------------------|------------------------|-----------------------|------------------------------|--|-----------------------|-------------------------|----------------------|------------------------------| | φ | (x) | (y) | (t) | (v) | φ | (x) | (y) | (t) | (v) | | 7°
8
9 | 759
828
893 | 39.7
48.8
58.5 | 957
1068
1176 | 643
619
597 | 4°
3 ³ / ₄
3 ¹ / ₂ | 1693
1388
1170 | 78·8
58·1
44·2 | 1041
925
827 | 2916
2406
2094 | | 10
11
12 | 953
1009
1062 | 68·5
79·3
89·8 | 1279
1380
1479 | 577
560
544 | 3 ¹
3
2 ³ / ₁ | 998
857
738 | 26·4
20·4 | 741
662
590 | 1879
1719 | | 13
14 | 1113 | 101.0 | 1575
1668 | 530
517 | $2\frac{1}{2}$ 2 | 634
460 | 15.7
8.8 | 523
400 | 1493
1337 | | 15
16 | 1206
1250
1291 | 136.3 | 1761
1851
1940 | 505
494
484 | $1\frac{1}{2}$ I $0\frac{1}{2}$ O | 318
197
92
0 | 4'4
1'8
0'4 | 288
186
90 | 1222
1132
1060
1000 | | 17
18 | 1332 | 161.3 | 2028 | 475 | 1 2 3 | 158
289
402 | 1·3
4·7
9·7 | 166
318
458 | 906
834
777 | | 20
21
22 | 1408
1444
1479 | 187·5
201·0 | 2200
2285
2369 | 458
451
444 | 4 5 6 | 501
590
669 | 15.7
22.6
30.3 | 590
714
833 | 731
692
659 | | 23
24 | 1513 | 228.8 | 2452
2535 | 438
432 | 7 8 | 742
808 | 38·5
47·3 | 946 | 631
606 | | | | $\lambda = 6.1$ | [| | 9 | 928 | 56.5 | 1160 | 584
565 | | φ | (x) | (y) | (t) | (v) | 11
12
13 | 982
1033
1081 | 76·2
86·5
97·1 | 1360
1456
1550 | 547
532
517 | | 4‡° | 1949 -
1574 | 98.7 | 1140 | 3296
2622 | 14 | 1126
1169 | 108.0 | 1642
1731 | 504
493 | | 3 ³ / ₄ | 1319
1125
968 | 54·3
42·0
32·8 | 906 | 1990
1808 | 16
17
18 | 1211
1250
1289 | 130·7
142·5
154·5 | 1820
1906
1992 | 482
472
463 | | 3 ¹ / ₃ | 836
723 | 25.6
19.9 | 731
655
585 | 1668 | 19
20
21 | 1325
1361
1395 | 166·8
179·3 | 2076
2160
2242 | 454
446
439 | | 2 1/2
2 | 624
455 | 15·3
8·7 | 519
398 |
1465
1321 | 22
23 | 1428
1460 | 205.1 | 2324
2405 | 432
426 | | 1½
1
0½
0 | 316
196
92
0 | 4.4
1.8
0.4
0 | 287
185
90
0 | 1213
1127
1058
1000 | 24 | 1491 | 232.0 | 2486 | 419 | IX. (continued). | | | λ = 6.2 | 7 | | | | $\lambda = 7$ | ī | | |---|------------------------|------------------------|----------------------------|------------------------------|-----------------------------------|-----------------------|-------------------------|-----------------------|------------------------------| | φ | (x) | (1) | (t) | (7') | φ | (x) | (y) | (t) | (v) | | 4°
33
31
32 | 2073
1574
1279 | 102·5
68·5
49·8 | 1119
9 72
859 | 4019
2880
2362 | 7°
8
9 | 711
772
829 | 36·4
44·5
53·0 | 924
1029
1130 | 608
583
561 | | 3 ¹ / ₄
3
2 ¹ / ₄ | 1068
905
770 | 37.3
28.4
21.6 | 763
678
602 | 2049
1836
1678 | 10
11
12 | 882
932
978 | 61·9
80·5 | 1227
1322
1414 | 542
524
509 | | $ \begin{array}{c c} 2\frac{1}{2} \\ 2\frac{1}{4} \\ 2 \end{array} $ | 657
558
471 | 16.4
15.3
9.1 | 531
466
404 | 1554
1455
1372 | 13
14
15 | 1022
1064
1103 | 90.3
100.3 | 1503
1591
1677 | 494
482
470 | | $ \begin{array}{c c} I \frac{1}{2} \\ I \\ O \frac{1}{2} \\ O \end{array} $ | 323
199
93
0 | 4.5
1.8
0.4
0 | 290
186
90 | 1242
1143
1064
1000 | 16
17
18 | 1141
1177
1212 | 120·9
131·6
142·5 | 1761
1844
1925 | 460
450
441 | | | | $\lambda = 7$ | ı | | 19
20
21 | 1245
1277
1308 | 153.6
164.9
176.5 | 2006
2085
2163 | 432
425
418 | | φ | (x) | (v) | (t) | (v) | 22
23
24 | 1338
1367
1395 | 212.6
500.3
188.3 | 2241
2318
2394 | 411
405
399 | | 3 ^{3°}
3 ¹ / ₂
3 ¹ / ₄ | 1887
1431
1157 | 86·7
57·7
41·5 | 1039
898
789 | 3826
2769
2278 | | | $\lambda = 7$ | 5 | | | 3
2 ³ / ₄
2 ¹ / ₂ | 961
807
682 | 30.7 | 696
614
540 | 1981
1776
1624 | φ | (x) | (y) | (t) | (v) | | 2.1 | 575
482 | 9.4 | 472
408 | 1505 | 3½°
3¼ | 1667
1274 | 70°4
47°0 | 951
820 | 3499
2606 | | $I\frac{1}{2}$ I $O_{\frac{1}{2}}$ | 327
201
93 | 4.6
1.8
0.4 | 292
187
90 | 1262
1153
1068 | 3
23 | 1029
850 | 33.6 | 717
628 | 2167
1895 | | 0
I
2
3 | 0
156
284
392 | 0
1.3
4.6
9.3 | 165
314
452 | 895
818
758 | $2\frac{1}{2}$ $2\frac{1}{4}$ 2 | 710
594
495 | 18·2
13·4
9·7 | 550
479
413 | 1704
1562
1450 | | 4 5 6 | 486
569
643 | 15.0 | 580
701
815 | 710
670
637 | 1 ½
1
0 ½
0 | 333
202
94
0 | 4.7
1.9
0.4
0 | 294
188
90
0 | 1284
1164
1073
1000 | ${\bf IX.}\ (continued).$ | | | $\lambda = 7.6$ |) | | | | $\lambda = 8.3$ | 3 | | |-----------------------|--|---|--|---|--|-----------------------|------------------------|-----------------------|------------------------------| | φ | (x) | (y) | (1) | (v) | φ | (x) | (y) | (t) | (v) | | 31°
3
23 | 1442
1115
901 | 55·5
37·4
26·6 | 860
741
644 | 3131
2418
2040 | 3°
2 ³ / ₄
2 ¹ / ₂ | 1230
962
777 | 42·5
29·0
20·5 | 771
663
573 | 2781
2226
1909 | | 2½
2¼
2
2 | 741
614
508 | 10.0
14.0
10.3 | 561
486
418 | 1798
1625
1495 | 2 ¹ / ₄
2
1 ³ / ₄ | 636
522
426 | 14·7
10·4
7·3 | 494
424
359 | 1697
1544
1425 | | 1 1 2 1 0 1 2 0 I 2 3 | 338
204
94
0
154
278
382 | 4.8
1.9
0.4
0
1.3
4.5
9.0 | 297
189
91
0
164
311
446 | 1307
1175
1077
1000
885
803
741 | 1½
1
0½
0 | 344
206
94
0 | 4.9
1.9
0.4
0 | 299
189
91
0 | 1331
1187
1081
1000 | | 4 5 6 | 471
549
619 | 14.4
20.6
27.3 | 571
688
799 | 691
650
616 | | | λ = 8.7 | , | | | 7
8
9 | 682
740
793 | 34°5
42°1
50°0 | 905
1006
1103 | 587
562
540 | ø | (x) | (1) | (1) | (v) | | 10
11
12 | 842
888
931 | 58·2
66·7
75·4 | 1197
1288
1376 | 521
504
488 | 3°
2 ³ / ₄
2 ¹ / ₂ | 1401
1039
820 | 50.4
35.1
50.4 | 809
684
586 | 3399
2473
2043 | | 13
14
15 | 971
1009
1046 | 84·3
93·5
102·9 | 1462
1546
1628 | 474
462
450 | 2 1 3 1 3 4 | 662
538
436 | 15·4
10·8
7·5 | 503
430
363 | 1780
1598
1462 | | 16
17
18 | 1080
1113
1145 | 112·5
122·3
132·3 | 1709
1788
1866 | 440
430
421 | I 1/2
I
O 1/2
O | 349
208
95
0 | 5.0
1.9
0.4
0 | 301
91
0 | 1356
1199
1086
1000 | | 19
20
21 | 1175
1205
1233 | 142.4
152.8
163.4 | 1943
2019
2094 | 313
406
399 | I
2
3 | 153
273
373 | 1·3
4·4
8·7 | 163
308
440 | 876
789
724 | | 22
23
24 | 1260
1287
1312 | 174·1
185·1
196·2 | 2168
2241
2315 | 392
386
381 | 4
5
6 | 458
532
598 | 13.9
19.7
26.0 | 562
676
784 | 673
632
597 | IX. (continued). | | | $\lambda = 8$ | 7 | | | | $\lambda = 9.5$ | 5 | | |---|-----------------------|-----------------------------------|-----------------------|------------------------------|--|----------------------|------------------------------|----------------------|----------------------| | φ | (x) | (y) | (t) | (v) | φ | (x) | (y) | (t) | (v) | | 7°
8
9 | 657
711
760 | 32·8
39·9
47·3 | 886
984
1078 | 568
543
522 | 2 ^{3°} ₄ 2 ¹ / ₂ 2 ¹ / ₄ 2 | 1287
932
723 | 42.5
26.1
17.3
11.8 | 742
618
523 | 3394
2426
1989 | | 10
11
12 | 806
848
888 | 54 [.] 9
62·8
70·9 | 1169
1256
1342 | 502
486
470 | $1\frac{3}{4}$ $1\frac{1}{2}$ | 573
457
362 | 8·o | 371
307 | 1725
1545 | | 13 | 926
961 | 79°2
87°7 | 1424
1505 | 456
444 | I
0½
0 | 95
0 | 2.0
0.4
0 | 192
91
0 | 1223
1095
1000 | | 16 | 995 | 96.4 | 1584 | 433
423 | 1
2
3 | 151
268
364 | 1·3
4·3
8·4 | 162
305
434 | 867
776
708 | | 17 | 1057 | 114.3 | 1738
1813
1887 | 413
405
397 | 4
5
6 | 445
515
578 | 13.4
18.9
24.9 | 554
665
770 | 657
615
580 | | 20
21 | 1141 | 142.4 | 1959 | 389
383 | 7
8 | 633
684 | 31.3 | 869
964 | 551
527 | | 22
23
24 | 1193
1217
1240 | 182.3
12.1
185.0 | 2102
2173
2243 | 376
370
365 | 9
10 | 73i
773 | 44·8
52·0 | 1055 | 505
486 | | | | y = 0.1 | [| | 11 | 813
850
885 | 59.4
66.9 | 1309 | 469
454 | | $ \phi $ | (x) | (y) | (<i>t</i>) | (v) | 13
14
15 | 918
949 | 74.7
82.6
90.6 | 1389
1467
1544 | 441
428
418 | | 2 ^{3°} 2 ¹ / ₂ | 1141
870 | 36.3 | 710
601 | 2827 | 16
17
18 | 979
1007
1034 | 98·9
107·3
98·9 | 1618
1692
1764 | 407
398
390 | | 2 1 2 1 3 1 3 4 | 690
555
446 | 16·3
11·3
7·7 | 513
436
367 | 1876
1658
1502 | 19
20
21 | 1060
1085
1109 | 124·5
133·3
142·3 | 1835
1905
1974 | 382
375
368 | | I 1/2 I O 1/2 O | 356
210
95
0 | 5°2
2°0
0°4
0 | 304
191
91
0 | 1383
1211
1090
1000 | 22
23
24 | 1133
1155
1177 | 151·5
160·8
170·3 | 2042
2110
2177 | 362
356
351 | IX. (continued). | | | y = 0.8 |) | | | | $\lambda = 10$ | 3 | | |----------------------|---------------------------|------------------------|-----------------------|------------------------------|----------------|----------------------|-------------------------|----------------------|-------------------| | φ | (x) | ('') | (t) | (v) | φ | (x) | (1) | (1) | (v) | | 21°
21
21
2 | 1011
761
594 | 29.0
18.6
12.4 | 639
534
449 | 2722
2125
1802 | 1°
2
3 | 149
263
355 | 1·2
4·2
8·2 | 161
302
429 | 857
763
694 | | 134
12
14 | 469
369
2 86 | 8·3
5·4
3·4 | 375
309
249 | 1592
1442
1327 | 4
5
6 | 433
500
559 | 12.9
18.2
13.9 | 546
654
756 | 642
599
565 | | 1
04
01
0 | 214
152
96
0 | 2.0
1.0
0.4
0 | 193
141
91
0 | 1236
1162
1100
1000 | 7
8
9 | 612
660
703 | 29·9
36·1
42·7 | 853
945
1033 | 536
511
490 | | | | λ= 10 | ·3 | | 10
11
12 | 744
781
816 | 49.4
56.3
63.4 | 1118
1200
1280 | 471
454
440 | | φ | (x) | (y) | (1) | (v) | 13
14
15 | 849
879
909 | 70·6
78·0
85·6 | 1357
1432
1506 | 426
414
403 | | 2½°
2¼
24 | 1118
805
617 | 33.1
50.0
13.0 | 663
547
457 | 3161
2293
1889 | 16
17
18 | 936
963
988 | 100.0
101.1
63.3 | 1578
1649
1719 | 394
385
376 | | 14
12
14 | 482
376
290 | 8·6
5·6
3·5 | 380
312
251 | 1644
1474
1348 | 19
20
21 | 1012
1035
1058 | 117·1
125·4
133·8 | 1787
1855
1922 | 369
362
355 | | I
044
02
0 | 216
153
96 | 2.0
1.1
0.4
0 | 194
141
92
0 | 1250
1170
1104
1000 | 22
23
24 | 1079
1100
1121 | 159.8
159.8 | 1988
2053
2118 | 349
344
338 | X. $\{1000\div
v\}^{\!\scriptscriptstyle 2}.$ | ש | 0 | I | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | Δ | |-------------------------|---------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------| | f. s.
10
11
12 | 100.00
82.64
69.44 | 98·30
81·16
68·03 | 96·12
79·72
67·19 | 94·26
78·31
66·10 | 92·46
76·95
65·04 | 90.40
90.40
64.00 | 89.00
74.32
62.99 | 87·34
73·05
62·00 | 85.73
71.82
61.04 | 84·17
70·62
60·09 | -
1.33
1.04 | | 13 | 59·17 | 58·27 | 57·39 | 56·53 | 55.69 | 54 ^{.8} 7 | 54.09 | 53.58 | 52·51 | 51·76 | ·83 | | 14 | 51·02 | 50·30 | 49·59 | 48·90 | 48.23 | 47 [.] 56 | 46.91 | 46.58 | 45·65 | 45·04 | 66 | | 15 | 44·44 | 43·86 | 43·28 | 42·72 | 42.17 | 41 [.] 62 | 41.09 | 40.57 | 40·06 | 39·56 | 54 | | 16 | 39.06 | 38·58 | 30.10 | 37 ^{.6} 4 | 37·18 | 36·73 | 36·29 | 35.86 | 35.43 | 35.00 | 45 | | 17 | 34.60 | 34·20 | 33.80 | 33 [.] 41 | 33·03 | 32·65 | 32·28 | 31.92 | 31.26 | 31.51 | 38 | | 18 | 39.86 | 30·52 | 38.10 | 29 [.] 86 | 29·54 | 29·22 | 36·29 | 28.60 | 28.29 | 32.01 | 32 | | 19 | 27.70 | 27·41 | 27·13 | 26·85 | 26·57 | 26·30 | 26·03 | 25.77 | 25.21 | 25.52 | 27 | | 20 | 25.00 | 24·75 | 24·51 | 24·27 | 24·03 | 23·80 | 23·57 | 23.34 | 23.11 | 22.89 | 23 | | 21 | 22.68 | 22·46 | 22·25 | 22·04 | 21·84 | 21·63 | 21·43 | 21.24 | 21.04 | 20.85 | 20 | | 22
23
24 | 20.66
18.90
17.36 | 20°48
18°74
17°22 | 20°29
18°58
17°08 | 20·11
18·42
16·94 | 19.93
18.50 | 16.99
18.11 | 19·58
17·96
16·53 | 19.41
17.80
16.39 | 19·24
17·65
16·26 | 19.07
17.21 | 18
15
14 | | 25 | 16.00 | 15.87 | 15.75 | 15.62 | 15.20 | 15·38 | 15·26 | 15·14 | 15.02 | 14.91 | 12 | | 26 | 14.79 | 14.68 | 14.57 | 14.46 | 14.32 | 14·24 | 14·13 | 14·03 | 13.92 | 13.82 | 11 | | 27 | 13.72 | 13.62 | 13.52 | 13.42 | 13.32 | 13·22 | 13·13 | 13·03 | 12.94 | 12.85 | 10 | | 28
29
30 | 1 2.422
1.891
1.111 | 2·664
1·809
1·037 | 2·575
1·728
0·964 | 2:486
1:648
0:892 | 2·398
1·569
0·821 | 2·311
1·491
0·750 | 2·226
1·413
0·680 | 2·140
1·337
0·610 | 2.056
1.541 | 1.973
1.186
0.473 | 87
78
71 | | 31 | 1 0.406 | 0.339 | 0.542 | 0.207 | 0°142 | 0.078 | 0.014 | *9.951 | *9.889 | *9.827 | 64 | | 32 | 9.766 | 9.127 | 9.645 | 9.285 | 9°526 | 9.467 | 9.409 | 9.352 | 9.295 | 9.239 | 59 | | 33 | 9.183 | 9.127 | 9.072 | 9.018 | 8°964 | 8.911 | 8.858 | 8.805 | 8.753 | 8.702 | 53 | | 34 | 8·651 | 8.600 | 8·550 | 8·500 | 8·451 | 8·402 | 8·353 | 8·305 | 8·257 | 8·210 | 49 | | 35 | 8·163 | 8.117 | 8·071 | 8·025 | 7·980 | 7·935 | 7·890 | 7·846 | 7·803 | 7·759 | 45 | | 36 | 7·716 | 7.673 | 7·631 | 7·589 | 7·547 | 7·506 | 7·465 | 7·425 | 7·384 | 7·344 | 41 | | 37 | 7·305 | 7·265 | 7·226 | 7·188 | 7·149 | 7·111 | 7.073 | 7.036 | 6·999 | 6.962 | 38 | | 38 | 6·925 | 6·889 | 6·853 | 6·817 | 6·782 | 6·746 | 6.211 | 6.677 | 6·643 | 6.608 | 35 | | 39 | 6·575 | 6·541 | 6·508 | 6·475 | 6·442 | 6·409 | 6.377 | 6.345 | 6·313 | 6.281 | 33 | | 40
41
42 | 6·250
5·949
5·669 | 6·219
5·642 | 5.831
2.831 | 6·157
5·863
5·589 | 6·127
5·834
5·562 | 6·097
5·806
5·536 | 6.067
5.778
5.510 | 6.037
5.485 | 6.007
5.723
5.459 | 5.978
5.696
5.434 | 30
28
26 | | 43 | 5.408 | 5·383 | 5.358 | 5°334 | 5.309 | 5·285 | 5°260 | 5.236 | 5·213 | 5·189 | 24 | | 44 | 5.165 | 5·142 | 5.119 | 5°096 | 5.073 | 5·050 | 5°027 | 5.005 | 4·982 | 4·960 | 23 | | 45 | 4.938 | 4·916 | 4.895 | 4°873 | 4.852 | 4·830 | 4°809 | 4.788 | 4·767 | 4·747 | 21 | | 46 | 4.726 | 4.705 | 4.685 | 4.665 | 4.645 | 4.625 | 4.605 | 4.585 | 4·566 | 4.546 | 20 | | 47 | 4.227 | 4.508 | 4.489 | 4.470 | 4.451 | 4.432 | 4.414 | 4.395 | 4·377 | 4.358 | 19 | | 48 | 4.340 | 4.322 | 4.304 | 4.287 | 4.269 | 4.251 | 4.234 | 4.216 | 4·199 | 4.182 | 18 | X. (continued). $$\{1000 \div v\}^2$$. | 7' | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | Δ | |-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|----------------| | f. s.
49
50
51 | 4·165
4·000
3·845 | 4°148
3°984
3°830 | 4.131
3.968
3.815 | 4°114
3°952
3°800 | 4.098
3.937
3.785 | 4.081
3.921
3.770 | 4.065
3.906
3.756 | 4.048
3.890
3.741 | 4.032
3.875
3.727 | 4.016
3.860
3.713 | 17
16
15 | | 52
53
54 | 3.698
3.560
3.429 | 3.684
3.547
3.417 | 3.670
3.533
3.404 | 3.656
3.20
3.392 | 3.642
3.507
3.379 | 3·628
3·494
3·367 | 3.481
3.354 | 3.468
3.342 | 3·587
3·455
3·330 | 3.244
3.442
3.319 | 14
13
12 | | 55 | 3·3058 | ·2938 | ·2819 | °2700 | *2582 | ·2464 | °2348 | ·2232 | *:9933 | *2001 | 117 | | 56 | ·1888 | ·1774 | ·1662 | °1549 | *1437 | ·1325 | °1215 | ·1105 | | *0887 | 111 | | 57 | ·0779 | ·0671 | ·0564 | °0457 | *0351 | ·0245 | °0140 | ·0036 | | **9829 | 106 | | 58 | 2·9727 | ·9624 | ·9523 | ·9421 | .9320 | ·6220 | ·9121 | ·9022 | ·8923 | ·8825 | 100 | | 59 | ·8727 | ·8630 | ·8534 | ·8437 | .8341 | ·8246 | ·8152 | ·8058 | ·7964 | ·7871 | 95 | | 60 | ·7778 | ·7685 | ·7594 | ·7502 | .7411 | ·7320 | ·7230 | ·7141 | ·7052 | ·6963 | 91 | | 61 | 2.6875 | ·6787 | ·6699 | ·6612 | ·6525 | ·6439 | ·6353 | ·6268 | ·6183 | ·6099 | 86 | | 62 | .6015 | ·5931 | ·5848 | ·5765 | ·5682 | ·5600 | ·5518 | ·5437 | ·5356 | ·5276 | 82 | | 63 | .5195 | ·5116 | ·5036 | ·4957 | ·4878 | ·4800 | ·4722 | ·4645 | ·4568 | ·4491 | 78 | | 64 | 2.4414 | °4338 | ·4262 | ·4187 | .4111 | ·4037 | ·3962 | ·3889 | *3815 | ·3742 | 75 | | 65 | .3669 | °3596 | ·3524 | ·3452 | .3380 | ·3308 | ·3237 | ·3167 | *3097 | ·3027 | 71 | | 66 | .2957 | °2887 | ·2818 | ·2750 | .2681 | ·2613 | ·2545 | ·2477 | *2410 | ·2343 | 67 | | 67 | 2.2277 | ·2210 | °2144 | ·2078 | ·2013 | ·1948 | ·1883 | ·1818 | °1754 | ·1690 | 65 | | 68 | .1626 | ·1562 | °1500 | ·1437 | ·1374 | ·1312 | ·1249 | ·1188 | °1126 | ·1065 | 62 | | 69 | .1004 | ·0943 | °0883 | ·0822 | ·0762 | ·0703 | ·0643 | ·0584 | °0525 | ·0467 | 60 | | 70 | 2.0408 | ·0350 | ·0292 | ·0234 | ·0177 | *0120 | ·0063 | .0006 | *·9950 | *·9893 | 57 | | 71 | 1.9837 | ·9782 | ·9726 | ·9671 | ·9616 | *9561 | ·9506 | .9452 | ·9398 | ·9344 | 55 | | 72 | .9290 | ·9237 | ·9184 | ·9130 | ·9077 | *9025 | ·8972 | .8920 | ·8869 | ·8817 | 53 | | 73 | 1.8765 | ·8714 | ·8663 | ·8612 | ·8561 | ·8511 | ·8460 | ·8410 | ·8361 | ·8311 | 50 | | 74 | .8262 | ·8212 | ·8163 | ·8114 | ·8066 | ·8017 | ·7969 | ·7921 | ·7873 | ·7825 | 49 | | 75 | .7778 | ·7730 | ·7683 | ·7636 | ·7590 | ·7543 | ·7497 | ·7450 | ·7405 | ·7359 | 47 | | 76 | 1.7313 | ·7268 | ·7224 | ·7177 | ·7132 | ·7087 | .7043 | ·6998 | ·6954 | ·6910 | 45 | | 77 | .6866 | ·6823 | ·6779 | ·6736 | ·6692 | ·6649 | .6606 | ·6564 | ·6521 | ·6479 | 43 | | 78 | .6437 | ·6395 | ·6353 | ·6311 | ·6269 | ·6228 | .6186 | ·6145 | ·6105 | ·6064 | 42 | | 79 | 1.6023 | ·5983 | ·5942 | ·5902 | ·5862 | ·5822 | ·5782 | 5743 | ·5704 | ·5664 | 40 | | 80 | .5625 | ·5586 | ·5547 | ·5508 | ·5470 | ·5431 | ·5393 | 5355 | ·5317 | ·5279 | 38 | | 81 | .5242 | ·5204 | ·5167 | ·5129 | ·5092 | ·5055 | ·5018 | 4982 | ·4945 | ·4908 | 37 | | 82 | 1.4872 | ·4836 | °4800 | '4764 | ·4728 | ·4692 | ·4657 | ·4621 | ·4586 | °4551 | 36 | | 83 | .4516 | ·4481 | °4446 | '4412 | ·4377 | ·4342 | ·4308 | ·4274 | ·4238 | °4206 | 34 | | 84 | .4172 | ·4139 | °4105 | '4072 | ·4038 | ·4005 | ·3972 | ·3939 | ·3906 | °3873 | 33 | | 85 | 1.3841 | ·3808 | ·3776 | '3744 | ·3711 | ·3679 | ·3647 | ·3616 | ·3584 | '3552 | 32 | | 86 | .3521 | ·3489 | ·3458 | '3427 | ·3396 | ·3365 | ·3334 | ·3303 | ·3273 | '3242 | 31 | | 87 | .3212 | ·3181 | ·3151 | '3121 | ·3091 | ·3061 | ·3031 | ·3002 | ·2972 | '2943 | 30 | X. (continued). | - | 1 | | | | | | | | | : 1 | | |-------------|--------|--------|-----------------|--------|----------------|----------------|----------------|----------------|----------------|--------|----| | 7' | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | Δ | | f. s. | | | | | | | | | | | - | | S. s.
88 | 1.5913 | .2884 | .2852 | .2826 | .2797 | .2768 | 2739 | .2710 | '2682 | 1.2653 | 29 | | 89 | *2625 | .2596 | . 2568 | *2540 | .2212 | .2484 | .2456 | *2428 | *2401 | 2373 | 28 | | 90 | .2346 | .5318 | .5591 | *2264 | .2237 | '2210 | .5183 | .2156 | .2129 | '2102 | 27 | | 91 | 1.2076 | .2049 | *2023 | 1997 | 1970 | •1944 | .1918 | .1892 | .1866 | 1840 | 26 | | 92 | 1815 | 1789 | 1764 | 1738 | 1713 | 1687 | .1665 | .1637 | .1615 | 1587 | 25 | | 93 | .1262 | 1537 | 1513 | 1488 | 1463 | 1439 | 1414 | 1390 | .1366 | 1341 | 25 | | 94 | 1.1317 | .1293 | .1269 | 1245 | .1222 | .1108 | .1174 | .1121 | 1127 | 1104 | 24 | | 95 | .1080 | 1057 | 1034 | 1101. | .0988 | 0965 | 0942 | .0919 | .0896 | .0873 | 23 | | 96 | .0851 | .0828 | .0806 | .0783 | .0761 | .0738 | .0716 | *0694 | .0672 | .0650 | 22 | | | 1.0628 | | | | | | | | | | | | 97
98 | 0.112 | .0606 | *0584 | .0563 | *0541 | .0219 | ·0498
·0286 | ·0476 | .0455 | '0434 | 22 | | 1 - 1 | | .0391 | .0370 | .0349 | .0328 | .0307 | | .0265 | *0244 | 0224 | | | 99 | *0203 | .0185 | .0191 | .0141 | .0121 | .0101 | .0080 | .co60 | '0040 | '0020 | 20 | | 100 | 1.0000 | *-9980 | *∙9 9 €0 | *-9940 | *-9920 | *-9901 | *-9881 | *-9861 | * 9842 | *-9822 | 20 | | 101 | 0.0803 | •9783 | .9764 | '9745 | '9725 | 9707 | •9688 | .9668 | 9649 | •9631 | 19 | | 102 | .9612 | .9593 | '9574 | 9555 | '9537 | .9518 | .9500 | .9481 | .9463 | '9444 | 19 | | 103 | 0.9426 | .9408 | .9389 | ·9371 | .9353 | .9335 | .9317 | .9299 | .9281 | .9263 | 18 | | 104 | .9246 | .9228 | .9210 | .9192 | 19175 | .9157 | 9140 | '9124 | .9105 | 9088 | 18 | | 105 | -9070 | .9023
| .9036 | .9019 | .9002 | ·8985 | ·S968 | .8951 | .8934 | .8917 | 17 | | 106 | 0 8900 | .8883 | -8866 | ·8850 | .8833 | ·8817 | ·8800 | .8784 | 8767 | ·8751 | 17 | | 107 | .8734 | 8718 | .8702 | ·8686 | .8669 | .8653 | ·8637 | 8621 | 8605 | 8589 | 16 | | 108 | .8573 | .8558 | .8542 | .8526 | .8510 | .8495 | .8479 | •8463 | .8448 | .8432 | 16 | | 100 | 0.8417 | ·S401 | 8386 | .8371 | .8355 | .8340 | 8325 | .8310 | .8295 | ·8280 | 15 | | 110 | 8264 | 8249 | 8234 | 8220 | 8205 | ·8190 | .8175 | .8160 | 8146 | .8131 | 15 | | 111 | .8116 | -8102 | -8087 | .8073 | •3058 | •E044 | ·S029 | .8012 | -8000 | ·79Š6 | 14 | | 112 | 0.7972 | .7958 | .7944 | .7929 | 7915 | .7901 | .7887 | .7873 | .7859 | -7845 | 14 | | 113 | .7831 | 7818 | ·7804 | 77790 | 7776 | .7763 | .7749 | 77735 | .7722 | .7708 | 14 | | 114 | .7695 | .7681 | 7668 | .7654 | .7641 | .7628 | .7614 | 7601 | .7588 | 7575 | 13 | | 115 | 0.4261 | .7548 | .7535 | .7522 | .7509 | .7496 | .7483 | .7470 | .7457 | .7444 | 12 | | 116 | 7432 | 7340 | 7335 | 7393 | 7381 | ·7368 | 7355 | 7343 | 7457 | 7444 | 13 | | 117 | .7305 | 7293 | 7280 | 7393 | 7255 | .7243 | 7333 | 7343 | 7330 | 7194 | 12 | | 118 | 0.7182 | .7170 | .77.58 | | | | .7.00 | | .208- | | | | 119 | 7062 | 7170 | 7158 | 7145 | 7133 | 7121 | 7109 | .7097 | ·7085
·6068 | ·7074 | 12 | | 120 | 6944 | .6933 | .7038 | ·6910 | ·7014
·6898 | ·7003
·6887 | ·6991 | ·6979
·6864 | 6853 | ·6956 | 12 | | | | | * | , | | | | | | | | | 121 | 0.6830 | ·6819 | ·68o8 | .6796 | .6785 | 6774 | .6763 | 6752 | 6741 | 6730 | 11 | | 123 | ·6719 | | .6697 | 6686 | .6675 | .6664 | .6653 | 6042 | .6631 | .6621 | II | | 123 | 0010 | .6599 | .6588 | .6578 | *6567 | .6556 | .6546 | .6535 | .6525 | .6514 | 11 | | 124 | 0.6504 | 6493 | .6483 | .6472 | .6462 | .6452 | .6441 | .6431 | .6421 | .6410 | 10 | | 125 | .6400 | .6390 | 6380 | 16369 | 6359 | 6349 | .6339 | .6329 | .6319 | .6309 | 10 | | 126 | .6299 | 6289 | .6279 | .6269 | 6259 | .6249 | 6239 | .6229 | .6220 | .6210 | 10 | | L | | | | | | ' - | | | | | 1 | ## X. (continued). | v | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | Δ | |----------------------------|--------------------------|-------------------------|-------------------------|-------------------------|----------------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|----------------| | f. s.
127
128
129 | 0.6200
.6104
.6009 | ·6190
·6094
·6000 | ·6181
·6084
·5991 | ·6171
·6075
·5981 | ·6161
·6066
·59 7 2 | ·6151
·6056
·5963 | ·6142
·6047
·5954 | ·6132
·6037
·5945 | ·6123
·6028
·5935 | ·6113
·6019 | -
10
9 | | 130
131
132 | 0·5917
·5827
·5739 | ·5908
·5818
·5731 | ·5899
·5809
·5722 | ·5890
·5801 | ·5881
·5792
·5705 | ·5872
·5783
·5696 | ·5863
·5774
·5687 | ·5854
·5765
·5679 | ·5845
·5757
·5670 | ·5836
·5748
·5662 | 9
9
9 | | 133 | o·5653 | ·5645 | ·5636 | ·5628 | ·5619 | ·5611 | ·5603 | ·5594 | ·5586 | ·5577 | 8 | | 134 | ·5569 | ·5561 | ·5553 | ·5544 | ·5536 | ·5528 | ·5520 | ·5511 | ·5503 | ·5495 | 8 | | 135 | ·5487 | ·5479 | ·5471 | ·5463 | ·5455 | ·5447 | ·5439 | ·5431 | ·5423 | ·5415 | 8 | | 136 | 0.5 4066 | 3986 | 3907 | 3828 | 3749 | 3670 | 3592 | 3513 | 3435 | 3357 | 79 | | 137 | 3279 | 3202 | 3124 | 3047 | 2970 | 2893 | 2816 | 2739 | 2663 | 2586 | 77 | | 138 | 2510 | 2434 | 2359 | 2282 | 2207 | 2132 | 2056 | 1981 | 1906 | 1832 | 75 | | 139
140
141 | 0.20
0299 | 1683
0947
0228 | 1608
0875
0157 | 1534
0802
0086 | 1461
0730
0015 | 1387
0658
*9944 | 1313
0586
*9874 | 1240
0514
*9804 | 1166
0442
*9733 | 1093
0370
*9663 | 74
72
71 | | 142 | 0.4 9593 | 9524 | 9454 | 9384 | 9314 | 9246 | 9177 | 9108 | 9039 | 89 71 | 70 | | 143 | 8902 | 8834 | 8766 | 8698 | 8631 | 8562 | 8494 | 8427 | 8360 | 8292 | 68 | | 144 | 8225 | 8158 | 8092 | 8025 | 7959 | 7892 | 7826 | 7760 | 7694 | 7628 | 66 | | 145 | 0°4 7562 | 7497 | 7432 | 7366 | 7301 | 7236 | 7171 | 7106 | 7042 | 6977 | 65 | | 146 | 6913 | 6849 | 6785 | 6721 | 6657 | 6593 | 6530 | 6466 | 6403 | 6340 | 64 | | 147 | 6277 | 6215 | 6152 | 6089 | 6026 | 5964 | 5901 | 5839 | 5777 | 5716 | 62 | | 148 | 0°4 5652 | 5592 | 5531 | 5469 | 5408 | 5347 | 5286 | 5225 | 5164 | 5104 | 61 | | 149 | 5043 | 4983 | 4922 | 4862 | 4802 | 4742 | 4682 | 4623 | 4563 | 4504 | 60 | | 150 | 4444 | 4385 | 4326 | 4267 | 4208 | 4150 | 4091 | 4033 | 3974 | 3916 | 59 | | 151 | 0·4 3858 | 3800 | 3742 | 3684 | 3626 | 3569 | 3511 | 3454 | 3397 | 3340 | 58 | | 152 | 3283 | 3226 | 3169 | 3112 | 3055 | 2999 | 2943 | 2887 | 2831 | 2775 | 56 | | 153 | 2719 | 2663 | 2607 | 2552 | 2496 | 2441 | 2385 | 2330 | 2275 | 2220 | 55 | | 154 | 0·4 2166 | 2111 | 2056 | 2002 | 1947 | 1893 | 1839 | 1785 | 1731 | 1677 | 54 | | 155 | 1623 | 1570 | 1516 | 1463 | 1409 | 1356 | 1303 | 1250 | 1197 | 1144 | 53 | | .156 | 1091 | 1039 | 0986 | 0934 | 0881 | 0829 | 0777 | 0725 | 0673 | 0621 | 52 | | 157 | 0.4 0570 | 0518 | 0466 | 0415 | 0364 | 0312 | 0261 | 0210 | 0159 | 0109 | 51 | | 158 | 0058 | 0007 | *9956 | *9906 | *9856 | *9805 | *9755 | *9705 | *9655 | *9605 | 50 | | 159 | 0.3 9555 | 9506 | 9456 | 9407 | 9357 | 9308 | 9259 | 9209 | 9160 | 9111 | 49 | | 160 | 0·3 9063 | 9014 | 8965 | 8916 | 8868 | 8820 | 8771 | 8723 | 8675 | 8627 | 48 | | 161 | 8579 | 8531 | 8483 | 8435 | 8388 | 8340 | 8293 | 8245 | 8198 | 8151 | 48 | | 162 | 8104 | 8057 | 8010 | 7963 | 7916 | 7870 | 7823 | 7777 | 7730 | 7684 | 47 | | 163 | 0·3 7638 | 7592 | 7546 | 7500 | 7454 | 7408 | 7362 | 7317 | 7271 | 7226 | 46 | | 164 | 7180 | 7135 | 7090 | 7045 | 7000 | 6955 | 6910 | 6865 | 6820 | 6776 | 45 | | 165 | 6731 | 6686 | 6642 | 6598 | 6554 | 6509 | 6465 | 6421 | 6377 | 6334 | 44 | X. (continued). $$\{1000 \div v\}^2$$. | v | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | Δ | |--------------|----------|------|------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|----| | f. s.
166 | 0.3 6290 | 6246 | 6202 | 6159 | 6115 | 6072 | 6029 | 5986 | 5942 | 5899 | 43 | | 167 | 5856 | 5S13 | 5771 | 5728 | 5685 | 5643 | 5600 | 5558 | 5515 | 5473 | 43 | | 168 | 5431 | 5389 | 5347 | 5305 | 5263 | 5221 | 5179 | 5137 | 5096 | 5054 | 42 | | 169 | 0.3 2013 | 4971 | 4930 | 4889 | 4848 | 4807 | 4766 | 4725 | 4684 | 4643 | 41 | | 170 | 4602 | 4561 | 4521 | 4480 | 4440 | 4399 | 4359 | 4319 | 4279 | 4239 | 40 | | 171 | 4199 | 4159 | 4119 | 4079 | 4039 | 3999 | 3960 | 3920 | 3881 | 3841 | 40 | | 172 | 0.3 3805 | 3763 | 3724 | 3684 | 3645 | 3606 | 3567 | 3529 | 3490 | 3451 | 39 | | 173
174 | 3412 | 3374 | 3335 | 3297
2916 | 3258
2878 | 3220
2840 | 3182
2803 | 3144
2765 | 3106
2728 | 3067
2690 | 3 | | •/4 | 3029 | | 2954 | 2910 | 20/0 | 2040 | 2003 | 2/03 | 2/20 | 2090 | 3, | | 175 | 0.3 2653 | 2616 | 2579 | 2541 | 2504 | 2467 | 2430 | 2394 | 2357 | 2320 | 3 | | 176
177 | 1919 | 1883 | 1847 | 1811 | 1776 | 2100
1740 | 1704 | 2028
1668 | 1633 | 1955 | 3 | | | | | | _ | 1//0 | | | | | 1397 | 3, | | 178 | 0.3 1262 | 1526 | 1491 | 1456 | 1421 | 1385 | 1350 | 1315 | 1280 | 1245 | 3. | | 179
180 | 0864 | 0830 | 0796 | 0762 | 0727 | 1036
0693 | 0659 | 0967 | 0933 | 0899 | 3. | | 100 | 0004 | 0030 | 0/90 | 0/02 | 0/2/ | 0093 | 0039 | 0020 | 0592 | 0550 | 34 | | 181 | 0.3 0224 | 0490 | 0457 | 0423 | 0390 | 0356 | 0323 | 0289 | 0256 | 0223 | 3. | | 182 | 0190 | 0156 | 0123 | 0090 | 0057 | 0024 | *9992 | *9959 | *9926 | *9893 | 3 | | 183 | 0.5 6861 | 9828 | 9795 | 9763 | 9730 | 9698 | 9666 | 9633 | 9601 | 9569 | 3: | | 184 | 0.2 9538 | 9505 | 9473 | 9441 | 9409 | 9377 | 9345 | 9313 | 9282 | 9250 | 3: | | 185 | 9218 | 9187 | 9155 | 9124 | 9092 | 9061 | 9030 | 8999 | 8967 | 8936 | 3 | | 186 | 8905 | 8874 | 8843 | 8812 | 8781 | 8750 | 8719 | 8689 | 8658 | 8627 | 3 | | 187 | 0.2 8597 | 8566 | 8536 | 8505 | 8475 | 8444 | 8414 | 8384 | 8354 | 8323 | 3 | | 188 | 8293 | 8263 | 8233 | 8203 | 8173 | 8143 | 8114 | 8084 | 8054 | 8024 | 3 | | 189 | 7995 | 7965 | 7936 | 7906 | 7877 | 7847 | 7818 | 7789 | 7759 | 7730 | 2 | | 190 | 0.2 7700 | 7672 | 7643 | 7614 | 7585 | 7556 | 7527 | 7498 | 7469 | 7440 | 24 | | 191 | 7412 | 7383 | 7354 | 7326 | 7297 | 7269 | 7240 | 7212 | 7183 | 7155 | 2 | | 192 | 7127 | 7099 | 7070 | 7042 | 7014 | 6986 | 6958 | 6930 | 6902 | 6874 | 2 | | 193 | 0.2 6846 | 6819 | 6791 | 6763 | 6735 | 6708 | 668o | 6653 | 6625 | 6598 | 2 | | 194 | 6570 | 6543 | 6516 | 6488 | 6461 | 6434 | 6407 | 6380 | 6353 | 6325 | 2 | | 195 | 6298 | 6272 | 6245 | 6218 | 6191 | 6164 | 6137 | 6111 | 6084 | 6057 | 2 | | 196 | 0.5 6031 | 6004 | 5978 | 5951 | 5925 | 5899 | 5872 | 5846 | 5820 | 5793 | 20 | | 197 | 5767 | 5741 | 5715 | 5689 | 5663 | 5637 | 5611 | 5585 | 5559 | 5533 | 20 | | 198 | 5508 | 5482 | 5456 | 5430 | 5405 | 5379 | 5354 | 5328 | 5303 | 5277 | 20 | | 199 | 0.2 2252 | 5227 | 5201 | 5176 | 5151 | 5125 | 5100 | 5075 | 5050 | 5025 | 2 | | 200 | 5000 | 4975 | 4950 | 4925 | 4900 | 4875 | 4851 | 4826 | 4801 | 4777 | 2 | | 201 | 4752 | 4727 | 4703 | 4678 | 4654 | 4629 | 4605 | 4580 | 4556 | 4532 | 2. | | 202 | 0.24507 | 4483 | 4459 | 4435 | 4411 | 4387 | 4362 | 4338 | 4314 | 4290 | 2. | | 203 | 4267 | 4243 | 4219 | 4195 | 4171 | 4147 | 4124 | 4100 | 4076 | 4053 | 24 | | 204 | 4029 | 4006 | 3982 | 3959 | 3935 | 3912 | 3888 | 3865 | 3842 | 3819 | 2 | X. (continued). | | | | | | | | | | | | - | |------------|------------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|-----| | 7' | 0 | I | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | Δ | | f. s. | | | | | | | | | | | - | | 205 | 0.5 3262 | 3772 | 3749 | 3726 | 3703 | 3680 | 3657 | 3634 | 3611 | 3588 | 23 | | 206 | 3565
3338 | 3542 | 3519
3293 | 3496
3270 | 3474 | 3451
3225 | 3428
3203 | 3406 | 3383 | 3360
3136 | 23 | | 20, | 3330 | 33-3 | 3-93 | 3270 |
3=40 | 33 | 3203 | 3201 | 3230 | 3.30 | 22 | | 208 | 0.5 3114 | 3092 | 3070 | 3047 | 3025 | 3003 | 2981 | 2959 | 2937 | 2915 | 22 | | 209 | 2893 | 2871 | 2849 | 2827 | 2806 | 2784 | 2762 | 2741 | 2719 | 2697 | 22 | | 210 | 2676 | 2654 | 2633 | 2611 | 2590 | 2568 | 2547 | 2525 | 2504 | 2483 | 21 | | 211 | 0.2 2461 | 2440 | 2419 | 2398 | 2376 | 2355 | 2334 | 2313 | 2292 | 2271 | 21 | | 212 | 2250 | 2229 | 2208 | 2187 | 2166 | 2145 | 2125 | 2104 | 2083 | 2062 | 21 | | 213 | 2041 | 2021 | 2001 | 1980 | 1959 | 1938 | 1918 | 1897 | 1877 | 1856 | 21 | | 214 | 0.5 1836 | 1816 | 1795 | 1775 | 1755 | 1734 | 1714 | 1694 | 1674 | 1653 | 20 | | 215 | 1633 | 1613 | 1593 | 1573 | 1553 | 1533 | 1513 | 1493 | 1473 | 1453 | 20 | | 216 | 1433 | 1414 | 1394 | 1374 | 1354 | 1335 | 1315 | 1295 | 1276 | 1256 | 20 | | | 010 1006 | | | 1178 | | | | | 1081 | 1061 | | | 217
218 | 0°2 1236
1042 | 1217 | 1197 | 0984 | 0965 | 1139
0946 | 0927 | 0908 | 0888 | 0869 | 19 | | 219 | 0850 | 0831 | 0812 | 0793 | 0774 | 0755 | 0736 | 0718 | 0699 | 0680 | 19 | | | | | | | | | ' | ' | ** | | | | 220 | 0.5 0001 | 0642 | 0624 | 0605 | 0586 | 0568 | 0549 | 0530 | 0512 | 0493 | 19 | | 22I
222 | 0475
0291 | 0456 | 0438 | 0419 | 0401 | 0382 | 0364 | 0346 | 0327 | 0309 | 18 | | 222 | 0291 | 02/2 | 0254 | 0230 | 0210 | 0199 | 0101 | | 0143 | 012/ | 10 | | 223 | 0.5 0100 | 0091 | 0073 | 0055 | 0037 | 0019 | 1000 | *9983 | *9965 | *9948 | 18 | | 224 | 0.1 9930 | 9912 | 9894 | 9877 | 9859 | 9841 | 9824 | 9806 | 9788 | 9771 | 18 | | 225 | 9753 | 9736 | 9718 | 9701 | 9683 | 9666 | 9648 | 9631 | 9613 | 9596 | 17 | | 226 | 0.1 9249 | 9561 | 9544 | 9527 | 9510 | 9492 | 9475 | 9458 | 9441 | 9424 | 17 | | 227 | 9407 | 9389 | 9372 | 9355 | 9338 | 9321 | 9304 | 9287 | 9270 | 9254 | 17 | | 228 | 9237 | 9220 | 9203 | 9186 | 9169 | 9153 | 9136 | 9119 | 9102 | 9086 | 17 | | 229 | 0.1 0060 | 9052 | 9036 | 9019 | 9003 | 8986 | 8970 | 8953 | 8937 | 8920 | 17 | | 230 | 8904 | 8887 | 8871 | 8854 | 8838 | 8822 | 8805 | 8789 | 8773 | 8757 | 16 | | 231 | 8740 | 8724 | 8708 | 8692 | 8676 | 8659 | 8643 | 8627 | 8611 | 8595 | 16 | | | 0 | 0.46 | 0 | 0 = 0 = | 0 | 8 400 | 8483 | 8467 | 8450 | 8436 | 16 | | 232
233 | 0°1 8579
8420 | 8563
8404 | 8547
8388 | 8531
8373 | 8515
8357 | 8499
8341 | 8325 | 8310 | 8452 | 8436
8278 | 16 | | 234 | 8263 | 8247 | 8232 | 8216 | 8201 | 8185 | 8170 | 8154 | 8139 | 8123 | 16 | | | | | | | | _ | | | | | | | 235 | 0.1 8108 | 8092 | 8077 | 8062 | 8046 | 8031 | 8016
7864 | 8000 | 7985
7834 | 7970
7818 | 15 | | 236 | 7955 | 7939
7788 | 7924
7773 | 7909 | 7894
7743 | 7879
7729 | 7714 | 7849
7699 | 7684 | 7669 | 15 | | 237 | 7803 | 7700 | 1113 | 1130 | 7743 | | // | 1099 | ,,,,,, | , , | - 5 | | 238 | 0.1 7624 | 7639 | 7624 | 7610 | 7595 | 7580 | 7565 | 7551 | 7536 | 7521 | 15 | | 239 | 7507 | 7492 | 7477 | 7463 | 7448 | 7434 | 7419 | 7405 | 7390 | 7376 | 15 | | 240 | 7361 | 7347 | 7332 | 7318 | 7303 | 7289 | 7275 | 7260 | 7246 | 7232 | 14 | | 241 | 0.1 7217 | 7203 | 7189 | 7175 | 7160 | 7146 | 7132 | 7118 | 7104 | 7089 | 14 | | 242 | 7075 | 7061 | 7047 | 7033 | 7019 | 7005 | 6991 | 6977 | 6963 | 6949 | 14 | | 243 | 6935 | 6921 | 6907 | 6893 | 6879 | 6866 | 6852 | 6838 | 6824 | 6810 | 14 | | | 1 | į. | | | | | | 1 | | 1 | 1 | ## X. (continued). | ข | 0 | I | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | Δ | |--|--------------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|---------------------| | f. s.
244
245
246 | 0°1 6797
6660
6525 | 6783
6646
6511 | 6769
6633
6498 | 6755
6619
6484 | 6742
6605
6471 | 6728
6592
6458 | 6714
6578
6444 | 6701
6565
6431 | 6687
6551
6418 | 6673
6538
6404 | -
14
14
13 | | 247
248
249 | 0·1 6391
6259
6129 | 6378
6246
6116 | 6365
6233
6103 | 6351
6220
6090 | 6338
6207
6077 | 6325
6194
6064 | 6312
6181
6051 | 6299
6168
6038 | 6285
6155
6026 | 6272
6142
6013 | 13
13 | | 250 | 0·1 6000 | 59 ⁸ 7 | 5974 | 5962 | 5949 | 5936 | 5923 | 5911 | 5898 | 5885 | 13 | | 251 | 5873 | 5860 | 5848 | 5835 | 5822 | 5810 | 5797 | 5785 | 5772 | 5760 | 13 | | 252 | 5747 | 5735 | 5722 | 5710 | 5697 | 5685 | 5672 | 5660 | 5648 | 5635 | 12 | | 253 | 0·1 5623 | 5610 | 5598 | 5586 | 5574 | 5561 | 5549 | 5537 | 5524 | 5512 | 12 | | 254 | 5500 | 5488 | 5476 | 5463 | 5451 | 5439 | 5427 | 5415 | 5403 | 5391 | 12 | | 255 | 5379 | 53 ⁶ 7. | 5355 | 5343 | 5331 | 5319 | 5307 | 5295 | 5283 | 5271 | 12 | | 256 | 0°1 5259 | 5247 | 5235 | 5223 | 5211 | 5199 | 5188 | 5176 | 5164 | 5152 | 12 | | 257 | 5140 | 5129 | 5117 | 5105 | 5093 | 5082 | 5070 | 5058 | 5047 | 5035 | 12 | | 258 | 5023 | 5011 | 5000 | 4988 | 4977 | 4965 | 4953 | 4942 | 4930 | 4919 | 12 | | 259
260
261 | 0°1 4907
4793
4680 | 4896
4782
4669 | 4884
4770
4657 | 4873
4759
4646 | 4861
4747
4635 | 4850
4736
4624 | 4839
4725
4612 | 4827
4714
4601 | 4816
4702
4590 | 4804
4691
4579 | 11
11 | | 262
263
264 | 0°1 4568
4457
4348 | 4557
4446
4337 | 4546
4435
4326 | 4535
4424
4315 | 4524
4413
4305 | 4512
4403
4294 | 4501
4392
4283 | 4490
4381
4272 | 4479
4370
4261 | 4468
4359
4251 | 11
11 | | 265 | 0°1 4240 | 4229 | 4218 | 4207 | 4197 | 4186 | 4176 | 4165 | 4154 | 4144 | 11 10 | | 266 | 4133 | 4122 | 4112 | 4101 | 4091 | 4080 | 4070 | 4059 | 4048 | 4038 | | | 267 | 4027 | 4017 | 4005 | 3996 | 3985 | 3975 | 3965 | 3954 | 3944 | 3933 | | | 268
269
270 | 0°1 3923
3820
3717 | 3913
3809
3707 | 3902
3799
3697 | 3892
3789
3687 | 3881
3779
3677 | 3871
3768
3667 | 3861
3758
3657 | 3850
3748
3647 | 3840
3738
3637 | 3830
3728
3626 | 10
10 | | 271
272
273 | 0·1 3616
3516
3418 | 3606
3507
3408 | 3596
3497
3398 | 3586
3487
3388 | 3576
3477
3378 | 3566
3467
3369 | 3556
3457
3359 | 3546
3447
3349 | 3536
3437
3339 | 3526
3427
3330 | 10
10 | | ²⁷⁴ ²⁷⁵ ²⁷⁶ | 0·1 3320 | 3310 | 3300 | 3291 | 3281 | 3271 | 3262 | 3252 | 3242 | 3233 | 10 | | | 3223 | 3214 | 3204 | 3194 | 3185 | 3175 | 3166 | 3156 | 3147 | 3137 | 10 | | | 3127 | 3118 | 3108 | 3099 | 3090 | 3080 | 3071 | 3061 | 3052 | 3042 | 9 | | 277 | 0°1 3033 | 3023 | 3014 | 3005 | 2995 | 2986 | 2977 | 2967 | 2958 | 2949 | 9 9 | | 278 | 2939 | 2930 | 2921 | 2911 | 2902 | 2893 | 2884 | 2874 | 2865 | 2856 | | | 279 | 2847 | 2838 | 2828 | 2819 | 2810 | 2801 | 2792 | 2782 | 2773 | 2764 | | | 280 | 0°1 2755 | 2746 | 2737 | 2728 | 2719 | 2710 | 2701 | 2692 | 2683 | 2674 | 9 | | 281 | 2664 | 2655 | 2646 | 2637 | 2628 | 2619 | 2611 | 2602 | 2593 | 2584 | 9 | | 282 | 2575 | 2566 | 2557 | 2548 | 2539 | 2530 | 2521 | 2513 | 2504 | 2495 | 9 | | 283 | 0·1 2486 | 2477 | 2468 | 2460 | 2451 | 2442 | 2433 | 2425 | 2416 | 2407 | 9 | | 284 | 2398 | 2390 | 2381 | 2372 | 2363 | 2355 | 2346 | 2337 | 2329 | 2320 | | XI. Coefficients for the Cubic Law of the Resistance of the Air to Spherical Projectiles. ($\omega=534.22$ grains.) | v | K_{v} | K_v | v | K_v | K_v | v | K_v | K_{v} | |-------|----------------|----------------|--------------|-------|-------|--------------|--------------|----------------| | f. s. | | 8 | f. s. | | 8 | f.s. | | g | | 7. 3. | | | <i>J</i> .3. | | | J. 3. | | | | 840 | 140.8 | 4:374 | 1390 | 142.7 | 4'433 | 1840 | 111.0 | 3.476 | | to | 140.8 | 4.374 | 1400 | 142.1 | 4.414 | 1850 | 111.4 | 3.461 | | 960 | 140.8 | 4.374 | 1410 | 141.4 | 4.393 | 1860 | 110.8 | 3.442 | | 970 | 140.9 | 4.377 | 1420 | 140.8 | 4.374 | 1870 | 110.3 | 3.426 | | 980 | 141.5 | 4.386 | 1430 | 140'1 | 4.325 | 188o | 109.8 | 3.411 | | 990 | 141.2 | 4.396 | 1440 | 139.5 | 4'334 | 1890 | 109'4 | 3.398 | | 1000 | 142.0 | 4.411 | 1450 | 138.8 | 4.315 | 1900 | 108.9 | 3.383 | | 1010 | 142.8 | 4.436 | 1460 | 138.1 | 4.290 | 1910 | 108.2 | 3.341 | | 1020 | 144.0 | 4'473 | 1470 | 137.4 | 4.268 | 1920 | 108.1 | 3.328 | | 1030 | 145.2 | 4.20 | 1480 | 136.4 | 4.247 | 1930 | 107.7 | 3.346 | | 1040 | 147.5 | 4.285 | 1490 | 136.0 | 4.552 | 1940 | 107.3 | 3.333 | | 1050 | 149.2 | 4.635 | 1500 | 135.3 | 4.503 | 1950 | 106.9 | 3.351 | | 1060 | 150.5 | 4.675 | 1510 | 134.6 | 4'181 | 1960 | 106.2 | 3.308 | | 1070 | 151.6 | 4.709 | 1520 | 133.9 | 4.160 | 1970 | 106.1 | 3·296
3·284 | | 1080 | 152.6 | 4.740 | 1530 | 133.5 | 4·118 | 1980
1990 | 105.7 | 3.271 | | 1090 | 153.4
154.1 | 4·765
4·787 | 1540
1550 | 132.2 | 4.094 | 2000 | 105.3 | 3.259 | | 1110 | 154.6 | 4.803 | 1560 | 131.1 | 4.073 | 2010 | 104.5 | 3.546 | | 1120 | 155.1 | 4.818 | 1570 | 130.4 | 4.021 | 2020 | 104.1 | 3.534 | | 1130 | 155.4 | 4.827 | 1580 | 129.7 | 4.029 | 2030 | 103.6 | 3.518 | | 1140 | 155.7 | 4.837 | 1590 | 120.0 | 4.002 | 2040 | 103.5 | 3.506 | | 1150 | 155.9 | 4.843 | 1600 | 128.3 | 3.986 | 2050 | 102.4 | 3.100 | | 1160 | 156.0 | 4.846 | 1610 | 127.6 | 3.964 | 2060 | 102.5 | 3.175 | | 1170 | 156.0 | 4.846 | 1620 | 126.9 | 3.945 | 2070 | 101.6 | 3 156 | | 1180 | 156.0 | 4.846 | 1630 | 126.5 | 3.920 | 2080 | 101.1 | 3.141 | | 1190 | 155.8 | 4.840 | 1640 | 125.2 | 3.899 | 2090 | 100.2 | 3.155 | | 1200 | 155.2 | 4.831 | 1650 | 124.8 | 3.877 | 2100 | 99.9 | 3.103 | | 1210 | 155.1 | 4.818 | 1660 | 124.1 | 3.855 | 2110 | 99.3 | 3.082 | | 1220 | 154.6 | 4.803 | 1670 | 123.4 | 3.833 | 2120 | 98.7 | 3.066 | | 1230 | 154.0 | 4.784 | 1680 | 122.2 | 3.812 | 2130 | 98.2 | 3.021 | | 1240 | 153.4 | 4.765 | 1690 | 122.0 | 3.790 | 2140 | 97.6 | 3.035 | | 1250 | 152.7 | 4.744 | 1700 | 121.3 | 3.768 | 2150 | 97.1 | 3.016 | | 1260 | 152.0 | 4.722 | 1710 | 120.6 | 3.746 | 2160 | 96.2 | 2.982 | | 1270 | 151.3 | 4.700 | 1720 | 110.0 | 3.725 | 2170
2180 | 96.0 | 2.964 | |
1280 | 150.2 | 4.675 | 1730 | 119.2 | 3.403 | 2190 | 95.4
94.9 | 2.948 | | 1290 | 149.6 | 4.647 | 1740
1750 | 117.8 | 3.659 | 2200 | 94.9 | 2.933 | | 1300 | 1457 | 4.594 | 1760 | 117.1 | 3.638 | 2210 | 93.9 | 2.017 | | 1320 | 147.2 | 4 594 | 1770 | 116.4 | 3.616 | 2220 | 93'4 | 2.00I | | 1330 | 146.6 | 4.554 | 1780 | 115.4 | 3.254 | 2230 | 92.9 | 2.886 | | 1340 | 146.0 | 4.234 | 1790 | 115.0 | 3.22 | 2240 | 92.4 | 2.870 | | 1350 | 145.3 | 4.214 | 1800 | 114'4 | 3.224 | 2250 | 91.9 | 2.855 | | 1360 | 144.7 | 4.495 | 1810 | 113.7 | 3.532 | 2260 | 91.4 | 2.839 | | 1370 | 144.0 | 4.473 | 1820 | 113.1 | 3.213 | 2270 | 90.9 | 2.824 | | 1380 | 143.4 | 4.455 | 1830 | 112.2 | 3.495 | 2280 | 90.4 | 2.808 | | | | | | | | | | | XII. Coefficients for the Cubic Law of the Resistance of the Air to Ogival-headed Projectiles. ($\omega = 534.22$ grains.) | v
f. s. | K_{v} | $\frac{K_v}{g}$ | t'
f. s. | K_{v} | $\frac{K_v}{g}$ | v
f. s. | K_{v} | $\frac{K_v}{g}$ | |------------|----------------|-----------------|--------------|-------------------|-----------------|--------------|-------------------|-----------------| | | | -0 | <u> </u> | | | | | | | 100 | 605.0 | 18.79 | 590 | 102.2 | 3.184 | 1360 | 107.2 | 3.330 | | 110 | 550.0 | 17:09 | 600 | 100.8 | 3,131 | 1370 | 106.8 | 3,318 | | 120 | 504.2 | 15.66 | 610
620 | 99.2 | 3.085 | 1380 | 105.8 | 3.305 | | 130 | 465°4
432°1 | 14.46 | 630 | 97·6
96·0 | 3.032 | 1390
1400 | 105.5 | 3°287
3°268 | | 150 | 403.3 | 12.23 | 640 | 94.2 | 2.936 | 1410 | 104.6 | 3.549 | | 160 | 378 1 | 11.75 | 650 | 93.1 | 2.892 | 1420 | 104.0 | 3,531 | | 170 | 355.9 | 11.06 | 660 | 91.7 | 2.849 | 1430 | 103.4 | 3.515 | | 180 | 336.1 | 10.44 | 670 | 95.3 | 2.805 | 1440 | 102.8 | 3.193 | | 190 | 318.4 | 9.89i | 6Šo | 89.0 | 2.765 | 1450 | 102.1 | 3.12 | | 200 | 302.5 | 9:397 | 690 | 87.7 | 2.724 | 1460 | 101.4 | 3.120 | | 210 | 288.1 | 8.950 | 700 | 86.4 | 2 684 | 1470 | 100.7 | 3.158 | | 220 | 275.0 | 8.543 | 710 | 85.2 | 2.647 | 1480 | 99.9 | 3.103 | | 230 | 263.0 | 8.140 | 720 | 84.0 | 2.609 | 1490 | 99.2 | 3.082 | | 240 | 252·I | 7.831 | 730 | 82.9 | 2.222 | 1500 | 98.4 | 3.021 | | 250 | 242'0 | 7.218 | 740 | 81.8 | 2.241 | 1510 | 97.7 | 3.032 | | 260 | 232.7 | 7.229 | 750 | 80.7 | 2.207 | 1520 | 96.8 | 3.007 | | 270 | 224 I | 6.962 | 760 | 79.6 | 2.473 | 1530 | 96.1 | 2.985 | | 280 | 216·1 | 6.480 | 770
780 | 78.6 | 2'442
2'411 | 1540 | 95.3 | 2.960 | | 290
300 | 203.0 | 6.266 | 790 | 77 ^{.6} | 2.3So | 1550
1560 | 94.5 | 2.011 | | 310 | 195.5 | 6.064 | 800 | 75.6 | 2.348 | 1570 | 93 [.] 7 | 2.886 | | 320 | 180.1 | 5.874 | 810 | 74.6 | 2.312 | 1580 | 92.I | 2.861 | | 330 | 183.3 | 5 694 | 820 | 73.9 | 2.296 | 1590 | 91.3 | 2.836 | | 340 | 177.9 | 5.26 | 830 | 73.6 | 2.586 | 1600 | 90.2 | 2.811 | | 350 | 172.9 | 5.371 | 840 | 73.6 | 2.586 | 1610 | 89.8 | 2.790 | | 360 | 168.1 | 5.222 | to | 73.6 | 2.286 | 1620 | 89.1 | 2.768 | | 370 | 163.2 | 5.079 | 1000 | 73.6 | 2.286 | 1630 | 88.4 | 2.746 | | 380 | 159.2 | 4.946 | 1010 | 73.8 | 2.293 | 1640 | 87.7 | 2.724 | | 390 | 155.1 | 4.818 | 1020 | 74.6 | 2'317 | 1650 | 87.0 | 2.703 | | 400 | 121.3 | 4.700 | 1030 | 76.6 | 2.380 | 1660 | 86.3 | 2.681 | | 410 | 147.6 | 4.282 | 1040 | 80.8 | 2.210 | 1670 | 85.6 | 2.659 | | 420 | 144.0 | 4.473 | 1050 | 87.3 | 2.712 | 1680 | 84.9 | 2.637 | | 430 | 140.7 | 4.371 | 1060 | 94.0 | 2.920 | 1690 | 84.2 | 2.616 | | 440 | 137.5 | 4.571 | 1070
1080 | 98.7 | 3.066 | 1700 | 83.2
82.8 | 2.294 | | 450 | 134'4
131'5 | 4.172 | 1030 | 104.0 | 3.172 | 1720 | 82.1 | 2.22 | | 470 | 128.7 | 3.998 | 1100 | 104.9 | 3.351 | 1730 | 81.2 | 2.232 | | 480 | 126.0 | 3.914 | 1110 | 108.4 | 3.367 | 1740 | 80.0 | 2.213 | | 490 | 123.2 | 3.836 | 1120 | 109.5 | 3.392 | 1750 | 80.3 | 2.495 | | 500 | 121.0 | 3.759 | 1130 | 100.6 | 3.405 | 1760 | 79.7 | 2.476 | | 510 | 118.6 | 3.684 | to | 109.6 | 3.405 | 1770 | 79.2 | 2'460 | | 520 | 116.3 | 3.613 | 1290 | 109.6 | 3 405 | 1780 | 78.6 | 2.442 | | 530 | 114.5 | 3.248 | 1300 | 109'4 | 3:398 | 1790 | 78·o | 2.423 | | 540 | 112.0 | 3.479 | 1310 | 100.1 | 3.389 | 1800 | 77.4 | 2.404 | | 550 | 1100 | 3.412 | 1320 | 108.8 | 3.380 | 1810 | 76.8 | 2,386 | | 560 | 108 0 | 3.355 | 1330 | 108.2 | 3.371 | 1820 | 76.2 | 2.367 | | 570 | 109.1 | 3.596 | 1340 | 108.1 | 3:358 | 1830 | 75.7 | 2.325 | | 5So | 104.3 | 3.540 | 1350 | 107.7 | 3.346 | 1840 | 75.2 | 2.336 | | | | | | The second second | | | | | XII. (continued). | v | K_v | $\frac{K_v}{g}$ | บ | K_v | $\frac{K_v}{g}$ | v | K_v | $\frac{K_v}{g}$ | |--------------------------------------|--|--|--------------------------------------|--------------------------------------|---|--------------------------------------|------------------------------|---| | f.s. | | 0 | f. s. | | - | f. s. | | - 6 | | 1850
1860
1870
1880
1890 | 74.7
74.3
73.8
73.3
72.8
72.2 | 2·321
2·308
2·193
2·277
2·262
2·243 | 2170
2180
2190
2200
2210 | 66·3
66·0
65·8
65·6 | 2.060
2.053
2.050
2.044
2.038 | 2480
2490
2500
2510
2520 | 53.6
53.2
52.7
52.7 | 1.665
1.653
1.643
1.637
1.631 | | 1910
1920
1930
1940 | 71·7
71·2
70·4
70·4 | 2·227
2·199
2·187
2·175 | 2220
2230
2240
2250
2260 | 65.3
65.1
64.9
64.6
64.2 | 2.029
2.022
2.016
2.007
1.994 | 2530
2540
2550
2560
2570 | 52.3
52.5
51.8 | 1.625
1.612
1.609 | | 1960
1970
1980
1990
2000 | 69·6
69·3
69·0
68·8
68·5 | 2·162
2·137
2·137
2·138 | 2270
2280
2290
2300
2310 | 63·7
63·2
62·7
61·7 | 1.979
1.963
1.948
1.932 | 2580
2590
2600
2610
2620 | 51.4
51.4
51.4
51.4 | 1.204
1.204
1.200
1.204 | | 2010
2020
2030
2040
2050 | 68·2
68·0
67·8
67·7
67·5 | 2·112
2·106
2·103
2·109 | 2320
2330
2340
2350
2360 | 61·2
60·7
60·2
59·1 | 1.901
1.886
1.870
1.855
1.836 | 2630
2640
2650
2660
2670 | 51.4
51.4
51.4
51.4 | 1.294
1.294
1.294
1.294 | | 2060
2070
2080
2090 | 67·4
67·3
67·1 | 2.094
2.088
2.084 | 2370
2380
2390
2400
2410 | 58.6
58.0
57.5
57.0
56.5 | 1.820
1.802
1.786
1.771
1.755 | 2680
2690
2700
2710
2720 | 21.3
21.3
21.3
21.3 | 1·597
1·594
1·594
1·594 | | 2100
2110
2120
2130
2140 | 66.9
66.8
66.7
66.6 | 2.081
2.078
2.075
2.072
2.069 | 2420
2430
2440
2450
2460 | 56.0
55.6
54.7
54.3 | 1.740
1.727
1.712
1.699
1.687 | 2730
2740
2750
2760
2770 | 51.2
51.2
51.2
51.3 | 1.201
1.201
1.201
1.201 | | 2150
2160 | 66·4 | 2.063 | 2470 | 53.9 | 1.674 | 2780 | 21.5 | 1.291 | XIII. Coefficients for the Cubic Law of the Resistance of the Air to Hemispherical-headed Projectiles. ($\omega = 534.22$ grains.) | v
f. s. | K_v | $\frac{K_v}{g}$ | κ, | v
f.s. | K_v | $\frac{K_{v}}{g}$ | $\kappa_{_1}$ | v
f.s. | K_v | $\frac{K_v}{g}$ | κ, | |--|--|--|--|--|--|--|--|-----------|---|--|--| | 1100
1110
1120
1130
1140
1150
1160

1640
1650 | 133.0
133.0
133.0
133.0
133.0
133.0
133.0
115.6
115.4
115.4 | 4'13
4'13
4'13
4'13
4'13
4'13
4'13
4'13 | 1'24 1'23 1'22 1'21 1'21 1'21 1'31 1'33 1'33 | 1670
1680
1690
1700
1710
1720
1730
1740
1750
1760
1770 | 115.0
114.7
114.4
114.0
113.6
113.2
112.7
112.1
111.4
110.7 | 3.57
3.56
3.55
3.54
3.53
3.52
3.50
3.48
3.46
3.44
3.41 | 1'34
1'35
1'36
1'37
1'38
1'38
1'39
1'39 | 1810 | 109'0
108'0
107'0
106'0
104'9
103'8
102'7
101'6
100'6 | 3'39
3'36
3'32
3'29
3'26
3'19
3'16
3'13 | 1'39
1'38
1'38
1'38
1'37
1'37
1'36
1'35 | XIV. Coefficients for the Cubic Law of the Resistance of the Air to Flat-headed Projectiles. ($\omega=534^{\circ}22$ grains.) | v
f.s. | K_v | $\frac{K_v}{g}$ | κ ₂ | v
f. s. | K_v | $\frac{K_v}{g}$ | κ ₂ | v
f. s. | K_v | $\frac{K_v}{g}$ | κ _g | |--|--|--|--|--|---|--|--|--
---|--|--| | 1530
1540
1550
1560
1570
1580
1590
1600
1610
1620
1630
1640 | 174'3
174'4
174'4
174'5
174'5
174'4
174'3
174'2
174'1
174'0
173'9
173'7 | 5.41
5.42
5.42
5.42
5.42
5.41
5.41
5.41
5.40
5.40 | 1.81
1.83
1.85
1.86
1.88
1.91
1.92
1.94
1.95
1.98 | 1650
1660
1670
1680
1690
1700
1710
1730
1740
1750 | 173.6
173.5
173.3
173.2
173.0
172.9
172.7
172.6
172.4
172.1
171.8 | 5'39
5'39
5'38
5'37
5'37
5'36
5'36
5'36
5'35 | 2.00
2.01
2.02
2.04
2.05
2.09
2.10
2.12
2.13
2.14 | 1760
1770
1780
1790
1800
1810
1820
1830
1840
1850 | 171.5
171.2
170.9
170.5
170.0
169.5
168.9
168.3
167.6
166.8
165.9 | 5'33
5'32
5'31
5'29
5'28
5'27
5'25
5'23
5'21
5'18 | 2·15
2·16
2·17
2·19
2·20
2·21
2·22
2·22
2·23
2·23
2·23 | XV. | | $P_{\phi} = 3 \text{ t}$ | an $\phi + t$ | an³ φ | | $P_{\phi} = 3 \text{ t}$ | an ϕ + t | an $^{_3}\phi$ | |--|---|---|--|---|---|---|--| | φ | P_{ϕ} | $\operatorname{Log} P_{\phi}$ | $\log \Delta P_{\phi}$ | φ | P_{ϕ} | $\operatorname{Log} P_{\phi}$ | $\log \Delta P_{\phi}$ | | 1° 2 3 4 5 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 1 22 23 24 25 26 27 28 29 30 31 32 33 34 35 5 36 37 38 39 40 | ·05237
·10481
·15737
·21012
·26314
·31647
·37021
·42440
·47913
·53446
·59049
·64727
·70491
·76348
·82309
·88381
·94577
·100906
·107381
·114013
·120816
·127803
·134991
·142394
·150032
·157922
·166086
·174545
·183324
·192450
·201951
·211860
·222210
·2233040
·244393
·268856
·282076
·296037
·310810 | 8·71909
9·02038
9·19691
9·32247
9·42018
9·50034
9·62777
9·68045
9·72792
9·77121
9·81109
9·84813
9·88280
9·91545
9·94636
9·97579
0·0392
0·03093
0·05695
0·17618
0·13030
0·15349
0·17618
0·19844
0·22033
0·24031
0·26322
0·28432
0·30525
0·306743
0·36743
0·36889
0·40877
0·42952
0·45037
0·47135
0·49250 | 8-71961
8-72067
8-72226
8-72226
8-72439
8-72704
8-73023
8-73394
8-73394
8-73394
8-74836
8-75426
-8-76070
8-76770
8-76770
8-77527
8-78338
8-79208
8-80136
8-81121
8-82164
8-83269
8-84433
8-85658
8-85658
8-85658
8-86945
8-86945
8-87920
8-91188
8-92733
8-94346
8-96027
8-97778
8-99600
9-01495
9-03464
9-055510
9-07633
9-09837
9-12122
9-14491
9-16947
9-19492 | 41°
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
66
66
66
67
77
77
77
77
80 | 3:26475 3:43119 3:60845 3:79762 4:00000 4:21701 4:45030 4:70173 4:97344 5:26788 5:58787 5:93669 6:31812 6:73660 7:19730 7:70633 8:27090 8:89957 9:60260 10:3923 11:2836 12:2946 13:4475 14:7699 18:0687 20:1426 22:5878 25:4947 28:9820 33:2080 38:3853 44:8057 52:8763 63:1771 76:5513 94:2603 118:244 151:592 |
0.51385
0.53545
0.53545
0.55732
0.57951
0.60206
0.62501
0.64839
0.67226
0.69666
0.72164
0.74725
0.77355
0.8059
0.82844
0.85717
0.88685
0.94937
0.98239
1.01671
1.12864
1.16938
1.21208
1.25693
1.30412
1.35387
1.40645
1.46213
1.72326
1.80056
1.88395
1.72326
1.80056
1.80056
1.80056
1.80056
1.80056
1.80056
1.80056
1.80056
1.80056
1.80056
1.80056
1.80056
1.80056
1.80056
1.80056
1.80056
1.80056
1.80056
1.80056
1.80056
1.80056
1.80056
1.80056
1.80056
1.80056
1.80056
1.80056
1.80056
1.80056
1.80056
1.80056
1.80056
1.80056
1.80056
1.80056
1.80056
1.80056
1.80056
1.80056
1.80056
1.80056
1.80056
1.80056
1.80056
1.80056
1.80056
1.80056
1.80056
1.80056
1.80056
1.80056
1.80056
1.80056
1.80056
1.80056
1.80056
1.80056
1.80056
1.80056
1.80056
1.80056
1.80056
1.80056
1.80056
1.80056
1.80056
1.80056
1.80056
1.80056
1.80056
1.80056
1.80056
1.80056
1.80056
1.80056
1.80056
1.80056
1.80056
1.80056
1.80056
1.80056
1.80056
1.80056
1.80056
1.80056
1.80056
1.80056
1.80056
1.80056
1.80056
1.80056
1.80056
1.80056
1.80056
1.80056
1.80056
1.80056
1.80056
1.80056
1.80056
1.80056
1.80056
1.80056
1.80056
1.80056
1.80056
1.80056
1.80056
1.80056
1.80056
1.80056
1.80056
1.80056
1.80056
1.80056
1.80056
1.80056
1.80056
1.80056
1.80056
1.80056
1.80056
1.80056
1.80056
1.80056
1.80056
1.80056
1.80056
1.80056
1.80056
1.80056
1.80056
1.80056
1.80056
1.80056
1.80056
1.80056
1.80056
1.80056
1.80056
1.80056
1.80056
1.80056
1.80056
1.80056
1.80056
1.80056
1.80056
1.80056
1.80056
1.80056
1.80056
1.80056
1.80056
1.80056
1.80056
1.80056
1.80056
1.80056
1.80056
1.80056
1.80056
1.80056
1.80056
1.80056
1.80056
1.80056
1.80056
1.80056
1.80056
1.80056
1.80056
1.80056
1.80056
1.80056
1.80056
1.80056
1.80056
1.80056
1.80056
1.80056
1.80056
1.80056
1.80056
1.80056
1.80056
1.80056
1.80056
1.80056
1.80056
1.80056
1.80056
1.80056
1.80056
1.80056
1.80056
1.80056
1.80056
1.80056
1.80056
1.80056
1.80056
1.80056
1.80056
1.80056
1.80056
1.80056
1.80056
1.80056
1.80056
1.80056
1.80056
1.80056
1.80056
1.80056
1.80056
1.80056
1.80056
1.80056
1.80056
1.80056
1.80056
1.80056
1.80056 | 9°22128
9°24859
9°27687
9°3667
9°36679
9°36790
9°40902
9°43410
9°59514
9°54260
9°58142
9°62167
9°66342
9°75171
9°76674
9°75171
9°7843
9°84697
9°85001
0°0475
0°6179
0°12136
0°18358
0°24864
0°31681
0°38830
0°46343
0°54249
0°62593
0°71410
0°80756
0°90691
1°01288
1°12626
1°24819
1°37992
1°52307
1°67970 | XVI. Table for $\gamma = 0.00$ is the same as that for $\lambda = 0.00$ (p. 8). | | 2 | /=0.c | I | | | າ | /=o.o | 3 | | |-----|-------|-------|-------|------|-----|-------|-------|-------|------| | φ | (x) | (Y) | (т) | (v) | φ | (x) | (Y) | (т) | (v) | | 45° | 10119 | 5082 | 10059 | 1434 | 45° | 10374 | 5259 | 10184 | 1476 | | 44 | 9767 | 4736 | 9712 | 1408 | 44 | 10001 | 4892 | 9827 | 1448 | | 43 | 9428 | 4413 | 9376 | 1384 | 43 | 9642 | 4551 | 9482 | 1421 | | 42 | 9098 | 4111 | 9051 | 1362 | 42 | 9296 | 4234 | 9148 | 1395 | | 41 | 8780 | 3830 | 8736 | 1340 | 41 | 8962 | 3939 | 8826 | 1371 | | 40 | 8471 | 3566 | 8431 | 1320 | 40 | 8639 | 3663 | 8514 | 1348 | | 39 | 8172 | 3320 | 8135 | 1300 | 39 | 8327 | 3406 | 8211 | 1327 | | 38 | 7881 | 3088 | 7847 | 1282 | 38 | 8024 | 3165 | 7918 | 1307 | | 37 | 7599 | 2872 | 7567 | 1264 | 37 | 7731 | 2940 | 7632 | 1288 | | 36 | 7324 | 2668 | 7294 | 1247 | 36 | 7445 | 2728 | 7355 | 1270 | | 35 | 7056 | 2477 | 7029 | 1231 | 35 | 7168 | 2530 | 7084 | 1252 | | 34 | 6795 | 2297 | 6770 | 1216 | 34 | 6898 | 2345 | 6821 | 1236 | | 33 | 6540 | 2129 | 6517 | 1201 | 33 | 6635 | 2171 | 6564 | 1220 | | 32 | 6291 | 1970 | 6270 | 1188 | 32 | 6378 | 2007 | 6313 | 1205 | | 31 | 6047 | 1821 | 6028 | 1175 | 31 | 6127 | 1854 | 6068 | 1191 | | | • | γ=0.0 |)2 | | | | γ=0.0 | 04 | | | ø | (x) | (Y) | (T) | (v) | φ | (x) | (Y) | (T) | (v) | | 45° | 10244 | 5168 | 9768 | 1454 | 45° | 10510 | 5354 | 10250 | 1499 | | 44 | 9881 | 4812 | 9428 | 1427 | 44 | 10126 | 4976 | 9887 | 1469 | | 43 | 9532 | 4481 | 9428 | 1402 | 43 | 9756 | 4626 | 9537 | 1440 | | 42 | 9195 | 4172 | 9099 | 1378 | 42 | 9401 | 4300 | 9200 | 1413 | | 41 | 8869 | 3883 | 8780 | 1355 | 41 | 9059 | 3997 | 8873 | 1388 | | 40 | 8554 | 3614 | 8472 | 1333 | 40 | 8728 | 3715 | 8557 | 1364 | | 39 | 8248 | 3362 | 8173 | 1313 | 39 | 8409 | 3451 | 8251 | 1342 | | 38 | 7952 | 3126 | 7882 | 1294 | 38 | 8099 | 3205 | 7954 | 1321 | | 37 | 7664 | 2905 | 7599 | 1275 | 37 | 7800 | 2975 | 7666 | 1301 | | 36 | 7384 | 2698 | 7324 | 1258 | 36 | 7509 | 2760 | 7386 | 1281 | | 35 | 7111 | 2503 | 7056 | 1241 | 35 | 7226 | 2558 | 7113 | 1263 | | 34 | 6846 | 2321 | 6795 | 1226 | 34 | 6951, | 2370 | 6847 | 1246 | | 33 | 6587 | 2149 | 6540 | 1211 | 33 | 6684 | 2192 | 6588 | 1230 | | 32 | 6334 | 1988 | 6291 | 1197 | 32 | 6423 | 2026 | 6335 | 1215 | | 31 | 6087 | 1837 | 6048 | 1183 | 31 | 6169 | 1870 | 6088 | 1200 | ~XVI. (continued). | | | $\gamma = 0$ | 05 | | | | $\gamma = 0$ | 05 | | |----------|--------------|--------------|--------------|-------|-----------|--------------|--------------|----------------------|------| | φ | (x) | (Y) | (T) | (v) | φ | (x) | (Y) | (T) | (v) | | 45° | 10653 | 5454 | 10319 | 1523 | I,o | 175 | 1.5 | 175 | 999 | | 44 | 10256 | 5065 | 9950 | 1491 | 2 | 349 | 6.1 | 349 | 999 | | 43 | 9876 | 4704 | 9595 | 1461 | 3 | 523 | 13.4 | 523 | 999 | | 42
41 | 9511 | 4369 | 9252
8922 | 1433 | 5 | 697
871 | 38.1 | 698
873 | 999 | | 40 | 8820 | 3768 | 8602 | 1381 | 6 | 1046 | 54.9 | 1048 | 1000 | | 39 | 8493 | 3499 | 8292 | 1357 | 7 8 | 1220 | 74.8 | 1224 | 1001 | | 38 | 8177 | 3247 | 7992 | 1335 | | 1396 | 97.8 | 1401 | 1003 | | 37
36 | 7871
7574 | 3012
2793 | 7701 | 1314 | 9 | 1571 | 124.1 | 1578 | 1005 | | | | | | | | | | 1756 | 1007 | | 35 | 7286
7006 | 2587 | 7142
6874 | 1275 | 11 | 1925 | 186.2 | 1935 | 1009 | | 34 | 6734 | 2395 | 6613 | 1257 | 13 | 2103 | 262.2 | 2114 | 1012 | | 32 | 6469 | 2046 | 6358 | 1224 | 14 | 2463 | 302.2 | 2478 | 1018 | | 31 | 6211 | 1888 | 6109 | 1209 | 15 | 2644 | 352.6 | 2662 | 1021 | | 30 | 5959 | 1739 | 5865 | 1194 | 16 | 2827 | 403.3 | 2847 | 1025 | | 29 | 5713 | 1600 | 5627 | 1181 | 17 | 3011 | 457'9 | 3034 | 1030 | | 28 | 5473 | 1470 | 5394 | 1168 | 18 | 3197 | 516.2 | 3223 | 1034 | | 27 26 | 5237
5007 | 1347 | 5166 | 1156 | 19
20 | 3385 | 579°3 | 3414
3607 | 1039 | | | | • | 4941 | | 1 | 3574 | | | 1045 | | 25 | 4781 | 1124 | 4721 | 1133 | 2 I
22 | 3766 | 718.0 | 3802 | 1050 | | 24 | 4559
4341 | 928.5 | 4505
4293 | 11122 | 23 | 3959
4155 | 794°3 | 4000 | 1057 | | 22 | 4127 | 839.8 | 4083 | 1103 | 24 | 4354 | 901.8 | 4403 | 1070 | | 21 | 3917 | 756.9 | 3877 | 1094 | 25 | 4555 | 1053 | 4609 | 1077 | | 20 | 3710 | 679.5 | 3674 | 1086 | 26 | 4759 | 1151 | 4818 | 1085 | | 19 | 3506 | 607.2 | 3474 | 1078 | 27 | 4966 | 1254 | 5030 | 1093 | | 18 | 3305 | 539.9 | 3277 | 1070 | 28 | 5176 | 1363 | 5246 | 1101 | | 17 | 3106
2910 | 477.4 | 3082
2889 | 1063 | 29
30 | 5389
5606 | 1479 | 5465
5689 | 1110 | | 15 | 2717 | 365.7 | 2698 | | | 5827 | 1720 | 5917 | | | 14 | 2525 | 316.5 | 2509 | 1050 | 31
32 | 6052 | 1732 | 6149 | 1130 | | 13 | 2336 | 270.8 | 2322 | 1039 | 33 | 6281 | 2016 | 6386 | 1151 | | 12 | 2149 | 229.2 | 2137 | 1034 | 34 | 6515 | 2170 | 6628 | 1163 | | 11 | 1963 | 191.4 | 1954 | 1029 | 35 | 6753 | 2334 | 6876 | 1175 | | 10 | 1779 | 157.3 | 1771 | 1025 | 36 | 6996 | 2508 | 7129 | 1187 | | 8 | 1597 | 126.8 | 1590 | 1021 | 37 38 | 7245 | 2692 | 7388 | 1201 | | | 1415 | 99:7 | 1410 | 1017 | | 7500 | 2887 | 7654 | 1214 | | 7 | 1236 | 76·0 | 1232 | 1014 | 39
40 | 7760
8027 | 3095
3315 | 7926
820 5 | 1229 | | 5 | 879 | 38.5 | 877 | 1008 | 41 | 8300 | 3548 | 8494 | 1260 | | 4 | 702 | 24.6 | 701 | 1006 | 42 | 8581 | 3797 | 8789 | 1277 | | 3 2 | 526 | 13.8 | 525 | 1004 | 43 | 8869 | 4061 | 9093 | 1294 | | | 350 | 6.1 | 350 | 1002 | 44 | 9166 | 4342 | 9407 | 1312 | | I | 175 | 1.2 | 175 | 1001 | 45 | 9470 | 4641 | 9730 | 1331 | | 0 | 0 | 0 | 0 | 1000 | | | | | | XVI. (continued). | | , | y=0°0 | P5 | | | ? | γ=0.0 | 7 | | | |-----------------------------|---|--|---|---|----------------------------------|---|--------------------------------------|--|---|--| | φ | (x) | (Y) | (т) | (v) | φ | (x) | (Y) | (т) | (v) | | | 46°
47
48
49
50 | 9784
10107
10441
10785
11140 | 4961
5301
5665
6054
6470 | 10064
10409
10766
11136
11519 | 1351
1371
1393
1416
1439 | 45°
44
43
42
41 | 10962
10537
10132
9744
9372 | 5674
5257
4873
4517
4188 | 10465
10083
9717
9364
9024 | 1577
1541
1507
1475
1445 | | | 51
52
53
54
55 | 11508
11888
12282
12691
13115 | 6916
7395
7909
8461
9056 | 11918
12332
12763
13212
13680 | 1464
1489
1516
1544
1574 | 40
39
38
37
36 | 9015
8672
8340
8020
7711 |
3883
3600
3336
3091
2862 | 8695
8378
8071
7773
7484 | 1417
1390
1365
1342
1320 | | | 56
57
58
59
60 | 13556
14014
14491
14987
15504 | 9697
10389
11138
11948
12826 | 14170
14682
15219
15782
16374 | 1604
1636
1669
1704
1740 | 35
34
33
32
31 | 7412
7122
6840
6566
6299 | 2648
2449
2262
2087
1924 | 7203
6930
6664
6404
6152 | 1300
1281
1262
1244
1227 | | | | | | | | γ=0.08 | | | | | | | | | γ=0.0 | 56 | | | | γ=0.0 | 08 | | | | φ | (x) | $\lambda = 0.0$ | об (т) | (v) | φ | (x) | (x) | 8 (т) | (v) | | | 45° 44 43 42 41 | 1 | | | (v)
1550
1515
1483
1453
1425 | φ
45°
44
43
42
41 | | | | (v)
1608
1569
1532
1498
1466 | | | 45° 44 43 42 | (x) 10803 10393 10001 9625 | (Y)
5561
5158
4786
4441 | (T) 10390 10015 9655 9307 | 1550
1515
1483
1453 | 45°
44
43
42 | (X) 11129 10689 10270 9869 | (Y)
5795
5362
4964
4597 | (T) 10543 10154 9781 9422 | 1608
1569
1532
1498 | | XVI. (continued). | | | | · · · · · · | | | | | | | |-----------------------------|--|--------------------------------------|--|--------------------------------------|-----------------------------|--------------------------------------|---|--|--------------------------------------| | | 7 | y = 0°C | 9 | | | | $\lambda = 0.1$ | 10 | | | φ | (x) | (Y) | (T) | (v) | φ | (x) | (Y) | (T) | (v) | | 45°
44
43
42
41 | 11307
10849
10414
10000
9605 | 5923
5473
5061
4681
4332 | 10624
10228
9848
9483
9133 | 1641
1599
1559
1522
1488 | 25°
24
23
22
21 | 4909
4675
4445
4221
4001 | 1165
1058
958·6
865·5
778·8 | 4784
4562
4344
4129
3918 | 1165
1152
1140
1129
1118 | | 40
39
38
37
36 | 9227
8864
8516
8181
7857 | 4009
3710
3432
3175
2936 | 8795
8469
8154
7849
7553 | 1457
1427
1399
1373
1349 | 20
19
18
17
16 | 3784
3572
3363
3158
2955 | 697.9
622.7
552.8
488.0
428.0 | 3711
3507
3305
3107
2911 | 1108
1098
1089
1081
1073 | | 35
34
33
32
31 | 7545
7243
6951
6667
6391 | 2713
2506
2312
2131
1962 | 7266
6988
6717
6453
6196 | 1326
1304
1284
1265
1247 | 15
14
13
12 | 2756
2559
2365
2173
1983 | 372·7
321·8
275·2
232·6
194·0 | 2717
2526
2336
2149
1963 | 1065
1058
1052
1045
1040 | | | (x) | y = 0 | (T) | (v) | 10
9
8
7
6 | 1796
1610
1426
1243
1062 | 159·3
128·2
100·7
76·7
56·0 | 1779 -
1597
1416
1236
1057 | 1034
1029
1025
1020
1016 | | 45° 44 43 42 41 | 11495
11018
10567
10138
9730 | 6061
5592
5163
4770
4409 | 10709
10305
9918
9547
9190 | 1677
1630
1587
1548
1512 | 5
4
3
2
1 | 883
704
527
350
175 | 38·7
24·7
13·8
6·1
1·5 | 879
702
526
350
175 | 1013
1010
1007
1004
1002 | | 40
39
38
37
36 | 9340
8967
8609
8265
7934 | 4076
3769
3484
3220
2975 | 8847
8516
8197
7888
7589 | 1478
1447
1417
1390
1364 | 1
2
3
4
5 | 174
348
521
694
867 | 1.5
6.1
13.6
24.2
37.8 | 174
349
523
697
871 | 998
997
996
996
995 | | 35
34
33
32
31 | 7615
7307
7009
6720
6439 | 2747
2536
2338
2154
1982 | 7300
7018
6745
6478
6219 | 1340
1318
1297
1277
1258 | 6
7
8
9 | 1040
1213
1386
1559
1733 | 54°5
74°2
97°0
122°8
151°9 | 1046
1220
1396
1572
1748 | 995
995
996
997
998 | | 30
29
28
27
26 | 6167
5903
5645
5394
5148 | 1822
1672
1532
1402
1279 | 5966
5719
5478
5242
5010 | 1240
1223
1207
1192
1178 | 11
12
13
14
15 | 1907
2082
2257
3433
2610 | 184·2
219·7
258·6
300·8
346·6 | 1925
2104
2283
2463
2644 | 999
1001
1003
1006
1008 | XVI. (continued). | | • | $\gamma = 0.1$ | 10 | | | 7 | $\lambda = 0.1$ | 10 | | |-----|-------|----------------|--------|--------------|-------|-------|-----------------|---------------|--------------| | φ | (x) | (Y) | (T) | (v) | φ | (x) | (Y) | (T) | (v) | | 16° | 2788 | 396.0 | 2827 | 1011 | 56° | 12607 | 8769 | 13651 | 1478 | | 17 | 2967 | 449.0 | 3012 | 1015 | 57 | 12994 | 9355 | 14123 | 1502 | | 17 | 3147 | 505.9 | 3198 | 1018 | 58 | 13394 | 9983 | 14615 | 1526 | | 19 | 3329 | 566.7 | 3386 | 1022 | 59 | 13808 | 10658 | 15129 | 1551 | | 20 | 3512 | 631.5 | 3575 | 1027 | 60 | 14235 | 11383 | 15667 | 1577 | | 21 | 3697 | 700.6 | 3767 | 1031 | | | | | | | 22 | 3883 | 774°I | 3961 | 1036 | 1 | | | | | | 23 | 4072 | 852.1 | 4157 | 1041 | | | y = 0 | 12 | | | 24 | 4262 | 934.8 | 4356 | 1047 | | | , , | - | | | 25 | 4455 | 1023 | 4557 | 1053 | | | | | | | 26 | 4649 | 1115 | 4761 | 1060 | φ | (x) | (Y) | (T) | (v) | | 27 | 4846 | 1214 | 4969 | 1066 | Ψ | (21) | (1) | (-) | (') | | 28 | 5046 | 1318 | 5179 | 1073 | | | | | | | 29 | 5249 | 1428 | 5393 | 1081 | . = 0 | | 6260 | | | | 30 | 5454 | 1544 | 5611 | 1089 | 45° | 11912 | 6369 | 10894 | 1759 | | 2. | 5663 | 1667 | 5832 | 1007 | 44 | 10899 | 5856 | 10471 | 1703 | | 31 | 5874 | | 6058 | 1097
1106 | 43 | 10399 | 5390
4966 | 10067
9682 | 1652
1606 | | 32 | 6090 | 1797 | 6288 | | 42 | | | - | | | 33 | 6309 | 1934
2079 | 6522 | 1115
1125 | 41 | 9998 | 4578 | 9312 | 1564 | | 34 | 6531 | 2232 | 6761 | 1135 | 40 | 9581 | 4222 | 8958 | 1525 | | 35 | 0331 | 2232 | 0,01 | 1133 | 39 | 9185 | 3895 | 8617 | 1490 | | 36 | 6758 | 2394 | 7006 | 1146 | 38 | 8806 | 3594 | 8289 | 1456 | | 37 | 6990 | 2565 | 7256 | 1157 | 37 | 8444 | 3316 | 7972 | 1426 | | 38 | 7225 | 2746 | 7511 | 1168 | 36 | 8096 | 3059 | 7665 | 1397 | | 39 | 7466 | 2937 | 7773 | 1180 | 3" | 0000 | 3-35 | ,005 | -371 | | 40 | 7712 | 3140 | 8042 | 1193 | 35 | 7762 | 2820 | 7368 | 1371 | | 1 | // | 3-4- | 334 | /3 | 34 | 7440 | 2599 | 7081 | 1346 | | 41 | 7963 | 3354 | 8317 | 1206 | 33 | 7130 | 2394 | 6802 | 1322 | | 42 | 8219 | 3581 | 8599 | 1220 | 32 | 6830 | 2202 | 6530 | 1300 | | 43 | 8482 | 3822 | 8890 | 1234 | 31 | 6539 | 2024 | 6266 | 1280 | | 44 | 8751 | 4077 | 9189 | 1249 | | | • | | | | 45 | 9027 | 4348 | 9496 | 1264 | 30 | 6258 | 1859 | 6009 | 1260 | | | | | | | 29 | 5985 | 1704 | 5758 | 1242 | | 46 | 9309 | 4635 | 9813 | 1280 | 28 | 5719 | 1560 | 5513 | 1225 | | 47 | 9599 | 4941 | 10140 | 1297 | 27 | 5461 | 1425 | 5274 | 1208 | | 48 | 9896 | 5266 | 10477 | 1314 | 26 | 5209 | 1300 | 5040 | 1193 | | 49 | 10202 | 5611 | 10825 | 1332 | | | _ | | | | 50 | 10516 | 5979 | 11186 | 1351 | 25 | 4964 | 1183 | 4810 | 1179 | | | 10820 | 6277 | 1,,,,, | 1.280 | 24 | 4724 | 1073 | 4585 | 1165 | | 51 | 10839 | 6371 | 11559 | 1370 | 23 | 4490 | 971.5 | 4365 | 1152 | | 52 | 11172 | 6789 | 11946 | 1391 | 22 | 4260 | 876.5 | 4148 | 1140 | | 53 | 11514 | 7236 | 12348 | 1411 | 21 | 4036 | 788·o | 3936 | 1129 | | 54 | 11867 | 7713 | 12765 | 1433 | 20 | 3816 | 70 | 2726 | 0 | | 55 | 12231 | 8223 | 13199 | 1455 | 20 | 3010 | 705.7 | 3726 | 1118 | XVI. (continued). | | | λ = 0.1 | 4 | | | 7 | λ = 0, I | 6 | | |-----------------------------|---|--------------------------------------|---|--------------------------------------|----------------------------------|--|--|--|--| | φ | (x) | (Y) | (T) | (v) | φ | (x) | (Y) | (T) | (v) | | 45°
44
43
42
41 | 12396
11815
11275
10770
10296 | 6734
6163
5650
5187
4768 | 11102
10655
10232
9829
9445 | 1859
1790
1728
1674
1624 | 35°
34
33
32
31 | 8091
7737
7397
7071
6757 | 2985
2742
2517
2309
2117 | 7519
7217
6925
6642
6368 | 1440
1409
1380
1354
1329 | | 40
39
38
37
36 | 9848
9425
9022
8638
8271 | 4385
4036
3716
3421
3150 | 9078
8725
8386
8060
7745 | 1579
1538
1500
1466
1433 | 30
29
28
27
26 | 6454
6162
5879
5605
5339 | 1938
1773
1619
1476
1344 | 6101
5841
5588
5342
5101 | 1305
1284
1263
1244
1226 | | 35
34
33
32
31 | 7920
7583
7259
6947
6645 | 2899
2667
2453
2254
2069 | 7441
7147
6862
6585
6316 | 1404
1376
1350
1326
1303 | 25
24
23
22
21
20 | 5080
4828
4583
4343
4110
3881 | 1220
1105
998·7
899·6
807·5
722·0 | 4865
4635
4409
4188
3971
3758 | 1209
1193
1178
1164
1151
1138 | | 30
29
28
27
26 | 6354
6071
5797
5531
5273 | 1897
1737
1589
1450
1321 | 6054
5799
5550
5307
5070 | 1282
1262
1244
1226
1209 | | 1 | λ = 0, 1 | 18 | | | 25
24 | 5021
4775 | 1201 | 4837
4610 | 1194 | φ | (x) | (Y) | (T) | (v) | | 23
22
21
20 | 4535
4301
4072
3848 | 984·8
887·8
797·6
713·7 | 4387
4168
3953
3742 | 1165
1151
1139
1128 | 45°
44
43
42 | 13677
12907
12217
11590 | 7732
6976
6320
5746 | 11616
11102
10624
10175 | 2162
2040
1939
1854 | | | | y=0° | 16 | | 41
40 | 1014 | 5236
4781 | 9752
9351 | 1780 | | φ | (x) | (Y) | (T) | (v) | 39
38
37
36 |
9985
9520
9082
8668 | 4371
4001
3665
3359 | 8969
8605
8257
7922 | 1658
1607
1561
1519 | | 45°
44
43
42
41 | 12970
12312
11708
11150
10631 | 7175
6528
5955
5444
4985 | 11339
10863
10416
9993
9591 | 1988
1899
1822
1755
1695 | 35
34
33
32
31 | 8276
7902
7545
7204
6876 | 3079
2822
2586
2368
2168 | 7601
7291
6992
6702
6422 | 1481
1446
1414
1384
1356 | | 40
39
38
37
36 | 10146
9689
9258
8850
8461 | 4570
4193
3850
3537
3249 | 9208
8842
8491
8155
7831 | 1642
1594
1550
1510
1474 | 30
29
28
27
26 | 6561
6258
5965
5682
5408 | 1982
1810
1651
1504
1367 | 6150
5885
5628
5378
5133 | 1331
1307
1284
1263
1244 | XVI. (continued). | | • | $\lambda = 0.1$ | 18 | | | | $\gamma = 0$ | 20 | | |-----------------------------------|--|---|--|--------------------------------------|---------------------------------|--|--|---|---| | φ | (x) | (Y) | (T) | (v) | φ | (x) | (Y) | (T) | (v) | | 25°
24
23
22
21
20 | 5142
4883
4632
4387
4149
3915 | 1240
1123
1013
911.8
817.8
730.6 | 4894
4661
4433
4209
3989
3774 | 1225
1208
1192
1177
1163 | 15° 14 13 12 | 2840
2631
2426
2224
2025 | 388·0
334·0
284·7
240·0
199·6 | 2758
2561
2366
2174
1984 | 1099
1089
1080
1071
1062 | | | 1 | y=0.5 | 20 | | 10
9
8
7
6 | 1830
1637
1447
1259
1074 | 163.3
102.7
78.0
56.9 | 1796
1610
1426
1244
1063 | 1054
1047
1040
1034
1028 | | φ | (x) | (Y) | (T) | (v) | 5
4
3
2 | 891
709
530
352 | 39.2
24.9
13.2 | 883
704
527
351 | 1022
1017
1012
1008 | | 45°
44
43
42
41 | 14592
13650
12834
12110
11459 | 8474
7548
6773
6110
5533 | 11954
11385
10865
10383
9933 | 2418
2235
2094
1980
1886 | 1
0
1
2
3
4
5 | 175
0-
174
347
519
690
860 | 1.5
0
1.5
6.0
13.6
24.0
37.4 | 175
0
174
348
521
695
867 | 1004
1000
997
994
991
989
987 | | 39
38
37
36 | 10865
10319
9812
9339
8896 | 5026
4576
4173
3810
3481 | 9510
9109
8729
8367
8021 | 1805
1735
1674
1619
1571 | 6
7
8
9 | 1030
1199
1368
1536
1704 | 53.7
73.0
95.2
120.4
148.6 | 1040
1213
1386
1560
1733 | 985
984
983
982
982 | | 35
34
33
32
31 | 8477
8081
7705
7346
7003 | 3183
2910
2661
2433
2223 | 7689
7370
7063
6766
6479 | 1527
1487
1450
1417
1386 | 11
12
13
14 | 1872
2041
2209
2377
2546 | 179.7
213.9
251.2
291.7
335.4 | 1908
2083
2258
2434
2612 | 982
982
982
983
984 | | 30
29
28
27
26 | 6675
6359
6056
5763
5480 | 2029
1850
1686
1533
1392 | 6201
5932
5670
5415
5167 | 1358
1331
1307
1284
1263 | 16
17
18
19
20 | 2715
2885
3055
3226
3398 | 382·3
432·6
486·3
543·4
604·4 | 2790
2970
3150
3333
3516 | 985
987
989
991 | | 25
24
23
22
21 | 5206
4941
4683
4432
4188 | 1261
1140
1028
924.5
828.4 | 4924
4688
4456
4230
4008 | 1243
1224
1207
1190
1175 | 21
22
23
24
25 | 3571
3745
3920
4096
4274 | 669.0
737.5
810.0
886.7
967.7 | 3702
3889
4078
4269
4463 | 997
1000
1003
1007
1011 | | 20
19
18
17
16 | 3951
3719
3492
3270
3053 | 739'5
657'3
581'4
511'4
447'1 | 3791
3577
3368
3161
2958 | 1160
1146
1134
1121
1110 | 26
27
28
29
30 | 4453
4634
4816
5001
5187 | 1053
1143
1238
1338
1444 | 4659
4857
5059
5263
5470 | 1015
1020
1025
1030
1036 | XVI. (continued). | | 2 | γ = 0.5 | 20 | | | | $\lambda = 0.5$ | 22 | | |-----------------------------|---|--------------------------------------|---|--------------------------------------|----------------------------------|--|---|--|--| | φ | (x) | (Y) | (T) | (v) | φ | (x) | (v) | (T) | (v) | | 31°
32
33
34
35 | 5375
5566
5759
5954
6152 | 1555
1671
1794
1924
2060 | 5680
5894
6112
6333
6559 | 1042
1048
1055
1062
1069 | 40°
39
38
37
36 | 11314
10703
10144
9628
9148 | 5318
4814
4369
3973
3618 | 9689
9265
8866
8488
8128 | 1916
1828
1753
r688
1630 | | 36
37
38
39
40 | 6353
6557
6764
6975
7188 | 2203
2354
2513
2680
2856 | 6789
7024
7263
7508
7758 | 1077
1085
1093
1102 | 35
34
33
32
31 | 8699
8277
7878
7499
7139 | 3298
3007
2743
2502
2282 | 7784
7455
7138
6834
6540 | 1579
1533
1491
1454
1419 | | 41
42
43
44
45 | 7406
7627
7852
8081
8315 | 3042
3238
3444
3662
3891 | 8014
8277
8546
8821
9104 | 1121
1131
1141
1152
1163 | 30
29
28
27
26 | 6796
6467
6152
5848
5556 | 2079
1893
1722
1564
1418 | 6255
5980
5713
5454
5201 | 1387
1358
1331
1306
1283 | | 46
47
48
49
50 | 8553
8796
9044
9297
9556 | 4134
4390
4660
4947
5250 | 9395
9695
10003
10320
10647 | 1174
1186
1198
1211
1224 | 25
24
23
22
21
20 | 5274
5001
4736
4479
4230
3987 | 1284
1159
1044
937'7
839'4
748'7 | 4955
4716
4481
4252
4028
3808 | 1261
1241
1222
1204
1187
1172 | | 51
52
53
54
55 | 9820
10090
10367
10649
10939 | 5570
5910
6270
6652
7058 | 10985
11334
11694
12068 | 1237
1251
1266
1280
1295 | | | λ=0.5 | 24 | | | 56 | 11235 | 7489
7948 | 12856
13273 | 1310
1326 | φ | (x) | (Y) | (T) | (v) | | 57
58
59
60 | 11849
12167
12493 | 8435
8955
9508 | 13707
14158
14628 | 1342
1358
1375 | 44°
43
42 | 16126
14682
13566
12644 | 9568
8192
7170 | 12208
11517
10919
10383 | 3119
2672
2399
2207 | | | 2 | y = 0°2 | 22 | | 40 | 11851 | 6353
5676 | 9894 | 2061 | | φ | (x) | (y) | (T) | (v) | 39
38
37
36 | 11152
10525
9954
9430 | 5100
4600
4162
3774 | 9441
9018
8621
8244 | 1945
1850
1769
1699 | | 45°
44
43
42
41 | 15901
14637
13614
12747
11989 | 9575
8332
7361
6566
5895 | 12394
11736
11153
10626
10140 | 2867
2537
2315
2150
2021 | 35
34
33
32
31 | 8944
8491
8066
7665
7285 | 3427
3116
2834
2579
2346 | 7887
7545
7219
6905
6603 | 1639
1585
1537
1494
1455 | XVI. (continued). | | 7 | y = 0.5 | 4 | | | | γ = 0.5 | 8 | | |----------------------------------|--|---|--|--|-----------------------------------|--|--|--|--| | φ | (x) | (Y) | (T) | (v) | ф | (x) | (Y) | (T) | (v) | | 30°
29
28
27
26 | 6925
6581
6253
5938
5635 | 2134
1939
1761
1597
1446 | 6312
6031
5758
5494
5237 | 1420
1387
1357
1330
1304 | 41°
40
39
38
37
36 | 14763
13421
12381
11519
10776
10121 | 7911
6763
5905
5219
4649
4164 | 11075
10439
9887
9391
8938
8517 | 3003
2579
2318
2134
1995
1884 | | 25
24
23
22
21
20 | 5344
5062
4791
4527
4272
4024 | 1307
1180
1061
951.7
851.1
758.3 | 4987
4744
4506
4274
4047
3825 | 1258
1258
1238
1219
1201
1184 | 35
34
33
32
31 | 9532
8995
8501
8044
7616 | 3743
3375
3048
2756
2494 | 8123
7752
7400
7065
6744 | 1793
1716
1649
1591
1541 | | | 1 | y = 0.5 | | | 30
29
28
27
26 | 7214
6835
6476
6134
5898 | 2257
2043
1847
1669
1507 | 6437
6141
5856
5581
5314 | 1495
1453
1416
1383
1352 | | φ
42°
41 | (X)
14725
13504 | (Y)
8052
6971 | (T)
11297
10681 | 2827
2487 | 25
24
23
22 | 5496
5197
4909
4631 | r358
1221
1096
981°2 | 5056
4804
4560
4322 | 1323
1297
1273
1250 | | 40
39
38 | 12524
11696
10974 | 6133
5451
4876 | 1013 7
9645
9191 | 2263
2099
1972 | 20 | 4363 | 875·6
778·5 | 4089
3862 | 1229 | | 37
36
35
34
33 | 9751
9751
9219
8729
8272 | 4383
3953
3574
3237
2935 | 8769
8373
7999
7644
7305 | 1868
1782
1709
1645
1589 | | 1 | $\gamma =
0$ | 30 | | | 32 | 7845
7444 | 2663
2416 | 6982
6671 | 1540
1495 | φ | (x) | (Y) | (T) | (v) | | 30
29
28
27
26 | 7064
6704
6361
6033
5719 | 1989
1803
1632
1475 | 6372
6084
5806
5536
5275 | 1455
1419
1386
1355
1327 | 40°
39
38
37
36 | 14791
13312
12213
11320
10560 | 7761
6541
5666
4980
4418 | 10848
10190
9631
9133
8680 | 3205
2670
2369
2164
2014 | | 25
24
23
22
21
20 | 5418
5128
4848
4578
4317
4063 | 1332
1200
1078
966.0
863.0
768.2 | 5021
4773
4532
4297
4068
3843 | 1301
1277
1255
1234
1215
1196 | 35
34
33
32
31 | 9894
9298
8758
8263
7805 | 3942
3533
3176
2860
2579 | 8262
7870
7502
7154
6822 | 1896
1800
1720
1651
1591 | XVI. (continued). | | | γ=0:3 | 30 | | | • | γ=o.3 | 30 | | |--------------------------------------|--|--|--|--|--|--|--|--|--------------------------------------| | φ | (x) | (Y) | (T) | ·(v) | φ | (x) | (Y) | (T) | (v) | | 30°
29
28
27
26 | 7378
6977
6600
6242
5903 | 2327
2101
1896
1710
1540 | 6505
6201
5909
5628
5356 | 1539
1492
1450
1412
1378 | 16°
17
18
19 | 2649
2810
2972
3134
3296 | 369·8
417·7
468·7
522·8
580·3 | 2755
2930
3106
3284
3462 | 962
962
963
964
965 | | 25
24
23
22
21 | 5579
5269
4972
4686
4411 | 1386
1244
1115
997'0
888'5 | 5092
4837
4588
4347
4111 | 1347
1318
1292
1267
1245 | 21
22
23
24
25 | 3459
3622
3786
3950
4116 | 641·1
705·4
773·3
844·9
920·3 | 3642
3824
4007
4191
4378 | 966
968
970
972
975 | | 20
19
18
17
16 | 4145
3888
3639
3397
3162 | 789·2
698·1
614·7
538·5
468·8 | 3881
3656
3437
3221
3010 | 1224
1204
1186
1169
1153 | 26
27
28
29
30 | 4282
4449
4618
4788
4959 | 999.6
1083
1171
1263
1360 | 4567
4758
4951
5147
5346 | 978
981
984
988
992 | | 15
14
13
12 | 2933
2710
2492
2279
2071 | 405·3
347·6
295·2
248·0
205·6 | 2802
2599
2398
2201
2006 | 1138
1124
1111
1099
1087 | 31
32
33
34
35 | 5131
5305
5481
5658
5837 | 1461
1568
1680
1797
1921 | 5547
5751
5959
6170
6385 | 996
1001
1011
1016 | | 9
8
7
6 | 1866
1666
1469
1276
1086 | 167·7
134·2
104·8
79·4
57·7 | 1814
1624
1437
1252
1068 | 1076
1066
1057
1048
1040 | 36
37
38
39
40 | 6019
6202
6388
6576
6766 | 2050
2186
2328
2477
2634 | 6603
6826
7053
7284
7520 | 1022
1028
1035
1041
1048 | | 5
4
3
2
1
0
1
2 | 899
715
533
353
176
0
174
346 | 39.7
25.2
14.0
6.2
1.5
0
1.5 | 887
707
528
351
175
0
174
347 | 1032
1024
1018
1011
1005
1000
995
990 | 41
42
43
44
45
46
47 | 6959
7155
7353
7555
7760
7968
8179 | 2799
2973
3155
3346
3547
3759
3982 | 7762
8009
8261
8520
8785
9057
9336 | 1055
1063
1071
1079
1087 | | 3
4
5 | 516
685
853 | 13.2
23.8
37.0 | 520
692
864 | 986
982
979 | 48
49
50 | 8394
8613
8836 | 4216
4464
4724 | 9622
9917
10221 | 1115
1124
1134 | | 6
7
8
9 | 1020
1185
1350
1514
1677 | 53.0
71.9
93.6
118.1
142.4 | 1035
1206
1377
1548
1719 | 976
973
970
968
966 | 51
52
53
54
55 | 9062
9293
9528
9767
10011 | 4999
5289
5595
5919
6261 | 10533
10856
11189
11532
11888 | 1144
1155
1166
1177
1188 | | 11
12
13
14
15 | 1840
2002
2164
2326
2487 | 175.6
208.6
244.5
283.3
325.1 | 1891
2063
2235
2408
2581 | 965
964
963
962
962 | 56
57
58
59
60 | 10260
10514
10772
11036
11305 | 6623
7006
7413
7843
8300 | 12256
12637
13032
13443
13870 | 1200
1211
1223
1236
1248 | XVI. (continued). | | 7 | ·=0.3 | 5 | | | | $\gamma = 0.7$ | ho | | |-----------|--------------|----------------|--------------|--------------|-------------|-------------------|----------------|-------------------|-------------------| | φ | (x) | (Y) | (T) | (v) | φ | (x) | (Y) | (T) | (v) | | 37° | 13690 | 6512 | 9864 | 3216 | 20° | 4379 | 850.1 | 3986 | 1304 | | 36 | 12225 | 5427 | 9236 | 2638 | 19
18 | 4089
3811 | 747°4
654°3 | 3747
3515 | 1275 | | 35 | 11159 | 4666
4076 | 8707
8237 | 2326
2119 | 17
16 | 3544
3287 | 570.1 | 3288
3067 | 1225 | | 34
33 | 9574 | 3595 | 7810 | 1968 | | | 493.9 | | | | 32
31 | 8939
8372 | 3190
2842 | 7415
7046 | 1851
1756 | 15
14 | 3038
2798 | 362·9 | 2851
2640 | 1183 | | 30 | 7858 | 2539 | 6699 | 1677 | 13
12 | 2565
2339 | 307.0
256.9 | 2432
2229 | 1146 | | 29
28 | 7387
6952 | 2273 | 6369
6056 | 1610
1551 | 11 | 2120 | 212.5 | 2029 | 1114 | | 27
26 | 6546 | 1825
1635 | 5756
5467 | 1500 | 10 | 1905
1697 | 172.5 | 1833
1639 | 1100 | | | | | | 1455 | 9
8 | 1493 | 137.6 | 1448 | 1074 | | 25
24 | 5806
5466 | 1463
1308 | 5190
4922 | 1414
1378 | 7
6 | 1294 | 80·9
 58·6 | 1260 | 1063 | | 23
22 | 5143
4834 | 1168 | 4663
4412 | 1345 | 5 | 908 | 40.5 | 891 | 1042 | | 2 I
20 | 4539
4256 | 923·8
817·9 | 4168
3931 | 1287
1261 | 4 3 | 720
536 | 25.4
14.1 | 709
530 | 1032 | | | | | 0,0 | | 2
I | 354
176 | 6.5 | 352
175 | 1015 | | | , | y = 0°4 | 10 | | 0
I | 0 | 0 | 0 174 | 1000 | | | | , , , | | | 2 | 173
344 | 6.0 | 347 | 987 | | φ | (x) | (Y) | (T) | (v) | 3
4
5 | 514
681
846 | 23.6
36.6 | 519
690
860 | 981
976
971 | | 34° | 12157 | 5144 | 8813 | 2958 | 6 | 1010 | 52·4
70·9 | 1030 | 966
962 | | 33 | 10889 | 4304 | 8250 | 2480 | 7
8 | 1333 | 92.0 | 1369 | 958 | | 32
31 | 9161 | 3697
3221 | 7767
7335 | 2207
2022 | 9
10 | 1493 | 142.2 | 1537 | 955
952 | | 30 | 8498 | 2830 | 6940 | 1884 | 11 | 1809 | 171.7 | 1875 | 949 | | 29
28 | 7914
7391 | 2500
2215 | 6574
6230 | 1776
1689 | 12 | 1966 | 203.6 | 2044 | 947 | | 27
26 | 6916
6478 | 1968
1750 | 5905
5596 | 1615
1552 | 14
15 | 2277
2432 | 275.5 | 2382 | 943
942 | | 25 | 6073 | 1556 | 5302 | 1498 | 16 | 2587 | 358.5 | 2722 | 940 | | 24 | 5694 | 1383 | 5019 | 1450 | 17 | 2741 | 404.5 | 2894 | 940 | | 23 | 5338 | 1089 | 4747
4485 | 1407 | 19 | 2895
3049 | 452.7
504.2 | 3065 | 939
939 | | 21 | 4683 | 963.7 | 4231 | 1 3 3 5 | 20 | 3203 | 558.7 | 3412 | 939 | XVI. (continued). | | 7 | $\gamma = 0.4$ | 0 | | | | $\gamma = 0.4$ | ł 5 | | |----------------------------|--|--------------------------------------|---|--------------------------------------|----------------------------|--------------------------------------|---|--------------------------------------|--------------------------------------| | φ | (x) | (Y) | (T) | (v) | φ | (x) | (Y) | (T) | (v) | | 21°
22
23
24 | 3357
3511
3665
3820 | 616·2
676·9
740·8
808·1 | 3587
3763
3941
4120 | 939
940
941
942 | 32°
31 | 11924 | 4776
3879
3281 | 8 ₃₄₄
7754
7265 | 3276
2592 | | 25 | 3975 | 878.7 | 4301 | 943 | 30
29
28 | 9448
8646
7972 | 2826
2460 | 6836
644 5 | 2257
2044
1892 | | 26
27
28 | 4130
4287
4444 | 953.0
1031
1113 | 4483
4668
4855 | 945
947
949 | 27
26 | 73 ⁸ 7
6866 | 2155
1895 | 6085
5748 | 1775
1682 | | 29
30 | 4601
4760 | 1198
1288 | 5043
5234 | 952
955 | 25
24
23 | 6395
5964
5565 | 1670
1474
1300 | 5430
5129
4841 | 1605
1540
1484 | | 31
32
33
34
35 | 4919
5080
5242
5405
5569 | 1382
1480
1583
1691
1804 | 5428
5625
5824
6026
6232 | 958
961
965
969
973 | 22
21
20 | 5194
4845
4517 | 1147
1009
886·5 | 4566
4301
4045 | 1435
1391
1353 | | 36
37
38 | 5735
5902
6072 | 1923
2046
2176 | 6441
6653
6870 | 977
982
987 | ă. | | γ=0. | 50 | | | 39
40 | 6242
6415 | 2312
2454 | 7090
7315 | 992
997 | φ | (x) | (Y) | (T) | (v) | | 41
42
43
44
45 | 6589
6766
6945
7126
7309 | 2603
2760
2923
3095
3275 | 7545
7779
8019
8264
8515 | 1003
1009
1015
1022
1029 | 29°
28
27
26 | 9841
8820
8026
7364 | 33 ⁸ 7
2832
2419
2089 | 7211
6731
6311
5932 | 2617
2252
2028
1871 | | 46
47
48
49
50 | 7495
7684
7875
8069
8265 | 3465
3663
3872
4091
4322 | 8772
9035
9306
9583
9869 | 1036
1043
1050
1058
1066 | 25
24
23
22
21 | 6794
6288
5831
5414
5028 | 1816
1586
1387
1214
1062 | 5582
5255
4947
4655
4376 | 1752
1658
1580
1515
1459 | | 51
52
53
54
55 | 8465
8668
8875
9084
9298 |
4564
4820
5088
5372
5671 | 10162
10465
10777
11098
11430 | 1074
1083
1092
1101
1110 | 20
19
18
17
16 | 4669
4333
4016
3716
3430 | 927·8
808·7
702·6
607·9
523·4 | 4109
3852
3604
3364
3131 | 1410
1367
1329
1295
1264 | | 56
57
58
59
60 | 9514
9735
9959
10187
10419 | 5986
6319
6671
7043
7437 | 11774
12129
12497
12879
13275 | 1119
1128
1138
1148
1158 | 15
14
13
12 | 3158
2897
2647
2406
2173 | 447.8
380.3
320.2
266.7
219.4 | 2905
2685
2470
2260
2054 | 1235
1210
1186
1165
1145 | XVI. (continued). | | | γ=0:5 | 50 | | | 2 | y = 0.2 | 50 | | |----------------------------|--------------------------------------|---|--------------------------------------|--------------------------------------|-----------------------------------|--|--|--|--| | φ | (x) | (Y) | (T) | (v) | φ | (x) | (Y) | (T) | (v) | | 10° 9 8 7 6 | 1948
1730
1518
1312
1112 | 177.6
141.1
109.5
82.4
59.6 | 1852
1655
1460
1269
1081 | 1126
1109
1093
1079
1065 | 31°
32
33
34
35 | 4733
4883
5033
5184
5337 | 1313
1405
1501
1601
1705 | 5321
5511
5703
5898
6095 | 925
927
930
932
936 | | 5
4
3
2 | 916
725
539
356
176 | 40.7
25.7
14.2
6.3
1.5 | 895
712
531
352
175 | 1052
1040
1029
1019
1009 | 36
37
38
39
40 | 5490
5644
5800
5957
6116 | 1815
1929
2049
2173
2304 | 6296
6501
6708
6920
7136 | 939
943
947
951
955 | | 0
1
2
3
4
5 | 173
343
511
676
839 | 0
1.5
6.0
13.3
23.4
36.2 | 0
174
346
517
688
857 | 992
984
976
970
963 | 41
42
43
44
45 | 6276
6437
6600
6765
6932 | 2441
2584
2733
2890
3054 | 7355
7579
7808
8042
8282 | 960
965
970
975
981 | | 6
7
8
9 | 1000
1159
1317
1472
1627 | 51.7
69.8
90.5
113.8
139.7 | 1025
1193
1360
1527
1693 | 957
952
947
943
938 | 46
47
48
49
50 | 7101
7272
7445
7620
7798 | 3226
3406
3594
3792
4000 | 8526
8777
9035
9298
9570 | 986
992
999
1005
1012 | | 11
12
13
14 | 1780
1932
2082
2232 | 168.0
198.9
232.3
268.3 | 1859
2026
2192
2358 | 935
931
928
925 | 51
52
53
54
55 | 7978
8160
8345
8533
8723 | 4219
4448
4689
4943
5210 | 9848
10135
10430
10734
11048 | 1019
1026
1033
1041
1048 | | 16
17
18
19 | 2530
2677
2825
2971 | 348·0
391·8
438·2
487·3 | 2525
2692
2859
3027
3196 | 923
921
919
918
917 | 56
57
58
59
60 | 8916
9112
9312
9514
9719 | 5491
5787
6100
6430
6779 | 11373
11708
12055
12414
12788 | 1056
1064
1072
1081
1089 | | 20 | 3118 | 593.8 | 3366
3536 | 916 | | 2 | y=0.6 | 50 | | | 22
23
24
25 | 3410
3556
3702
3848 | 651.3
711.8
775.4
842.0 | 3708
3881
4055
4230 | 915
915
915
916 | φ | (x) | (Y) | (т) | (v) | | 26
27
28
29
30 | 3995
4142
4289
4436
4585 | 911.8
985.0
1062
1142
1226 | 4407
4586
4767
4949
5134 | 916
918
919
920
922 | 26°
25
24
23
22
21 | 9334
8120
7261
6577
6000
5497 | 2908
2327
1936
1638
1399
1200 | 6533
6024
5599
5222
4879
4560 | 2970
2379
2081
1890
1752
1647 | XVI. (continued). | | | $\gamma = 0.0$ | 50 | | | | $\gamma = 0.6$ | бо | | |-----------------------|--------------------------------------|---|--------------------------------------|--------------------------------------|-----------------------------|--------------------------------------|---|--------------------------------------|---------------------------------| | φ | (x) | (Y) | (T) | (v) | φ | (x) | (Y) | (T) | (v) | | 20°
19
18
17 | 5048
4642
4268
3923
3600 | 1033
888·5
763·5
654·4
558·8 | 4261
3979
3710
3452
3204 | 1563
1493
1434
1383
1338 | 21°
22
23
24
25 | 3179
3318
3457
3595
3734 | 573°5
628°3
685°8
746°0
809°2 | 3489
3656
3824
3994
4165 | 893
892
891
891
891 | | 15
14
13
12 | 3296
3010
2738
2479
2231 | 474.6
400.5
335.2
277.7
227.3 | 2966
2735
2510
2293
2081 | 1299
1264
1233
1204
1179 | 26
27
28
29
30 | 3872
4011
4150
4289
4428 | 875°2
944°3
1017
1092
1171 | 4337
4511
4686
4864
5043 | 891
891
892
893
894 | | 10 | 1993 | 183·3 | 1874 | 1155 | 31 | 4568 | 1253 | 5224 | 895 | | 9 | 1765 | 145·0 | 1671 | 1134 | 32 | 4708 | 1339 | 5408 | 897 | | 8 | 1545 | 112·1 | 1473 | 1114 | 33 | 4849 | 1429 | 5593 | 899 | | 7 | 1332 | 84·0 | 1278 | 1096 | 34 | 4990 | 1522 | 5782 | 901 | | 6 | 1126 | 60·5 | 1087 | 1078 | 35 | 5132 | 1620 | 5973 | 904 | | 5 | 925 | 41·3 | 900 | 1063 | 36 | 5275 | 1722 | 6167 | 906 | | 4 | 731 | 25·9 | 715 | 1049 | 37 | 5419 | 1828 | 6364 | 909 | | 3 | 542 | 14·4 | 533 | 1035 | 38 | 5564 | 1939 | 6564 | 912 | | 2 | 357 | 6·3 | 353 | 1023 | 39 | 5709 | 2055 | 6768 | 916 | | 1 | 176 | 1·6 | 176 | 1011 | 40 | 5856 | 2176 | 6976 | 919 | | 1 | 173 | 1.5 | 174 | 990 | 41 | 6004 | 2303 | 7187 | 923 | | 2 | 342 | 5.9 | 346 | 981 | 42 | 6154 | 2435 | 7402 | 927 | | 3 | 508 | 13.2 | 516 | 972 | 43 | 6304 | 2573 | 7622 | 931 | | 4 | 672 | 23.2 | 685 | 964 | 44 | 6456 | 2717 | 7847 | 936 | | 5 | 833 | 35.8 | 853 | 956 | 45 | 6610 | 2868 | 8077 | 941 | | 6
7
8
9 | 991
1147
1301
1453
1603 | 137.0
86.1
86.1
21.1 | 1020
1187
1352
1517
1681 | 949
942
936
931
926 | 46
47
48
49
50 | 6765
6922
7081
7241
7403 | 3026
3192
3365
3546
3736 | 8311
8552
8798
9051
9310 | 945
951
956
962
967 | | 11 | 1752 | 164.6 | 1845 | 921 | 51 | 7568 | 3935 | 9576 | 973 | | 12 | 1899 | 194.5 | 2008 | 916 | 52 | 7734 | 4144 | 9850 | 979 | | 13 | 2045 | 226.9 | 2172 | 913 | 53 | 7902 | 4364 | 10131 | 986 | | 14 | 2190 | 261.6 | 2335 | 909 | 54 | 8073 | 4595 | 10422 | 992 | | 15 | 2334 | 298.8 | 2499 | 906 | 55 | 8246 | 4837 | 10721 | 999 | | 16 | 2476 | 338·3 | 2663 | 903 | 56 | 8421 | 5092 | 11030 | 1006 | | 17 | 2618 | 380·3 | 2827 | 900 | 57 | 8599 | 5361 | 11349 | 1013 | | 18 | 2759 | 424·8 | 2991 | 898 | 58 | 8779 | 5644 | 11679 | 1020 | | 19 | 2900 | 471·8 | 3156 | 896 | 59 | 8962 | 5942 | 12021 | 1027 | | 20 | 3040 | 521·4 | 3322 | 894 | 60 | 9147 | 6257 | 12375 | 1034 | XVI. (continued). | 23° 813:
701:
22 701:
622 20 5599:
18 459.
17 418:
380:
15 346:
14 2256:
11 229:
10 204:
9 180:
18 459.
11 229:
10 204:
9 180:
15 346:
17 33:
10 00:
11 172:
11 229:
11 172:
11 172:
186: | | ′ ′ | 70 | | | | $\gamma = 0.7$ | , 0 | |
--|--------------|---------------|--------------|--------------|----------|------|----------------|--------------|-----| | 22 | (x) | (Y) | (T) | (v) | φ | (x) | (Y) | . (т) | (v) | | 22 | 3132 | 2201 | 5692 | 2856 | 210 | 3101 | 222.0 | 3444 | 873 | | 20 5599 5050 119 5050 111 172 121 121 132 201 114 1158 1158 1158 1158 1158 1158 1158 | 012 | 1736 | 5215 | 2283 | 22 | 3233 | 607.3 | 3608 | 872 | | 19 5059
18 4599
4180
3144
114 3144
113 284
114 2256
11 229
110 204
111 229
110 204
111 235
111 235
112 235
113 235
114 235
115 235
116 235
117 235
118 235
119 235
110 235
111 235
111 235
112 235
113 235
114 235
115 235
116 235
117 235
117 235
118 235
119 235
110 235
111 235
111 235
112 235
113 235
114 235
115 235
116 235
117 235
118 235
119 235
110 235
111 235
112 235
113 235
114 235
115 235 | 22I | 1424 | 4815 | 1997 | 23 | 3366 | 662.1 | 3772 | 870 | | 19 5059
18 4589
4180
117 4180
118 3284
119 2256
111 229
110 204 180
180 157
7 135
10 17
2 34
3 50
1 17
2 34
3 50
1 17
2 34
3 50
6 66
5 82
7 113
10 17
2 34
3 50
10 17
2 34
3 158
10 17
11 186
10 186
10 17
11 186
11 186
11 186
12 186
13 12 186
14 186
158 143
158 143
158 143
158 143
158 144
158 143
169 16 | | 00 | | | 24 | 3498 | 719.5 | 3938 | 869 | | 18 459
17 4184
18 380
15 3466
14 224
13 284
12 256
11 229
10 204
180
8 157
7 135
114
5 93
4 35
1 17
2 34
3 54
3 12
3 66
5 82
7 135
117
2 34
3 66
5 82
7 135
117
2 34
3 15
4 50
8 113
17 2
18 12
18 | | 1188 | 4461 | 1814 | 25 | 3630 | 779.6 | 4104 | 869 | | 17 4186
16 380
15 3466
14 3144
13 284
11 229
10 204
180
9 180
9 187
7 135
114
5 93
4 73
3 54
2 35
1 17
2 34
6 82
7 135
1 17
2 34
3 54
4 73
3 54
2 35
1 17
2 34
3 158
8 128
9 143
10 158
11 172
11 186
12 186
13 201
14 215 | | 1000
844·6 | 4138
3838 | 1683
1582 | 26 | 2561 | 8.212 | | 868 | | 16 380
3466
14 3144
13 284
12 256
11 229
10 204
180
8 157
7 135
6 114
5 93
3 54
2 35
11 0 0
1 17
2 34
3 50
6 82
7 113
8 8 50
1 17
2 34
3 50
1 17
2 34
3 158
9 113
1 17
1 186
8 158 | 1393 | 714.0 | | - | | 3761 | 842.3 | 4272 | 868 | | 15 346
14 314
12 284
12 256
11 229
10 204
9 180
8 157
7 135
6 114
5 93
4 73
3 54
4 35
1 17
2 34
5 82
6 98
7 113
8 128
8 143
10 158
11 172
12 186
13 201
14 215 | | 602.7 | 3556
3289 | 1501 | 27
28 | 3893 | 976.3 | 4442
4612 | 868 | | 14 3144
13 284
11 284
12 256
11 229
10 204
180
8 157
7 135
114
5 93
4 35
1 17
0 1 17
2 34
5 66
6 82
7 113
10 8
11 172
11 186
11 172
11 186
13 201
14 215 | ,003 | 002 / | 3209 | 1435 | 29 | 4024 | 1048 | 4785 | 868 | | 14 3144
13 284
11 286
11 229
10 204
180
8 157
7 135
6 114
5 93
4 73
3 54
2 35
1 17
0 1 17
2 34
5 66
6 82
7 113
1 17
2 34
3 50
4 13
8 128
9 143
10 17
11 172
11 172 | 1.160 | 507.0 | 3035 | 1378 | 30 | 4287 | 1122 | 4959 | 869 | | 13 | | 424.5 | 2791 | 1330 | .,~ | 4207 | | 4232 | 009 | | 12 256
11 229
10 204
180
8 157
7 135
6 114
5 93
4 73
3 54
2 35
1 17
2 34
3 50
6 82
6 98
7 113
8 128
9 143
10 158
11 172
11 186
12 186
13 201
14 215 | 2841 | 352.2 | 2556 | 1288 | 31 | 4419 | 1200 | 5135 | 870 | | 11 | | 290.2 | 2329 | 1250 | 32 | 4551 | 1281 | 5313 | 871 | | 9 180
8 157
7 135
6 114
5 93
4 73
3 54
3 54
3 54
3 54
4 35
1 17
2 34
3 66
5 82
6 98
7 113
8 128
9 143
10 158
11 172
12 186
13 201
14 215 | 2295 | 236.2 | 2109 | 1217 | 33 | 4684 | 1365 | 5494 | 872 | | 9 180
8 157
7 135
6 114
5 93
4 73
3 54
3 54
3 54
3 54
4 35
1 17
2 34
3 66
5 82
6 98
7 113
8 128
9 143
10 158
11 172
12 186
13 201
14 215 | | | | | 34 | 4817 | 1453 | 5676 | 874 | | 8 157
7 135
6 114
5 93
4 73
3 54
3 55
6 66
5 82
6 98
7 113
12 186
11 172
12 186
13 201
14 215 | 2043 | 189.5 | 1896 | 1187 | 35 | 4950 | 1545 | 5861 | 876 | | 7 135
6 114
5 93
4 73
3 54
2 35
1 17
0 0
1 17
2 34
5 66
5 82
6 98
7 113
10 158
11 172
11 186
13 201
14 215 | 1803 | 149.2 | 1689 | 1160 | | | | | | | 5 93
4 73
3 54
2 35
1 17
0 0
1 17
2 34
3 50
4 66
5 82
6 98
7 113
128
9 143
10 158
11 172
112 186
13 201
14 215 | 1573 | 114.8 | 1486 | 1136 | 36 | 5085 | 1641 | 6049 | 878 | | 5 93
4 73
3 54
2 35
1 17
0 0
1 17
2 34
3 50
4 66
5 82
6 98
7 113
128
9 143
10 158
11 172
112 186
13 201
14 215 | 1352 | 85.8 | 1288 | 1113 | 37 . | 5219 | 1741 | 6240 | 880 | | 4 73
3 54
2 355
1 17
0 0
1 17
2 34
3 50
4 5 82
6 98
7 113
128
9 143
10 158
11 172
112 186
13 201
14 215 | 140 | 61.6 | 1094 | 1093 | 38 | 5355 | 1845 | 6434 | 882 | | 4 73 54 35 1 17 0 0 1 17 2 34 4 5 66 82 66 98 113 128 9 143 15 158 111 172 115 115 116 13 201 14 215 | | | | | 39 | 5491 | 1953 | 6631 | 885 | | 3 | 935 | 41.8 | 904 | 1074 | 40 | 5628 | 2066 | 6832 | 888 | | 2 35
1 17
0 0 17
2 34
3 50
4 66
5 82
6 98
7 113
8 128
9 143
10 158
11 172
1186
13 201
14 215 | 737 | 26.2 | 718 | 1057 | 1 | | | | | | 1 | 545 | 14.5 | 534 | 1041 | 41 | 5766 | 2184 | 7036 | 891 | | 0 1 17
2 34 50
4 66 82
6 98 113 128
9 143 158
11 172 186
13 201
14 215 | | 6.3 | 354 | 1026 | 42 | 5906 | 2307 | 7244 | 895 | | 1 17, 2 34 50 66 5 82 6 98 7 113 128 8 9 143 10 158 111 172 186 13 201 14 215 | | 1.6 | 176 | 1013 | 43 | 6046 | 2436 | 7456 | 898 | | 2 34
3 50
4 66
5 82
6
98
7 113
128
9 143
10 158
11 172
112 186
13 201
14 215 | | 0 1.2 | 174 | 988 | 44 | 6187 | 2570 | 7673 | 902 | | 3 | | 2.9 | | - | 45 | 6331 | 2710 | 7894 | 906 | | 5 82
6 98
7 113
8 128
9 143
10 158
11 172
12 186
13 201
14 215 | | 13.1 | 345
515 | 977
967 | 46 | 6474 | 2857 | 8120 | 910 | | 5 82
6 98
7 113
8 128
9 143
10 158
11 172
186
13 201
14 215 | 668 | 23.0 | 683 | 958 | 47 | 6620 | 3010 | 8352 | 915 | | 6 98
7 113
8 128
9 143
10 158
11 172
186
13 201
14 215 | 826 | 35.2 | 850 | 949 | 48 | 6766 | 3170 | 8589 | 920 | | 7 113
8 128
9 143
10 158
11 172
12 186
13 201
14 215 | | 333 | -5- | 747 | 49 | 6915 | 3338 | 8832 | 925 | | 7 113
8 128
9 143
10 158
11 172
12 186
13 201
14 215 | 982 | 50.5 | 1016 | 941 | 50 | 7065 | 3514 | 9081 | 930 | | 9 143
10 158
11 172
12 186
13 201
14 215 | 1135 | 67.9 | 1180 | 933 | ľ | , , | " | | 20 | | 10 158
11 172
12 186
13 201
14 215 | 1286 | 87.8 | 1344 | 926 | 51 | 7216 | 3698 | 9337 | 935 | | 11 172
12 186
13 201
14 215 | 1434 | 110.0 | 1507 | 919 | 52 | 7370 | 3891 | 9599 | 940 | | 12 186
13 201
14 215 | 1581 | 134.2 | 1669 | 913 | 53 | 7525 | 4093 | 9870 | 946 | | 12 186
13 201
14 215 | | | | | 54 | 7682 | 4305 | 10148 | 952 | | 13 201
14 215 | 1726 | 161.3 | 1831 | 908 | 55 | 7841 | 4528 | 10435 | 957 | | 14 215 | 1869 | 190.4 | 1992 | 903 | | | | | | | | 2010 | 221.7 | 2153 | 898 | 56 | 8002 | 4762 | 10731 | 963 | | 15 11 220 | | 255.4 | 2313 | 894 | 57 | 8165 | 5009 | 11037 | 970 | | -3 | 2209 | 591.5 | 2474 | 890 | 58 | 8330 | 5268 | 11353 | 976 | | 16 242 | 2426 | 22014 | 2625 | 886 | 59
60 | 8498 | 5541 | 11680 | 982 | | | 2426
2563 | 329.4 | 2635 | 883 | 00 | 8667 | 5829 | 12019 | 989 | | | 2503
2699 | 369.8 | 2796 | 880 | 1 | | | | | | | 2833 | 457.6 | 2957
3119 | 877 | | | | | | | | 2967 | 505.1 | 3281 | 875 | | | | / | | XVI. (continued). | | - | $\gamma = 0.8$ | 3o | | | | $\gamma = 0.8$ | 30 | | |----------------------|--------------------------------------|---|--------------------------------------|--------------------------------------|----------------------------|--------------------------------------|---|--------------------------------------|---------------------------------| | φ | (x) | (v) | (T) | (v) | φ | (x) | (v) | (т) | (v) | | 20° | 6536 | 1476 | 4764 | 2393 | 21° | 3028 | 538·0 | 3402 | 855 | | 19 | 5695 | 1178 | 4358 | 2032 | 22 | 3155 | 588·1 | 3562 | 853 | | 18 | 5051 | 962·6 | 4004 | 1820 | 23 | 3282 | 640·6 | 3723 | 851 | | 17 | 4521 | 795·0 | 3685 | 1675 | 24 | 3408 | 695·4 | 3885 | 850 | | 16 | 4063 | 659·5 | 3391 | 1567 | 25 | 3534 | 752·7 | 4048 | 848 | | 15
14
13
12 | 3659
3294
2961
2653
2366 | 547·2
452·9
372·8
304·5
246·2 | 3115
2854
2606
2369
2141 | 1481
1412
1353
1304
1261 | 26
27
28
29
30 | 3659
3785
3910
4035
4160 | 812.6
875.0
940.1
1008
1079 | 4212
4377
4544
4712
4882 | 847
847
846
846
846 | | 10 | 2097 | 196·3 | 1920 | 1223 | 31 | 4285 | 1152 | 5053 | 847 | | 9 | 1844 | 153·8 | 1707 | 1190 | 32 | 4410 | 1229 | 5226 | 847 | | 8 | 1603 | 117·8 | 1500 | 1160 | 33 | 4535 | 1309 | 5402 | 848 | | 7 | 1374 | 87·6 | 1298 | 1133 | 34 | 4661 | 1392 | 5579 | 849 | | 6 | 1155 | 62·6 | 1101 | 1108 | 35 | 4787 | 1479 | 5759 | 851 | | 5 | 945 | 42.4 | 909 | 1086 | 36 | 4914 | 1569 | 5942 | 852 | | 4 | 743 | 26.5 | 721 | 1066 | 37 | 5041 | 1663 | 6127 | 854 | | 3 | 548 | 14.6 | 536 | 1047 | 38 | 5168 | 1761 | 6315 | 856 | | 2 | 360 | 6.3 | 354 | 1030 | 39 | 5297 | 1863 | 6507 | 858 | | 1 | 177 | 1.6 | 176 | 1015 | 40 | 5426 | 1970 | 6701 | 861 | | 1 | 172 | 1.5 | 173 | 987 | 41 | 5555 | 2080 | 6899 | 864 | | 2 | 340 | 5.9 | 345 | 974 | 42 | 5686 | 2196 | 7101 | 867 | | 3 | 504 | 13.0 | 514 | 963 | 43 | 5818 | 2316 | 7306 | 870 | | 4 | 663 | 22.8 | 681 | 952 | 44 | 5950 | 2442 | 7516 | 873 | | 5 | 820 | 35.1 | 847 | 942 | 45 | 6084 | 2573 | 7730 | 877 | | 6
7
8
9 | 973
1124
1271
1417
1560 | 49°9
67°0
86°4
108°2
132°1 | 1011
1174
1336
1497
1657 | 933
924
916
909
902 | 46
47
48
49
50 | 6218
6354
6491
6630
6769 | 2710
2854
3003
3160
3323 | 7948
8172
8401
8636
8876 | 880
884
888
893
897 | | 11 | 1701 | 158·2 | 1817 | 896 | 51 | 6911 | 3495 | 9123 | 902 | | 12 | 1840 | 186·5 | 1976 | 890 | 52 | 7053 | 3674 | 9377 | 907 | | 13 | 1977 | 216·9 | 2134 | 884 | 53 | 7198 | 3862 | 9637 | 912 | | 14 | 2113 | 249·5 | 2293 | 879 | 54 | 7343 | 4059 | 9906 | 917 | | 15 | 2247 | 284·2 | 2451 | 875 | 55 | 7490 | 4266 | 10182 | 922 | | 16 | 2380 | 321.0 | 2609 | 870 | 56 | 7640 | 4483 | 10467 | 928 | | 17 | 2511 | 360.0 | 2767 | 867 | 57 | 7791 | 4712 | 10761 | 933 | | 18 | 2642 | 401.5 | 2925 | 863 | 58 | 7944 | 4952 | 11065 | 939 | | 19 | 2771 | 444.2 | 3084 | 860 | 59 | 8099 | 5204 | 11380 | 945 | | 20 | 2900 | 490.1 | 3243 | 857 | 60 | 8256 | 5471 | 11706 | 951 | XVI. (continued). | | | $\gamma = 0.6$ | 90 | | | | $\gamma = 0.6$ | 90 | | |-----|------------|----------------|------------|------------|----------|--------------|----------------|-------|-----| | φ | (x) | (y) | (T) | (v) | φ | (x) | (Y) | (T) | (v) | | 18° | 5812 | 1169 | 4247 | 2331 | 21° | 2961 | 522.3 | 3363 | 838 | | 17 | 5016 | 917.9 | 3857 | 1973 | 22 | 3083 | 570.4 | 3520 | 836 | | 16 | 4410 | 738.3 | 3518 | 1766 | 23 | 3204 | 620.8 | 3677 | 834 | | | ''' | 1.0 | "" | ' | 24 | 3325 | 673.4 | 3836 | 832 | | 15 | 3911 | 599.7 | 3211 | 1624 | 25 | 3446 | 728.3 | 3995 | 830 | | 14 | 3482 | 488.2 | 2929 | 1518 | | | - | | | | 13 | 3102 | 397.2 | 2664 | 1435 | 26 | 3566 | 785.5 | 4156 | 829 | | 12 | 2759 | 321.5 | 2413 | 1368 | 27 | 3685 | 845.2 | 4317 | 828 | | II | 2446 | 257.5 | 2175 | 1312 | 28 | 3805 | 907:3 | 4480 | 827 | | | | } | | | 29 | 3924 | 972.0 | 4644 | 826 | | 10 | 1888 | 203.9 | 1946 | 1264 | 30 | 4043 | 1039 | 4810 | 826 | | 9 | | 158.8 | 1727 | 1222 | | | | | 0-6 | | | 1635 | 121.0 | 1514 | 1186 | 31 | 4162 | 1110 | 4977 | 826 | | 7 | 1396 | 89.6 | 1308 | 1153 | 32 | 4281 | 1183 | 5146 | 826 | | 0 | 1170 | 63.8 | 1108 | 1124 | 33 | 4400 | 1259 | 5317 | 827 | | _ | 055 | 4210 | 0.7.4 | 7008 | 34 | 4520 | 1338 | 5490 | 828 | | 5 | 955 | 43.0
26.8 | 914
723 | 1098 | 35 | 4640 | 1420 | 5666 | 829 | | 4 | 749 | 1 | | 10/3 | 36 | 4760 | 1505 | 5843 | 830 | | 3 | 551
361 | 14·7
6·4 | 537 | 1034 | | 4760
4880 | 1594 | 6024 | 831 | | ī | 177 | 1.6 | 355 | 1016 | 37
38 | 5001 | 1687 | 6207 | 833 | | • | -11 | | 1 .,, | 1010 | 39 | 5122 | 1784 | 6392 | 835 | | 0 | 0 | 0 | 0 | 1000 | 40 | 5244 | 1884 | 6582 | 837 | | ī | 172 | 1.2 | 173 | 985 | 41 | 5366 | 1989 | 6774 | 839 | | 2 | 339 | 5.9 | 344 | 971 | 42 | 5490 | 2098 | 6970 | 842 | | 3 | 501 | 12.9 | 512 | 958 | 43 | 5614 | 2211 | 7169 | 844 | | 4 | 659 | 22.6 | 679 | 946 | 44 | 5738 | 2330 | 7373 | 847 | | 5 | 814 | 34.8 | 844 | 935 | 45 | 5864 | 2453 | 7580 | 850 | | 6 | 965 | 49.3 | 1007 | 925 | 46 | 5991 | 2582 | 7793 | 854 | | 7 | 1113 | 66.1 | 1168 | 916 | 47
48 | 6119 | 2717 | 8009 | 857 | | | 1257 | 85.5 | 1329 | 907 | | 6247 | 2858 | 8231 | 861 | | 9 | 1399 | 106.4 | 1488 | 898 | 49 | 6377 | 3004 | 8459 | 865 | | 10 | 1539 | 129.8 | 1646 | 891 | 50 | 6508 | 3158 | 8692 | 869 | | 11 | 1677 | 155.3 | 1804 | 884 | 51 | 6641 | 3319 | 8931 | 873 | | 12 | 1812 | 182.8 | 1961 | 877 | 52 | 6775 | 3487 | 9176 | 877 | | 13 | 1945 | 212.4 | 2117 | 871 | 53 | 6910 | 3663 | 9428 | 882 | | 14 | 2077 | 244.0 | 2273 | 866
861 | 54 | 7046 | 3847 | 9688 | 887 | | 15 | 2207 | 277.6 | 2428 | 1001 | 55 | 7184 | 4041 | 9955 | 892 | | 16 | 2335 | 313.5 | 2584 | 856 | 56 | 7324 | 4244 | 10231 | 897 | | 17 | 2463 | 350.9 | 2739 | 852 | | 7465 | 4457 | 10515 | 902 | | 18 | 2589 | 390.6 | 2895 | 848 | 57
58 | 7607 | 4681 | 10809 | 907 | | 19 | 2714 | 432'4 | 3050 | 844 | 59 | 7752 | 4917 | 11112 | 912 | | 20 | 2838 | 476.3 | 3206 | 841 | 60 | 7898 | 5165 | 11427 | 918 | XVI. (continued). | | | $\gamma = 1$ |) | | | | $\gamma = 1$ |) | | |----------------------------|--------------------------------------|---|--------------------------------------|---------------------------------|----------------------------|--------------------------------------|--------------------------------------|---|---------------------------------| | φ | (x) | (Y) | (T) | (v) | φ | (x) | (Y) | (T) | (v) | | 17°
16 | 5941
4936 | 1161
862·7 | 4127
3691 | 2763
2132 | 21°
22 | 2898
3015 | 507·8
554·2
602·6 | 3326
3480 | 823
820 | | 15
14
13 | 4254
3720
3272 | 673'4
534'9
427'4 | 3333
3018
2730 | 1844
1667
1542 | 23
24
25 | 3132
3248
3364 | 653·1
705·8 | 3634
3790
3946 | 817
815
813 | | 12
11 | 2883
2537 | 341.1 | 2464
2213 | 1447
1372 | 26
27
28 | 3479
3594
3708 | 760·7
817·9
877·4 | 4103
4261
4420 | 811
810
809 | | 9
8 | 1936
1670 | 164·3
124·5 | 1975
1748
1530 | 1310
1258
1214 | 30
30 | 3822
3936 | 939.3 | 4581
4743 | 808
808 | | 7 6 | 1421
1187
965 | 65.0 | 1319 | 1175 | 31
32
33 | 4050
4163
4277 | 1071
1140
1213
1288 | 4906
5071
5238 | 807
807
807
808 | | 5
4
3
2 | 755
554
362 | 43.7
27.1
14.8
6.4 | 919
726
539
356 | 1085
1060
1038 | 34
35
36 | 4391
4505
4619 | 1367 | 5407
5578
5752 | 808 | | I | 178 | 1.6 | 176 | 1018 | 37
38
39 | 4733
4848
4964 | 1533
1621
1712 | 5928
6106
6287 | 810
812
813 | | 1 | 172 | 1.2 | 173 | 983 | 40
41 | 5079 | 1808 | 6471
6659 |
815 | | 2
3
4
5 | 338
499
655
808 | 5.8
12.9
22.4
34.4 | 343
511
677
841 | 968
954
941
929 | 42
43
44
45 | 5312
5430
5548
5667 | 2010
2118
2230
2347 | 6849
7044
7242
7444 | 819
822
824
827 | | 6
7
8
9 | 957
1102
1244
1383
1520 | 48.7
65.3
84.0
104.8
127.6 | 1002
1163
1321
1479
1636 | 918
907
898
889
880 | 46
47
48
49
50 | 5787
5907
6029
6152
6275 | 2469
2596
2729
2868
3013 | 7650
7861
8077
8297
8524 | 830
833
837
840
844 | | 11
12
13
14 | 1654
1785
1915
2043
2169 | 152.5
179.3
208.1
238.8
271.4 | 1791
1946
2100
2254
2407 | 873
866
859
853
847 | 51
52
53
54
55 | 6400
6526
6653
6782
6912 | 3164
3322
3488
3662
3844 | 8756
8994
9239
9491
9750 | 848
852
856
860
865 | | 16
17
18
19
20 | 2294
2417
2539
2659
2779 | 305.9
342.4
380.8
421.2
463.5 | 2560
2713
2866
3019
3172 | 842
838
833
829
826 | 56
57
58
59
60 | 7043
7176
7310
7445
7582 | 4035
4235
4446
4667
4900 | 10017
10293
10577
10872
11177 | 869
874
879
884
889 | XVI. (continued). | | | $\gamma = 1.1$ | [| | | | $\lambda = 1.1$ | | | |----------------------------|--------------------------------------|---|--------------------------------------|--------------------------------------|-----------------------------|--------------------------------------|---|--------------------------------------|--| | φ | (x) | (Y) | (T) | (v) | φ | (x) | (Y) | (т) | (v) | | 15° 14 13 12 | 4789
4044
3487
3032
2642 | 793'3
600'3
466'5
365'4
286'1 | 3502
3130
2810
2521
2255 | 2272
1898
1688
1548
1445 | 25°
27
28
29
30 | 3399
3509
3619
3728
3837 | 737.9
792.8
850.0
909.4
971.2 | 4053
4208
4364
4521
4680 | 795
794
792
791
791 | | 10
9
8
7
6 | 2299
1989
1707
1446
1204 | 222·3
170·5
128·3
93·9
66·3 | 2006
1770
1546
1331
1124 | 1365
1300
1245
1199
1160 | 31
32
33
34
35 | 3946
4055
4164
4273
4382 | 1035
1102
1171
1243
1318 | 4840
5001
5165
5330
5497 | 790
790
790
790
790 | | 5
4
3
2
I | 976
761
558
364
178 | 44'3
27'4
14'9
6'4
1'6 | 924
729
541
356
176 | 1125
1094
1067
1042
1020 | 36
37
38
39
40 | 4491
4600
4709
4819
4929 | 1396
1477
1561
1648
1739 | 5667
5839
6013
6190
6370 | 791
792
793
794
796 | | 0
1
2
3
4
5 | 0
171
337
497
652
802 | 0
1.5
5.8
12.8
22.3
34.1 | 0
173
343
510
675 | 982
965
950
935
922 | 41
42
43
44
45 | 5040
5151
5263
5375
5488 | 1834
1932
2035
2141
2252 | 6552
6738
6928
7121
7318 | 797
799
801
804
806 | | 6 7 8 | 949
1091 | 48·2
64·5 | 998
1157 | 922 | | | $\lambda = 1.3$ | 2 | 5 | | 8
9
10 | 1231
1367
1501 | 82·8
103·2
125·5 | 1314
1470
1625 | 889
879
870 | φ | (x) | (Y) | (т) | (v) | | 11
12
13
14
15 | 1632
1760
1887
2011
2134 | 149.8
176.0
204.0
233.9
265.6 | 1779
1932
2084
2235
2387 | 862
855
848
841
835 | 14°
13
12 | 4553
3777
3217
2766 | 707.6
520.8
396.4
304.6 | 3287
2909
2589
2303 | 2355
1914
1685
1537 | | 16
17
18
19
20 | 2255
2374
2492
2609
2724 | 299 ⁻¹
334 ⁻⁴
371 ⁻⁶
410 ⁻⁷
451 ⁻⁶ | 2537
2688
2838
2989
3139 | 830
825
820
816
812 | 9
8
7
6 | 2384
2048
1747
1474
1222 | 233.6
177.4
132.4
96.3
67.6 | 2040
1795
1564
1343
1132 | 1429
1347
1280
1225
1179 | | 21
22
23
24
25 | 2839
2952
3065
3177
3288 | 494°4
539°1
585°7
634°4
685°1 | 3290
3442
3593
3746
3899 | 808
805
802
800
797 | 5
4
3
2
1 | 987
768
561
365
178 | 45°0
27°7
15°0
6°5
1°6 | 929
733
542
357
176
0 | 1139
1104
1074
1047
1022
1000 | XVI. (continued). | | | $\gamma = 1.2$ | 2 | | | | $\gamma = 1$ | 3 | | |----------|------------|----------------|------------|------------|----------|--------------|--------------|--------------|--------------| | φ | (x) | (Y) | (T) | (v) | φ | (x) | (Y) | (T) | (v) | | ı° | 171 | 1.2 | 173 | 980 | 13° | 4222 | 607.8 | 3046 | 2325
1889 | | 2 | 336 | | 342 | 962 | 12 | 3460 | 438.4 | 2673 | | | 3 | 494 | 12.7 | 509 | 945 | 11 | 2917 | 327.7 | 2359 | 1657 | | 4 | 648
796 | 33.8 | 673
834 | 930
916 | 10 | 2482 | 246.9 | 2079 | 1508 | | 5 | 790 | 330 | 034 | 910 | | 2114 | 185.5 | 1822 | 1401 | | 6 | 941 | 47.7 | 994 | 903 | 9 | 1792 | 137.0 | 1582 | 1320 | | 7 8 | 1801 | 63:7 | 1152 | 891 | .7 | 1503 | 99.0 | 1356 | 1254 | | | 1218 | 81.7 | 1307 | 880 | 6 | 1241 | 69.0 | 1141 | 1200 | | 9 | 1352 | 101.7 | 1462 | 870
861 | | | | | | | 10 | 1483 | 123.2 | 1615 | | 5 | 999 | 45.7 | 934 | 1154 | | 11 | 1611 | 147.3 | 1767 | 852 | 4 3 | 775
565 | 12.5 | 736
544 | 1081 | | 12 | 1736 | 172.8 | 1918 | 844 | 2 | 366 | 6.5 | 358 | 1051 | | 13 | 1859 | 200'I | 2068 | 837 | 1 | 179 | 1.6 | 177 | 1024 | | 14 | 1981 | 229.2 | 2218 | 830 | 0 | 0 | 0 | 0 | 1000 | | 15 | 2100 | 260.0 | 2367 | 823 | 1 | 171 | 1.2 | 173 | 978 | | 16 | 2217 | 292.6 | 2515 | 818 | 2 | 335 | 5.8 | 342 | 959 | | 17
18 | 2333 | 326.9 | 2664 | 812 | 3 | 492 | 12.6 | 508 | 941 | | 18 | 2447 | 363.0 | 2812 | 807 | 4 | 644
791 | 33.2 | 671
831 | 925 | | 19 | 2561 | 400.8 | 2960 | 803 | 5 | ./91 | 33.3 | 031 | 910 | | 20 | 2672 | 440.4 | 3108 | 798 | 6 | 933 | 47.2 | 990 | 896 | | 21 | 2783 | 481.8 | 3257 | 795 | 7
8 | 1071 | 62.9 | 1146 | 884 | | 22 | 2893 | 525.0 | 3405 | 791 | | 1206 | 80.6 | 1301 | 872 | | 23 | 3002 | 570.1 | 3555 | 788 | 9 | 1337 | 100.5 | 1454 | 862 | | 24 | 3110 | 617.1 | 3704 | 785 | 10 | 1465 | 121.6 | 1605 | 852 | | 25 | 3217 | 666.0 | 3855 | 783 | 41 | 1590 | 144.8 | 1756 | 843 | | 26 | 3324 | 716.8 | 4006 | 781 | 12 | 1713 | 169.8 | 1905 | 834 | | 27 | 3430 | 769.7 | 4158 | 779 | 13 | 1833 | 196.5 | 2053 | 826 | | 28 | 3535 | 824.7 | 4311 | 777 | 14 | 1951 | 224.8 | 2201 | 819 | | 29 | 3640 | 881.9 | 4465 | 776 | 15 | 2067 | 254.8 | 2348 | 812 | | 30 | 3745 | 941.5 | 4621 | 775 | | 2202 | 206.5 | 2405 | 806 | | 31 | 3850 | 1003 | 4778 | 774 | 16
17 | 2182 | 319.9 | 2495
2641 | 800 | | 32 | 3955 | 1067 | 4936 | 774 | 18 | 2405 | 354.9 | 2787 | 795 | | 33 | 4059 | 1133 | 5096 | 773 | 19 | 2515 | 391.6 | 2933 | 790 | | 34 | 4163 | 1203 | 5258 | 773 | 20 | 2624 | 430.0 | 3079 | 786 | | 35 | 4268 | 1274 | 5422 | 773 | | | - | | | | 36 | 4372 | 1349 | 5587 | 774 | 21 | 2731 | 470°I | 3225 | 782 | | 37 | 4477 | 1426 | 5755 | 774 | 22 | 2837 | 211.9 | 3371 | 778 | | 37
38 | 4582 | 1507 | 5926 | 775 | 23
24 | 2942
3047 | 555.2 | 3518 | 775 | | 39 | 4687 | 1590 | 6099 | 776 | 24
25 | 3047 | 648.2 | 3813 | 769 | | 40 | 4792 | 1677 | 6275 | 778 | -3 | 3.30 | 545.5 | 35-3 | 1 | | 41 | 4898 | 1767 | 6453 | 770 | 26 | 3253 | 697'3 | 3961 | 767 | | 42 | 5004 | 1861 | 6635 | 779
187 | 27
28 | 3356 | 748.3 | 4111 | 765 | | 43 | 5111 | 1959 | 6820 | 783 | | 3458 | 801.4 | 4261 | 763 | | 44 | 5218 | 2061 | 7009 | 785 | 29 | 3559 | 856.4 | 4412 | 762
760 | | 45 | 5326 | 2167 | 7201 | 787 | 30 | 3660 | 913.6 | 4565 | /00 | XVI. (continued). | | | $\gamma = 1$ | 3 | | | • | y = 1.7 | ŀ | | |-----------------------------|--------------------------------------|--|--------------------------------------|--|----------------------------|--------------------------------------|---|--------------------------------------|---------------------------------| | φ | (x) | (Y) | (T) | (v) | φ | (x) | (Y) | (т) | (v) | | 31°
32
33
34
35 | 3761
3861
3962
4062
4162 | 973.0
1035
1099
1165
1234 | 4719
4874
5031
5190
5350 | 759
759
758
758
758
758 | 6°
7
8
9 | 926
1062
1194
1323
1448 | 46·7
62·2
79·6
98·8
119·8 | 986
1141
1294
1446
1596 | 890
877
865
853
843 | | 36
37
38
39
40 | 4263
4363
4464
4564
4665 | 1305
1380
1457
1537
1620 | 5513
5678
5845
6014
6186 | 758
759
759
760
761 | 11
12
13
14
15 | 1571
1691
1808
1923
2037 | 142.5
166.9
193.0
220.6
249.9 | 1745
1892
2039
2185
2330 | 833
825
816
809
802 | | 41
42
43
44
45 | 4767
4868
4971
5073
5176 | 1707
1797
1891
1988
2089 | 6361
6539
6720
6905
7093 | 763
764
766
768
770 | 16
17
18
19
20 | 2148
2258
2366
2472
2577 | 280·8
313·2
347·3
382·9
420·2 | 2475
2619
2763
2907
3050 | 795
790
784
779
774 | | | 1 | $\lambda = 1.7$ | 4 | 1 | 21
22
23
24
25 | 2681
2784
2886
2987
3088 | 459·1
499·7
541·9
585·9
631·6 | 3194
3338
3483
3628
3773 | 770
766
763
760
757 | | φ | (x) | (Y) | (T) | (v) | 26
27 | 3187
3286 | 679·1
728·4 | 3919
4066 | 754
752 | | 120 | 3817
3110 | 357·8 | 2784
2426 | 2250
1827 | 28
29
30 |
3385
3483
3580 | 779.7
832.8
888.0 | 4214
4362
4512 | 750
748
747 | | 10
9
8
7
6 | 2599
2189
1841
1535
1261 | 263.0
194.2
142.1
101.8
70.2 | 2123
1852
1602
1370
1150 | 1608
1466
1364
1285
1222 | 31
32
33
34
35 | 3678
3774
3871
3968
4064 | 945°3
1005
1066
1130
1197 | 4664
4816
4970
5126
5283 | 746
745
744
744
744 | | 5
4
3
2
1 | 782
568
368
179 | 46.5
28.4
15.3
6.5
1.6 | 940
739
546
358
177 | 1170
1126
1088
1055
1026 | 36
37
38
39
40 | 4161
4258
4354
4451
4548 | 1266
1337
1411
1488
1568 | 5443
5604
5768
5934
6103 | 744
744
745
745
746 | | 1
2
3
4
5 | 333
490
640
785 | 1.5
5.7
12.6
21.7
33.2 | 173
341
507
669
829 | 977
956
937
920
904 | 41
42
43
44
45 | 4646
4743
4841
4940
5039 | 1652
1738
1828
1921
2019 | 6275
6449
6626
6807
6991 | 747
749
750
752
754 | XVI. (continued). | | , | γ= 1.5 | 5 | | | | y = 1.5 | 5 | | |-------------------------------|--|---|--|--|-----------------------------|--------------------------------------|--|--------------------------------------|--------------------------------------| | φ | (x) | (Y) | (T) | (v) | φ | (x) | (Y) | (T) | (v) | | 11°
10
9
8
7
6 | 3373
2743
2275
1895
1569
1282 | 400.5
283.2
204.8
147.8
104.9
72.2 | 2511
2174
1885
1624
1384
1159 | 2099
1741
1545
1415
1320
1246 | 31°
32
33
34
35 | 3599
3693
3787
3880
3973 | 919·6
977·0
1037
1098
1162 | 4611
4761
4912
5065
5220 | 733
732
731
731
731 | | 5
4
3
2
1 | 1025
789
572
369
179 | 47.3
28.8
15.4
6.6
1.6 | 946
742
547
359 | 1187
1137
1095
1059
1028 | 36
37
38
39
40 | 4066
4159
4253
4346
4439 | 1229
1298
1369
1444
1521 | 5377
5535
5696
5859
6025 | 731
731
731
732
732 | | 0
1
2
3
4
5 | 0
170
332
488
637
780 | 0
1.5
5.7
12.5
21.6
32.9 | 0
172
341
505
667
826 | 975
953
933
915
898 | 41
42
43
44
45 | 4533
4627
4722
4816
4911 | 1601
1684
1770
1860
1954 | 6193
6364
6538
6715
6896 | 733
735
736
738
739 | | 6 | 918 | 46.5 | 982
1136 | 883
870 | | | $\lambda = 1.6$ | 5 | | | 7
8
9 | 1183
1309
1432 | 78·6
97·5
118·1 | 1288
1438
1587 | 857
845
835 | φ | (x) | (Y) | (T) | (v) | | 11
12
13
14
15 | 1552
1669
1784
1897
2007 | 140·3
164·2
189·6
216·6
245·2 | 1734
1880
2025
2169
2312 | 825
815
807
799
792 | 10°
9
8
7
6 | 2927
2377
1955
1606
1305 | 309.8
217.5
154.3
108.3
73.9 | 2236
1922
1648
1399
1169 | 1933
1644
1475
1359
1272 | | 16
17
18
19
20 | 2116
2223
2328
2431
2534 | 275'3
306'9
340'1
374'7
411'0 | 2455
2598
2740
2881
3023 | 785
779
773
768
763 | 5
4
3
2
1 | 1038
797
576
371
180 | 48·2
29·1
15·6
6·6
1·6 | 952
746
549
360
177 | 1204
1149
1103
1064
1030 | | 21
22
23
24
25 | 2635
2735
2834
2932
3029 | 448·8
488·1
529·1
571·8
616·1 | 3165
3307
3449
3592
3735 | 759
755
751
748
745 | 1
2
3
4
5 | 170
331
485
633
775 | 1.5
5.7
12.4
21.4
32.6 | 172
340
504
665
823 | 974
950
929
910
893 | | 26
27
28
29
30 | 3125
3221
3316
3411
3505 | 662·1
709·9
759·4
810·9
864·3 | 3879
4023
4169
4315
4462 | 742
740
738
736
734 | 6
7
8
9 | 911
1044
1171
1296
1416 | 45.7
60.8
77.6
96.2
116.4 | 978
1131
1282
1430
1578 | 877
863
850
838
826 | XVI. (continued). | | | $\lambda = 1.6$ |
ó | | | | γ = 1 · ; | 7 | | |--|--|---|--|--|--|---|--|--|---| | φ | (x) | (Y) | (T) | (v) | φ | (x) | (Y) | (T) | (v) | | 11° 12 13 14 15 16 17 18 19 | 1534
1649
1761
1871
1979
2085
2189
2292
2393 | 138·2
161·5
186·4
212·9
240·7
270·1
300·9
333·2
367·0 | 1723
1868
2011
2154
2296
2437
2577
2717
2857 | 816
807
798
790
782
776
769
763
758 | 10° 9 8 7 6 5 | 3186
2501
2025
1647
1329
1052
804
579
372 | 348·4
233·2
161·9
112·1
75·8
49·0
29·5
15·7
6·6 | 2316
1966
1675
1416
1179
958
749
551
361 | 2254
1775
1546
1403
1301
1223
1162
1111
1068 | | 20
21
22 | 2492
2590
2688 | 439.0 | 2997
3137
3277 | 753
748
744 | O | 0 180 | 0 | 177
O | 1032 | | 23
24
25 | 2784
2879
2973 | 217.1
217.1 | 3417
3558
3699 | 740
737
734 | | | $\lambda = 1.5$ | 3 | 1 | | 26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45 | 3067
3160
3252
3344
3435
3526
3617
3707
3798
3888
4068
4158
4248
4338
4429
4519
4610
4702
4793 | 646·2
692·5
740·6
790·4
842·1
895·7
951·2
1009
1069
1131
1195
1261
1330
1402
1476
1554
1634
1717
1804 | 3840
3983
4126
4270
4415
4561
4709
4858
5008
5160
5314
5470
5628
5788
5951
6116
6284
6455
6629
6807 | 731
729
726
724
723
721
720
719
718
718
718
718
719
720
721
723
724
726 | 9°8 76 54 32 1 0 1 2 3 4 4 5 6 78 9 10 | 2658
2105
1693
1356
1067
813
583
374
180
0
169
329
481
626
765
898
1026
1150
1270
1387 | 253.7
170.7
116.3
77.8
50.0
29.9
15.9
6.7
1.6
0
1.5
5.6
12.3
21.1
32.0
44.8
59.4
75.8
93.7 | 2018
1704
1434
1190
964
753
553
361
177
0
172
339
502
661
817
971
1121
1270
1416
1560 | (v)
1961
1634
1453
1332
1243
1175
1119
1073
1034
1000
971
945
922
901
882
865
850
836
823
811 | XVI. (continued). | | | $\lambda = 1.8$ | 3 | | | | $\lambda = 1.6$ | 9 | | |----------------------------|--------------------------------------|---|--------------------------------------|---------------------------------|----------------------------|-------------------------------------|---------------------------------------|-------------------------------------|--------------------------------------| | φ | (x) | (Y) | (T) | (v) | φ | (x) | (Y) | (T) | (v) | | 11° 12 13 14 | 1500
1610
1718
1823
1926 | 134·2
156·6
180·5
205·8
232·4 | 1703
1845
1986
2125
2263 | 800
790
781
773
765 | 9° 8 7 6 | 2874
2200
1743
1384 | 282·7
181·4
121·0
80·0 | 2084
1738
1453
1201 | 2262
1746
1511
1366 | | 16
17
18
19
20 | 2027
2127
2224
2320
2415 | 260·5
289·9
320·6
352·7
386·2 | 2401
2539
2675
2812
2948 | 757
751
745
739
734 | 5
4
3
2
1
0 | 821
587
375
181 | 30·3
16·0
6·7
1·6 | 757
554
362
178 | 1188
1127
1078
1036
1000 | | 2I
22
23
24 | 2508
2600
2691
2782 | 421·1
457·4
495·1
534·3 | 3084
3221
3357
3494 | 729
724
720
717 | | | $\gamma = 2$ |) | | | 25
26 | 2871 | 575.0 | 3631
3769 | 713 | φ | (x) | (Y) | (T) | (v) | | 27
28
29
30 | 3047
3134
3221
3307 | 660.9
706.2
753.2
801.9 | 3907
4046
4186
4327 | 708
705
703
701 | 8°
7
6 | 2316
1799
1414 | 194·8
126·5
82·4 | 1777
1474
1214 | 1896
1579
1404 | | 31
32
33
34
35 | 3392
3478
3563
3647
3732 | 852·3
904·6
958·8
1015
1073 | 4469
4612
4756
4902
5049 | 700
698
697
697
696 |
5
4
3
2
1 | 1099
829
591
377
181 | 52.0
30.7
16.2
6.8
1.6 | 978
761
556
363
178 | 1288
1202
1136
1082
1038 | | 36
37
38
39
40 | 3816
3901
3985
4070
4154 | 1133
1196
1260
1328
1397 | 5198
5349
5502
5658
5815 | 696
695
695
696
696 | 1
2
3
4
5 | 169
327
477
619
755 | 1.2
5.6
12.1
20.8
31.2 | 172
338
500
658
812 | 968
939
914
892
872 | | 41
42
43
44
45 | 4239
4324
4409
4494
4580 | 1470
1545
1623
1704
1788 | 5975
6137
6302
6471
6642 | 697
698
699
700
701 | 6
7
8
9 | 885
1010
1130
1246
1359 | 44'0
58'2
74'0
91'4
110'2 | 963
1112
1258
1402
1544 | 854
838
823
809
797 | XVI. (continued). | | • | $\gamma = 2$ |) | | | • | $\gamma = 2$ | [| | |--------------------------------|--|--|--|--|-----------------------|--|--|--|--| | φ | (x) | (Y) | (T) | (v) | φ | (x) | (Y) | (т) | (v) | | 11° 12 13 14 15 16 17 18 19 20 | 1468
1574
1678
1779
1878
1974
2069
2163
2254
2344 | 130·5
152·1
175·0
199·3
224·8
251·7
279·8
309·2
339·8
371·8 | 1684
1823
1961
2098
2233
2368
2502
2636
2770
2903 | 786
775
766
757
749
741
734
728
722
716 | 8° 7 6 5 4 3 2 1 0 | 2467
1864
1447
1117
838
596
379
181 | 212·5
132·8
85·1
53·2
31·2
16·3
6·8
1·6 | 1824
1498
1227
986
765
558
364
178
0 | 2116
1663
1447
1312
1217
1145
1087
1040
1000 | | 2I
22
23
24
25 | 2433
2521
2608
2693
2778 | 405.0
439.6
475.4
512.7
551.3 | 3036
3169
3302
3435
3569 | 711
707
702
699
695 | | 1 | $\gamma = 2^{-2}$ | | 1 () | | 26
27
28
29
30 | 2862
2945
3028
3110
3191 | 591·3
632·8
675·8
720·3
766·4 | 3703
3837
3973
4109
4246 | 692
689
687
684
682 | φ
 | 2680
1940
1483 | 238·4
140·3
88·0 | (T)
1885
1525
1241 | (V)
2495
1766
1496 | | 31
32
33
34
35 | 3272
3353
3433
3513
3593 | 814·1
863·5
914·7
967·7
1023 | 4384
4523
4663
4805
4948 | 681
679
678
677
676 | 5
4
3
2
1 | 1135
848
600
380
182
0 | 54.4
31.7
16.5
6.8
1.6 | 993
769
560
364
178
0 | 1339
1233
1154
1092
1042
1000 | | 36
37
38
39
40 | 3673
3752
3832
3911
3991 | 1079
1138
1199
1263
1328 | 5093
5240
5389
5539
5692 | 676
675
675
675
676 | 3 4 5 | 325
473
613
746 | 1.2.0
20.2
31.0 | 337
498
654
807 | 965
934
907
883
862 | | 41
42
43
44
45 | 4071
4151
4231
4311
4391 | 1396
1467
1540
1617
1696 | 5847
6005
6165
6328
6494 | 676
677
678
679
680 | 6
7
8
9 | 873
994
1111
1224
1333 | 43°2
57°0
72°4
89°2
107°4 | 956
1103
1247
1389
1529 | 843
826
811
797
784 | XVI. (continued). | | | $\gamma = 2.2$ | | | | , | $\gamma = 2.3$ | 3 | | |----------------------------|--------------------------------------|---|--------------------------------------|--|----------------------------|--|---|--|---| | φ | (x) | (Y) | (T) | (v) | φ | (x) | (Y) | (T) | (v) | | 11° 12 13 14 15 | 1438
1541
1640
1738
1833 | 127.0
147.9
170.0
193.3
217.9 | 1667
1803
1938
2072
2205 | 772
761
751
742
734 | 7° 6 5 4 3 2 1 | 2032
1524
1155
858
604
382
182 | 149·5
91·3
55·7
32·2
16·6
6·9
1·6 | 1555
1256
1001
773
562
365
178 | 1902
1552
1368
1249
1163
1097 | | 17
18
19
20 | 2017
2106
2194
2280 | 358·7
358·7 | 2469
2600
2730
2861 | 719
712
706
700 | 0 | 0 | $\gamma = 2^{1/2}$ | 0
1 | 1000 | | 2 I
22
23 | 2365
2449
2531 | 390°4
423°4
457°7 | 2991
3120
3251 | 695
690
686 | φ | (x) | (Y) | (T) | (v) | | 24 25 | 2613
2694 | 493·2
530·0 | 3381 | 682
679 | 7°
6 | 2146
1569 | 161.3 | 1591
1273 | 2093
1617 | | 26
27
28
29
30 | 2774
2853
2931
3009
3087 | 568·1
607·6
648·5
690·8
734·7 | 3642
3773
3905
4038
4172 | 675
672
670
667
665 | 5
4
3
2
1 | 1176
868
609
383
182 | 57·1
32·7
16·8
6·9
1·6 | 1010
777
564
366
179 | 1400
1267
1173
1102
1046
1000 | | 31
32
33
34
35 | 3164
3240
3317
3393
3468 | 780.0
826.9
875.5
925.8
977.8 | 4306
4442
4579
4717
4856 | 663
662
660
659
658 | 1
2
3
4
5 | 168
324
469
607
737 | 1.2
20.3
30.2 | 336
496
651
802 | 962
929
900
875
853 | | 36
37
38
39 | 3544
3619
3695
3770 | 1032
1088
1145
1205 | 4997
5140
5285
5431 | 658
657
657
657 | 6
7
8
9
10 | 861
979
1093
1202
1308 | 42.4
55.9
70.9
87.2
104.9 | 950
1095
1237
1376
1514 | 833
815
799
785
771 | | 41
42
43
44 | 3845
3921
3996
4072
4148 | 1332
1399
1468
1540
1615 | 5580
5731
5884
6040
6199 | 657
658
658
659
660
661 | 11
12
13
14
15 | 1410
1509
1605
1699
1791
1880
1968 | 123.8
143.9
165.3
187.8
211.5
236.3
262.2 | 1650
1784
1917
2048
2179
2308
2437 | 759
748
738
728
720
712
705 | | 45 | 4224 | 1015 | 6360 | 001 | 17
18
19
20 | 2053
2138
2220 | 289·2
317·4
346·7 | 2566
2693
2821 | 698
692
686 | XVI. (continued). | | | $\gamma = 2^{\cdot}$ | 1 | | | | $\gamma = 2^{\circ}$ | 5 | | |-----------------------------|--------------------------------------|---|--|--|----------------------------|--|---|--|--| | φ | (x) | (y) | (т) | (v) | φ | (x) | (Y) | (T) | (v) | | 21°
22
23
24
25 | 2302
2382
2461
2539
2617 | 377·2
408·8
441·6
475·5
510·7 | 2948
3075
3203
3330
3455 | 681
676
671
667
663 | 6° 5 4 3 2 1 0 | 1678
1223
889
618
387
183 | 104·3
60·2
33·8
17·1
7·0
1·6 | 1311
1028
786
569
367
179 | 1790
1474
1305
1193
1113
1050 | | 27
28
29
30 | 2769
2844
2918
2992 | 584.9
624.0
664.4
706.2 | 3714
3843
3973
4103 | 657
654
652
650 | 1
2
3
4
5 | 167
322
466
601
728 | 1.4
5.5
11.7
20.0
30.0 | 335
494
648
797 | 959
923
893
867
844 | | 32
33
34
35 | 3138
3211
3283
3355 | 794·1
840·4
888·3
937·9 | 43 ⁶ 7
4500
4 ⁶ 35
4771 | 646
645
643
642 | 6
7
8
9 | 849
965
1076
1182
1284 | 41.7
54.8
69.4
85.3
102.4 | 943
1086
1226
1364
1500 | 823
805
788
773
760 | | 37
38
39
40 | 3499
3571
3642
3714
3786 | 1042
1097
1154
1213 | 5048
5189
5332
5477 | 641
641
641
641 | 11
12
13
14
15 | 1383
1479
1572
1663
1751 | 120.8
140.3
160.9
182.7
205.5 | 1634
1766
1896
2025
2154 | 747
736
725
716
707 | | 42
43
44
45 | 3858
3929
4001
4074 | 1338
1404
1472
1543 | 5773
5925
6080
6237 | 641
642
643
644 | 16
17
18
19
20 | 1838
1922
2005
2086
2165 | 229'4
254'4
280'5
307'6
335'7 | 2281
2408
2533
2659
2784 | 699
692
685
678
672 | | | | $\gamma = 2.5$ | 5 | | 21
22
23
24 | 2243
2321
2397
2471 | 365.0
395.4
426.8
459.4 | 2909
3033
3158
3283 | 667
662
658
653 | | φ | (x) | (Y) | (T) | (v) | 25
26 | 2546
2619 | 493.5 | 3408
3533 | 650
646 | | 7° 6 | 2300
1619 | 177.6 | 1636
1291 | 2395
1695 | 27
28
29
30 | 2691
2763
2834
2905 | 564·3
601·7
640·4
680·3 | 3659
3785
3912
4039 | 643
640
638
635 | | 5
4
3
2
1
0 | 1199
878
613
385
183 | 58·6
33·2
17·0
7·0
1·6
0 | 782
566
367
179 | 1435
1285
1183
1107
1048
1000 | 31
32
33
34
35 | 2975
3045
3115
3184
3253 | 721·7
764·5
808·7
854·5
901·8 | 4168
4297
4428
4560
4693 | 633
632
630
629
628 | XVI. (continued). | | | $\gamma = 2.6$ | 5 | | | | $\gamma = 2.8$ | 3 | |
-----------------------------|--|--|--|---|--|--|--|--|---| | φ | (x) | (Y) | (T) | (v) | φ | (x) | (Y) | (T) | (v) | | 36°
37
38
39
40 | 3321
3390
3458
3527
3595 | 950·8
1002
1054
1108
1165 | 4827
4963
5101
5241
5382 | 627
626
626
626
626 | 6° 7 8 9 | 839
951
1059
1163
1262 | 41.0
53.8
68.0
83.5
100.1 | 937
1078
1217
1353
1486 | 814
795
778
762
749 | | 41
42
43
44
45 | 3663
3732
3800
3868
3938 | 1223
1284
1346
1412
1479 | 5526
5672
5820
5971
6124 | 626
626
627
628
629 | 11
12
13
14
15 | 1358
1451
1542
1629
1715 | 118·0
136·9
156·9
200·0 | 1618
1748
1877
2004
2130 | 736
724
714
704
695 | | | , | $\gamma = 2.7$ | 7 | | 16
17
18 | 1798
1879
1959 | 223·I
247·2
272·3 | 2255
2379
2503 | 687
679
672 | | φ | (x) | (Y) | (T) | (v) | 19
20 | 2037
2114 | 298·5
325·6 | 2626
2749 | 666
660 | | 6° 5 4 3 2 1 0 | 1747
1250
901
623
389
184 | 110·2
62·0
34·4
17·3
7·0
1·6 | 1334
1039
791
571
368
179 | 1912
1517
1325
1204
1118
1052
1000 | 21
22
23
24
25
26
27
28
29 | 2189
2264
2337
2409
2480
2550
2620
2689
2757 | 353.8
383.0
413.3
444.7
477.1
510.7
545.4
581.3
618.5 | 2871
2994
3116
3238
3361
3484
3607
3731
3855 | 655
650
645
641
637
633
630
627
625 | | | | $\gamma = 2.8$ | 3. | | 30 | 2825 | 656.8 | 3980 | 622 | | φ | (x) | (Y) | (т) | (v) | 31
32
33
34 | 2893
2960
3026
3092 | 696·5
737·6
780·0
823·8 | 4106
4233
4360
4489 | 620
618
617
616 | | 6° 5 4 3 2 1 0 1 2 3 4 5 | 1831
1279
913
628
390
184
0
167
320
462
595
720 | 117.6
64.0
35.0
17.5
7.1
1.6
0
1.4
5.4
11.6
19.7
29.6 | 1360
1049
796
573
369
179
0
171
334
492
644
793 | 2075
1566
1348
1215
1123
1055
1000
956
918
887
859
835 | 35
36
37
38
39
40
41
42
43
44
45 | 3158
3224
3290
3355
3421
3486
3552
3617
3683
3748
3814 | 916·1
964·7
1015
1067
1121
1177
1235
1295
1357
1422 | 4620
4751
4884
5019
5156
5294
5435
5577
5722
5870
6020 | 614
613
612
612
612
612
613
614
614 | XVI. (continued). | | | y = 2.6 |) | | | | $\gamma = 3^{\circ}$ C |) | | |----------------------------------|--|---|--|---|--|--|---|--|---| | ϕ | (x) | (Y) | (T) | (v) | φ | (x) | (Y) | (T) | (v) | | 6° 5 4 3 2 1 0 | 1939
1311
926
633
392
184
0 | 127·3
66·2
35·7
17·7
7·1
1·6 | 1392
1061
802
575
370
179 | 2312
1622
1371
1227
1129
1057
1000 | 21°
22
23
24
25
26
27 | 2139
2210
2281
2351
2419
2487
2554 | 343°5
371°7
400°9
431°1
462°4
494°7
528°1 | 2836
2956
3076
3197
3317
3437
3558 | 643
638
633
629
625 | | | | $\gamma = 3.0$ |) | | 28
29
30 | 2620
2686
2751 | 562.7
598.4
635.3 | 3679
3801
3924 | 615
613
610 | | φ | (x) | (Y) | (т) | (v) | 31
32
33 | 2816
2881
2944 | 673·5
712·9
753·7 | 4047
4172
4297 | 608
606
605 | | 5° 4 3 2 1 0 1 2 3 4 5 6 6 | 1346
939
639
394
185
0
166
318
458
589
712 | 68·6
36·4
17·9
7·2
1·6
0
1·4
5·4
11·5
19·5
29·1 | 1074
807
578
371
180
0
170
333
490
641
788 | 1687
1397
1239
1135
1059
1000
953
914
880
852
827
805
785 | 35
34
35
36
37
38
39
40
41
42
43
44
45 | 3135
3198
3261
3323
3386
3449
3512
3575
3637
3700 | 795.8
839.4
884.5
931.1
979.4
1029
1081
1135
1190
1248
1307
1369 | 4423
4551
4680
4811
4943
5076
5212
5350
5489
5631
5776
5923 | 603
602
601
601
600
600
600
600
600
601
602 | | 7
8
9
10 | 938
1044
1144
1241 | 52°9
66°7
81°8
98°0 | 1207
1342
1473 | 768
752
738 | | 11 | $\gamma = 3$ | I | | | 11
12
13
14 | 1335
1425
1513
1598 | 123.2
123.1
133.4 | 1603
1731
1858
1983 | 725
714
703
693 | φ | (x) | (Y) | (T) | (v) | | 15
16
17
18
19
20 | 1680
1761
1840
1917
1992
2066 | 194.9
217.2
240.5
264.8
290.1
316.3 | 2230
2353
2474
2595
2716 | 684
676
668
661
654
648 | 5°
4
3
2
1 | 1386
954
644
396
185
0 | 71.4
37.2
18.1
7.2
1.7
0 | 1088
813
580
372
180
0 | 1764
1424
1252
1141
1061
1000 | XVI. (continued). | | | $\gamma = 3$ | 2 | | | | $\gamma = 3$ | 2 | | |----------------------------------|--|---|--|---|---|--|--|--|--| | φ | (x) | (Y) | (T) | (v) | φ | (x) | (Y) | (T) | (v) | | 5° 44 33 22 11 00 11 22 33 44 55 | 1431
969
650
398
185
0
166
316
455
584
704 | 74.7
38.0
18.4
7.3
1.7
0
1.4
5.4
11.4
19.2
28.7 | 1103
819
582
372
180
0
170
332
488
638
784 | 1857
1454
1265
1146
1063
1000
950
909
874
845
819 | 36°
37
38
39
40
41
42
43
44
45 | 3052
3113
3173
3234
3294
3354
3415
3475
3536
3596 | 855.5
900.4
946.8
994.9
1045
1096
1150
1205
1262
1322 | 4614
4742
4871
5002
5135
5270
5407
5546
5688
5832 | 590
589
589
588
588
588
588
588
589
590 | | 6
7
8
9 | 818
926
1029
1127 | 39.7
52.0
65.5
80.2 | 925
1063
1198
1331 | 796
777
759
743 | | | $\gamma = 3$ | 3 | | | IÓ
II | 1312 | 96.0 | 1461 | 728 | φ | (x) | (Y) | (T) | (v) | | 12
13
14
15 | 1400
1485
1568
1648 | 130.4
140.2
160.3 | 1715
1840
1964
2086 | 703
693
683
673 | 5° 4 3 2 | 1484
985
656 | 78·5
38·9
18·6 | 1120
825
585 | 1973
1489
1278
1153 | | 16
17
18
19 | 1726
1802
1877
1950 | 211.7
234.3
257.8
282.2 | 2207
2327
2447
2566 | 665
657
650
644 | I
0 | 400
186
0 | 7.3 | 373
180
0 | 1000 | | 20 | 2021 | 307.6 | 2685 | 638 | | | y = 3.2 | ŀ | | | 22
23
24
25 | 2161
2229
2296
2362 | 361·2
389·4
418·5
448·7 | 2921
3039
3157
3275 | 627
622
618
614 | φ | (x) | (Y) | (T) | (v) | | 26
27
28
29
30 | 2428
2492
2556
2620
2683 | 479°9
512°2
545°5
580°0
615°5 | 3394
3512
3631
3751
3872 | 611
607
604
602
599 | 5° 4 3 2 1 | 1547
1002
662
402
186 | 83·2
39·8
18·8
7·4
1·7 | 831
588
374
180 | 2126
1522
1293
1159
1068 | | 31
32
33
34
35 | 2745
2807
2869
2930
2991 | 652·3
690·3
729·6
770·2
812·1 | 3993
4115
4238
4362
4487 | 597
595
593
592
591 | 1
2
3
4
5 | 165
314
451
578
697 | 1.4
5.3
11.3
19.0
28.3 | 170
331
486
635
779 | 947
904
868
838
811 | XVI. (continued). | | | $\gamma = 3^{-2}$ | 1 | | } | | $\gamma = 3$ | 5 | | |--|--
---|--|--|--|---|---|---|--| | φ | (x) | (y) | (T) | (v) | φ | (x) | (Y) | (T) | (v) | | 6° 7 8 9 10 | 808
914
1014
1110
1202 | 39°1
51°1
64°3
78°6
94°0 | 919
1056
1190
1321
1449 | 788
768
750
734
719 | 4° 3 2 1 0 | 1021
668
404
187
0 | 40·8
19·1
7·4
1·7
0 | 838
590
375
180
0 | 1562
1308
1165
1070
1000 | | 11
12
13
14 | 1291
1376
1459
1539 | 110.4
127.8
146.1
165.4 | 1575
1700
1823
1945 | 706
694
683
673 | | | $\gamma = 3$ | 5 | | | 15 | 1617 | 185.2 | 2065 | 664 | φ | (x) | (Y) | (T) | (v) | | 16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34 | 1693
1767
1839
1910
1979
2047
2114
2180
2245
2309
2373
2435
2497
2558
2619
2679
2739
2799
2858 | 206.6
228.5
251.3
275.0
299.5
325.0
351.4
378.7
406.9
436.1
466.3
497.4
529.6
562.9
597.3
632.8
669.5
707.4
746.5 | 2185
2303
2421
2538
2655
2771
2887
3004
3120
3236
3352
3469
3586
3704
3822
3941
4061
4182
4304 | 655
647
640
634
628
622
617
612
608
604
600
597
594
591
589
585
583
582 | 4° 32 10 12 34 5 6 7 8 9 10 11 12 13 | 1041
675
406
187
0
165
313
448
573
689
799
902
1001
1094
1184 | 41'9 19'3 7'5 1'7 0 1'4 5'3 11'2 18'8 27'9 38'5 50'3 63'2 77'2 92'2 108'2 125'1 143'0 | 846
593
376
181
0
170
330
484
632
775
914
1049
1181
1311
1438
1562
1685
1807 | 1605
1323
1172
1072
1000
944
899
862
831
804
780
760
741
725
710 | | 35
36
37
38
39
40 | 2917
2975
3034
3092
3150
3209 | 787.0
828.9
872.1
916.9
963.2
1011 | 4427
4551
4677
4804
4933
5063 | 589
579
579
578
578
577 | 14
15
16
17
18
19
20 | 1512
1588
1662
1734
1804
1872
1940 | 161·7
181·3
201·7
223·0
245·2
268·1
292·0 | 1927
2045
2163
2280
2396
2512
2627 | 664
654
646
638
631
624
618 | | 42
43
44
45 | 3325
3383
3441
3500 | 1112
1166
1221
1278 | 5330
5467
5606
5748 | 577
578
578
579 | 21
22
23
24
25 | 2006
2071
2135
2198
2260 | 316·7
342·2
368·7
396·0
424·3 | 2741
2856
2970
3084
3198 | 612
607
603
598
594 | XVI. (continued). | | | $\gamma = 3.6$ | 5 | | | | $\gamma = 3.8$ | 3 | | |-----------------------------|--------------------------------------|---|--------------------------------------|--------------------------------------|----------------------------|--------------------------------------|---|--------------------------------------|---------------------------------| | φ | (x) | (Y) | (T) | (v) | φ | (x) | (Y) | (T) | (v) | | 26°
27
28
29
30 | 2321
2381
2441
2501
2559 | 453.5
483.7
514.9
547.1
580.3 | 3313
3428
3543
3659
3775 | 591
587
584
582
579 | 1° 2 3 4 5 | 164
311
445
568
682 | 1.4
5.5
11.1
18.6
27.6 | 169
329
482
629
771 | 941
895
856
824
797 | | 31
32
33
34
35 | 2618
2675
2733
2790
2847 | 614.7
650.1
686.8
724.7
763.8 | 3892
4010
4129
4249
4370 | 577
575
573
572
571 | 6
7
8
9 | 790
891
987
1079
1167 | 37.9
49.5
62.1
75.8
90.5 | 909
1042
1173
1301
1426 | 773
752
733
717
702 | | 36
37
38
39
40 | 2904
2960
3017
3073
3129 | 804·2
846·0
889·3
934·0
980·3 | 4492
4616
4741
4867
4995 | 569
569
568
568
567 | 11
12
13
14
15 | 1251
1332
1411
1487
1560 | 106·1
122·6
140·0
158·2
177·3 | 1550
1671
1791
1910
2027 | 688
676
665
655
645 | | 41
42
43
44
45 | 3185
3241
3298
3354
3410 | 1028
1078
1129
1183
1238 | 5126
5258
5392
5529
5668 | 567
567
568
568
568 | 16
17
18
19
20 | 1632
1702
1770
1837
1902 | 197.2
217.9
239.4
261.7
284.9 | 2143
2258
2372
2486
2600 | 637
629
622
615
609 | | | | $\gamma = 3$ | 7 | | 21
22
23
24
25 | 1967
2030
2092
2153
2213 | 308·9
333·7
359·4
385·9
413·3 | 2713
2825
2938
3050
3163 | 604
598
594
589
585 | | φ | (x) | (Y) | (T) | (v) | 26
27 | 2272
2331 | 441.4
470.8 | 3276
3389 | 582
578 | | 4° 3 | 1063
682 | 43·1
19·6 | 854
596 | 1654
1340 | 28
29
30 | 2389
2447
2503 | 501.5
201.5 | 3502
3616
3731 | 575
573
570 | | 2
I
0 | 408
187
0 | 7.5
1.7
0 | 377
181
0 | 1075 | 31
32
33
34 | 2560
2616
2672
2727
2782 | 597.9
632.2
667.7
704.4
742.2 | 3846
3962
4079
4197
4316 | 568
566
564
563
561 | | | | $\gamma = 3.8$ | 3 | | 35
36 | 2837
2892 | 781.4
821.9 | 4436
4558 | 560
559 | | φ | (x) | (Y) | (T) | (v) | 37
38
39
40 | 2946
3001
3055 | 951.8
907.0
951.8 | 4681
4805
4932 | 559
558
558 | | 4° 3 2 1 0 | 1086
689
410
188 | 44°4
19°8
7°6
1°7 | 862
599
378
181 | 1710
1357
1185
1077
1000 | 41
42
43
44
45 | 3109
3164
3218
3272
3327 | 998·2
1046
1096
1148
1201 | 5060
5190
5322
5456
5593 | 558
558
558
558
559 | XVI. (continued). | $\gamma = 3.0$ | | | | | γ = 4·0 | | | | | |----------------------------|--------------------------------------|---|--------------------------------------|--------------------------------------|-----------------------------|--------------------------------------|---|--------------------------------------|--------------------------------------| | φ | (x) | (Y) | (T) | (v) | φ | (x) | (v) | (T) | (v) | | 4° 3 2 1 | 696
412
188 | 45.9
20.1
7.6
1.7 | 871
602
379
181 | 1774
1375
1192
1079
1000 | 26°
27
28
29
30 | 2226
2283
2340
2396
2451 | 430.6
459.0
488.3
518.6
549.9 | 3241
3352
3464
3576
3689 | 573
570
567
564
562 | | γ=4.0 | | | | | 31
32
33 | 2506
2560
2614 | 582·2
615·5
649·9 | 3802
3917
4032 | 559
557
556 | | φ | (x) | (y) | (T) | (v) | 34
35 | 2668
2721 | 685.5 | 4148 | 554
553 | | 4° 3 2 I | 1142
704
414
188 | 47.6
20.4
7.7
1.7 | 881
605
380 | 1848
1394
1199
1082 | 36
37
38
39
40 | 2774
2827
2880
2933
2986 | 760·1
799·4
839·9
881·9
925·3 | 4384
4503
4624
4747
4871 | 552
551
550
550
549 | | 0
I
2
3 | 0
164
309
442 | 0
1'4
5'2
10'9 | 0
169
329
481 | 939
890
851 | 41
42
43
44
45 | 3038
3091
3144
3196
3249 | 970°2
1017
1065
1115
1167 | 4997
5125
5255
5387
5522 | 549
549
549
550
550 | | 4 5 | 563
676 | 18.4
27.2 | 626 | 818
790 | $\gamma = 4.5$ | | | | | | 6
7
8
9 | 781
881
975
1064
1150 | 37.4
48.7
61.1
74.5
88.8 | 903
1036
1165
1292
1416 | 766
744
725
709
694 | φ | (x) | (Y) | (т) | (v) | | 11
12
13
14
15 | 1233
1312
1388
1462
1534 | 104·1
120·2
137·2
154·9
173·5 | 1538
1658
1776
1893
2009 | 680
668
657
646
637 | 4° 3 2 1 0 | 1212
720
419
189
0 | 51.7
21.1
7.8
1.7
0 | 903
611
382
182
0 | 2047
1436
1214
1087
1000 | | 16 | 1604
1672 | 192.9 | 2123 | 629
621 | $\gamma = 4^{\circ}4$ | | | | | | 18
19
20 | 1739
1804
1867 | 234.0
225.7
278.2 | 2350
2462
2574 | 613
607
601 | φ | (x) | (Y) | (T) | (v) | | 21
22
23
24
25 | 1930
1991
2051
2110
2169 | 301.6
325.7
350.7
376.4
403.1 | 2685
2796
2907
3018
3129 | 595
590
585
581
577 | 3° 2 1 0 | 738
423
190
0 | 21.8
7.9
1.7
0 | 618
384
182 | 1484
1230
1091
1000 | XVI. (continued). | | 7 | y = 4.4 | | | | , | y = 4.6 | j | | |----------------------------|--------------------------------------|--|--------------------------------------|---------------------------------|----------------------------|--------------------------------------|---|--------------------------------------|---------------------------------| | φ | (x) | (Y)
| (т) | (v) | φ | (x) | (Y) | (T) | (v) | | 1° 2 3 4 5 | 163
306
435
554
663 | 1:4
5:1
10:8
18:0
26:5 | 169
327
477
621
759 | 933
882
840
806
777 | 3° 2 1 0 | 758
428
191
0 | 22.6
8.0
1.7
0 | 626
386
183
0 | 1538
1246
1096
1000 | | 6
7
8 | 765
860
951 | 36·3
47·2
59·2 | 893
1024
1150 | 752
730
711 | | | y=4.8 | 3 | | | 9 | 1037 | 72.0
85.7 | 1274
1396 | 694
679 | φ | (x) | (Y) | (T) | (v) | | 11
12
13
14
15 | 1198
1273
1346
1417
1485 | 100°3
115°7
131°9
148°8
166°5 | 1515
1632
1748
1862
1975 | 665
652
641
631
622 | 3°
2
I | 780
433
192
0 | 23.5
8.1
1.7
0 | 634
388
183
0 | 1601
1263
1103 | | 16
17
18
19 | 1552
1617
1680
1741
1802 | 185.0
204.1
224.0
244.7
266.1 | 2087
2197
2307
2417
2526 | 613
605
598
591
585 | 1
2
3
4
5 | 162
303
429
545
650 | 1.4
5.1
10.6
17.6
25.9 | 168
325
474
616
752 | 928
874
830
795
765 | | 21
22
23
24
25 | 1861
1919
1976
2032
2088 | 288·2
311·1
334·7
359·1
384·3 | 2634
2742
2850
2958
3066 | 580
574
570
565
564 | 6
7
8
9 | 749
841
929
1011
1090 | 35.4
45.9
57.4
69.7
82.9 | 884
1012
1136
1258
1377 | 739
717
697
680
665 | | 26
27
28
29
30 | 2142
2196
2250
2302
2355 | 410.4
437.3
465.0
493.6
523.2 | 3175
3283
3392
3501
3611 | 558
554
551
548
546 | 11
12
13
14
15 | 1166
1238
1308
1376
1441 | 96°9
111°7
127°2
143°4
160°3 | 1493
1608
1721
1833
1943 | 651
638
627
617
608 | | 31
32
33
34
35 | 2406
2458
2509
2559
2610 | 553.7
585.2
617.7
651.3
685.9 | 3721
3832
3944
4057
4171 | 544
542
540
538
537 | 16
17
18
19
20 | 1504
1566
1626
1685
1743 | 177.9
196.2
215.1
234.8
255.2 | 2052
2161
2268
2375
2481 | 599
591
584
577
571 | | 36
37
38
39
40 | 2660
2710
2760
2810
2859 | 721.7
758.7
797.0
836.6
877.5 | 4286
4402
4519
4638
4759 | 536
535
534
534
533 | 21
22
23
24
25 | 1799
1854
1909
1962
2015 | 276·2
298·0
320·5
343·7
367·7 | 2587
2693
2798
2903
3009 | 565
566
555
551
547 | | 41
42
43
44
45 | 2909
2958
3008
3058
3107 | 919 ⁹
963 ⁷
1056
1056 | 4881
5006
5132
5260
5391 | 533
533
533
533
534 | 26
27
28
29
30 | 2067
2118
2169
2219
2268 | 392·5
418·0
444·4
471·6
499·6 | 3114
3220
3326
3432
3539 | 544
549
537
534
532 | XVI. (continued). | | | $\gamma = 4.8$ | 3 | | | | $\gamma = 5^{\circ}$ | 2 | | |-----------------------------|--|---|--|---|----------------------------|--------------------------------------|---|--------------------------------------|---------------------------------| | φ | (x) | (Y) | (т) | (v) | φ | (x) | (Y) | (T) | (v) | | 31°
32
33
34
35 | 2317
2366
2414
2463
2510 | 528·6
558·4
589·3
621·1
654·0 | 3647
3755
3864
3974
4085 | 530
528
526
524
523 | 6°
7
8
9 | 734
824
908
988
1064 | 34°5
44°7
55°7
67°7
80°4 | 875
1001
1123
1242
1359 | 727
705
685
667
652 | | 36
37
38
39
40 | 2558
2605
2653
2700
2747 | 687·9
723·0
759·3
796·8
835·5 | 4196
4310
4424
4540
4657 | 522
521
520
519
519 | 11
12
13
14 | 1136
1206
1273
1338
1400 | 93.8
108.0
122.8
138.4
154.6 | 1473
1586
1697
1806
1914 | 638
626
614
604
595 | | 41
42
43
44
45 | 2794
2841
2888
2935
2982 | 875.7
917.2
960.2
1005 | 4776
4897
5020
5145
5272 | 519
519
519
519 | 16
17
18
19 | 1461
1520
1578
1634
1689 | 171.4
188.9
207.1
225.9
245.4 | 2021
2127
2232
2336
2440 | 586
578
571
564
558 | | | | $\gamma = 5$ |) | | 21
22
23
24 | 1743
1796
1847
1898 | 265.5
286.3
307.8
329.9 | 2544
2647
2750
2853 | 553
548
543
538 | | φ | (x) | (Y) | (T) | (v) | 25 | 1949 | 352.8 | 2956 | 534 | | 3° 2 1 0 | 804
438
193
0 | 24.6
8.3
1.7 | 643
390
183
0 | 1676
1282
1107
1000 | 26
27
28
29
30 | 1998
2047
2095
2143
2190 | 376·4
400·8
425·9
451·8
478·6 | 3059
3162
3265
3369
3473 | 531
528
524
522
519 | | | | $\lambda = 2.5$ | 2 | | 31
32
33
34 | 2237
2284
2330
2375 | 506·1
564·0
594·3 | 3578
3684
3790
3897 | 517
515
513
512 | | φ | (x) | (Y) | (T) | (v) | 35
36
37
38 | 2421
2466
2511 | 625.6
657.9
691.3 | 4006
4115
4225 | 509
508 | | 3.2
3.0
5.2 | 1239
833
609 | 49°1
25°8
15°0 | 839
652
513 | 2824
1768
1466 | 38
39
40 | 2556
2601
2646 | 725·8
761·4
798·3 | 4337
4450
4564 | 507
507
506 | | 2.0 | 444
193
0
161
300
424
536
639 | 8·4
1·8
0
1·4
5·0
10·4
17·2
25·3 | 393
184
0
168
323
471
611
745 | 1301
1112
1000
923
866
820
784
753 | 41
42
43
44
45 | 2691
2735
2780
2825
2869 | 836·5
876·0
916·8
959·2
1003 | 4681
4798
4918
5040
5164 | 506
506
506
506
506 | XVI. (continued). | | • | $\gamma = 5.7$ | ļ- | | | | $\gamma = 5.6$ | 5 | | |----------------------------|--------------------------------------|---|--------------------------------------|--------------------------------------|-----------------------------|--------------------------------------|---|--------------------------------------|--------------------------------------| | φ | (x) | (Y) | (т) | (v) | φ | (x) | (Y) | (T) | (v) | | 3.0
2.2
1.0 | 866
623
450
194
0 | 27·2
15·4
8·6
1·8 | 664
518
395
184 | 1884
1508
1322
1117
1000 | 26°
27
28
29
30 | 1936
1982
2029
2074
2119 | 362·0
385·3
409·3
434·1
459·6 | 3007
3108
3209
3311
3413 | 519
516
513
510
508 | | | | $\gamma = 5.6$ | 5 | | 31
32
33
34
35 | 2164
2209
2253
2296
2340 | 486.0
513.2
541.2
570.2
600.1 | 3515
3619
3722
3827
3933 | 505
503
502
500
499 | | φ | (x) | (Y) | (T) | (v) | 36
37 | 2383
2426 | 630°9
662°8 | 4040
4148 | 497
496 | | 3.0 | 907
637 | 29°0
15°9 | 677
523 | 2037
1556 | 38
39
40 | 2469
2512
2555 | 695·8
729·8
765 0 | 4257
4367
4479 | 496
495
494 | | 2'0
1'0
0 | 456
195
0 | 8·7
1·8 | 398
184
0 | 1344
1123
1000 | 41
42
43 | 2597
2640
2682 | 801.4
839.1
878.1 | 4592
4708
4825 | 494
494
494 | | 1
2
3 | 160
297
418
528 | 1.4
4.9
10.2
16.9 | 167
322
467
606 | 918
858
811
774 | 44 45 | 2725
2768 | 960.5 | 4943
5064 | 494
494 | | 4 5 | 628 | 24.7 | 738 | 742 | | , | $\gamma = 5.8$ | 3 | | | 6
7
8 | 721
807
889 | 33.7
43.5
54.2 | 866
990
1110 | 716
693
673 | φ | (x) | (Y) | (T) | (v) | | 10 | 966
1039
1109 | 65.7
78.0
90.9 | 1227
1342
1454 | 656
640
626 | 3.0
2.2 | 958
653
462 | 31°3
16°4
8°9 | 692
529
400 | 2258
1611
1367 | | 12
13
14 | 1176
1240
1303 | 104.6
118.9
133.8 | 1565
1673
1781
1886 | 614
602
592 | 0.0 | 196 | 0 | 185
O | 1128 | | 15 | 1363 | 165.5 | 1991 | 583 | | | $\gamma = 6$ |) | | | 17
18
19
20 | 1478
1533
1587
1640 | 182·3
199·8
217·8
236·5 | 2095
2198
2300
2402 | 566
559
553
547 | φ | (x) | (Y) | (T) | (v) | | 2I
22
23
24
25 | 1691
1742
1792
1840
1888 | 255.7
275.7
296.2
317.5
339.4 | 2503
2604
2705
2806
2906 | 541
536
531
527
523 | 3.0
2.2
0 | 1029
670
469
197
0 | 34.2
17.0
9.1
1.8
0 | 711
535
403
185
0 | 2621
1675
1392
1134
1000 | XVI. (continued). | | | $\gamma = 6.0$ |) | | | | $\gamma = 6.2$ | 2 | | |----------------------------|--------------------------------------|---|--------------------------------------|---------------------------------|----------------------------|--------------------------------------|---|--------------------------------------|---------------------------------| | φ | (x) | (v) | (т) | (v) | φ | (x) | (Y) | (T) | (v) | | 1° 2 3 4 5 | 159
294
413
520
618 | 1.3
4.9
10.0
16.6
24.2 | 167
320
464
601
732 | 913
850
802
764
732 | 2.2
2.0
1.0 | 689
476
198
0 | 17·7
9·3
1·8
0 | 542
406
186
0 | 1749
1420
1140
1000 | | 6
7
8 | 708
792
870 | 32·9
42·4
52·8 | 858
980
1098 | 705
682
662 | | | γ = 6·2 | 1 | | | 9 | 945
1016 | 63.8 | 1213
1326 | 645
629 | φ | (x) | (Y) | (T) | (v) | | 11
12
13
14
15 |
1083
1148
1210
1270
1328 | 88·3
101·4
115·2
129·6
144·6 | 1437
1545
1652
1757
1861 | 615
603
591
581
572 | 2°5
2°5
1°0 | 712
483
199 | 18.2
9.2
1.8
0 | 550
409
186
0 | 1839
1449
1146
1000 | | 16
17
18
19
20 | 1384
1439
1492
1544
1594 | 160°2
176°3
193°1
210°4
228°4 | 1963
2065
2166
2267
2366 | 563
555
548
542
536 | 1
2
3
4
5 | 158
292
408
513
608 | 1'3
4'8
9'9
16'3
23'7 | 166
319
462
597
726 | 908
843
794
755
722 | | 21
22
23
24
25 | 1644
1692
1740
1787
1833 | 246.9
266.0
285.8
306.1
327.2 | 2466
2565
2663
2762
2860 | 530
525
520
516
512 | 6
7
8
9 | 695
777
853
925
994 | 32°1
41°4
51°5
62°3
73°7 | 850
970
1087
1200
1311 | 695
672
652
634
619 | | 26
27
28
29
30 | 1879
1923
1968
2011
2055 | 348·8
371·2
394·2
418·0
442·5 | 2959
3058
3157
3257
3357 | 509
505
502
499
497 | 11
12
13
14
15 | 1059
1122
1182
1240
1296 | 85.8
98.5
111.8
125.7
140.2 | 1420
1526
1631
1734
1836 | 605
592
581
571
562 | | 31
32
33
34
35 | 2098
2140
2182
2224
2266 | 467.8
493.8
520.7
548.5
577.1 | 3457
3558
3660
3762
3866 | 495
493
491
489
488 | 16
17
18
19
20 | 1350
1402
1454
1504
1552 | 155°2
170°8
186°9
203°7
220°9 | 1937
2037
2136
2235
2333 | 553
545
538
532
526 | | 36
37
38
39
40 | 2307
2349
2390
2431
2472 | 606°7
637°2
668°7
701°3
735°0 | 3970
4076
4183
4291
4400 | 487
486
485
484
484 | 21
22
23
24
25 | 1600
1647
1693
1738
1782 | 238·8
257·2
276·2
295·8
316·0 | 2430
2527
2624
2721
2818 | 520
515
511
506
502 | | 41
42
43
44
45 | 2512
2553
2594
2635
2676 | 769.9
806.0
843.3
882.0
922.1 | 4511
4624
4738
4854
4973 | 484
483
483
483
484 | 26
27
28
29
30 | 1826
1869
1912
1954
1995 | 336.9
358.4
380.5
403.4
426.9 | 2914
3011
3108
3206
3304 | 499
495
492
490
487 | XVI. (continued). | | | $\gamma = 6.4$ | - | | | , | $\gamma = 6.8$ | 3 | | |-----------------------------|--------------------------------------|---|--------------------------------------|---------------------------------|----------------------------|--------------------------------------|---|--------------------------------------|---------------------------------| | φ | (x) | (Y) | (T) | (v) | φ | (x) | (Y) | (T) | (v) | | 31°
32
33
34
35 | 2036
2077
2118
2158
2198 | 451·2
476·2
502·1
528·7
556·2 | 3402
3501
3601
3702
3803 | 485
483
481
480
478 | 6°
7
8
9 | 684
763
837
907
973 | 31·5
40·5
50·2
60·7
71·8 | 843
961
1076
1188
1297 | 686
663
642
625
609 | | 36
37
38
39
40 | 2238
2278
2317
2356
2396 | 584.6
613.9
644.2
675.5
707.9 | 3905
4009
4114
4219
4327 | 477
476
475
475
474 | 11
12
13
14
15 | 1037
1097
1155
1211
1265 | 83·5
95·8
108·7
122·1
136·1 | 1404
1508
1612
1713
1814 | 595
583
572
561
552 | | 41
42
43
44
45 | 2435
2474
2513
2552
2591 | 741·3
776·0
811·8
848·9
887·4 | 4435
4546
4658
4772
4888 | 474
473
473
474
474 | 16
17
18
19
20 | 1318
1368
1418
1466
1513 | 150.6
165.7
181.3
197.4
214.1 | 1913
2011
2108
2205
2301 | 544
536
529
522
516 | | | | $\gamma = 6.6$ | 5 | 1 | 21
22
23
24 | 1559
1604
1649
1692 | 231·3
249·0
267·4
286·3 | 2397
2492
2587
2682 | 511
506
501
497 | | φ | (x) | (Y) | (T) | (v) | 25 | 1735 | 305.8 | 2777 | 493 | | 0
2.2
2.0
1.0 | 737
491
200
0 | 19.4
9.7
1.8
0 | 55.8
41.2
18.7
0 | 1951
1481
1152
1000 | 26
27
28
29
30 | 1777
1819
1860
1900
1940 | 325.9
346.6
367.9
389.9
412.6 | 2872
2968
3063
3159
3255 | 490
486
483
481
478 | | | | $\gamma = 6.8$ | 3 | | 31
32
33 | 1980
2019
2058
2067 | 436.0
460.1
485.0
510.7 | 3351
3449
3546
3645 | 476
474
472
471 | | φ | (x) | (y) | (T) | (v) | 34
35 | 2136 | 537.1 | 3745 | 469 | | 2.2
5.0 | 768
500
201 | 20·6
9·9
1·8 | 567
415
187 | 2097
1516
1158
1000 | 36
37
38
39
40 | 2174
2212
2250
2288
2326 | 564.5
592.7
621.8
652.0
683.1 | 3845
3947
4049
4153
4258 | 468
467
466
465
465 | | 1
2
3
4
5 | 157
289
403
505
598 | 1·3
4·7
9·7
16·0
23·2 | 166
317
459
592
720 | 904
836
786
746
713 | 41
42
43
44
45 | 2363
2401
2439
2476
2514 | 715·3
748·6
783·1
818·8
855·8 | 4365
4473
4583
4695
4809 | 465
464
464
464
465 | XVI. (continued). | | | $\gamma = 7$ |) | | | | $\gamma = 7$ | 2 | | |----------------------------|--------------------------------------|---|--------------------------------------|-------------------------------------|-----------------------------|--------------------------------------|---|--------------------------------------|---------------------------------| | ø | (x) | (Y) | (T) | (v) | φ | (x) | (y) | (T) | (v) | | 2.2
5.0 | 806
509
202
0 | 22.0
10.2
1.0 | 578
418
188
0 | 2299
1555
1165
1000 | 31°
32
33
34
35 | 1928
1966
2003
2041
2078 | 422·1
445·4
469·4
494·1
519·7 | 3304
3399
3495
3592
3690 | 468
466
464
462
461 | | | | $\gamma = 7$ | 2 | | 36
37
38 | 2115
2152
2188 | 546·0
573·2
601·4 | 3788
3888
3989 | 460
459
458 | | φ | (x) | (Y) | (T) | (v) | 39
40 | 2225
2261 | 630.4 | 4091
4194 | 457
457 | | 2.2
2.0
1.0
0 | 856
519
203
0 | 23.9
10.4
1.9
0
1.3 | 592
422
188
0
165 | 2611
1598
1171
1000
899 | 41
42
43
44
45 | 2298
2334
2370
2406
2443 | 691.5
723.6
756.8
791.3
826.9 | 4299
4405
4513
4623
4735 | 456
456
456
456
456 | | 3 4 | 286
399
499 | 4·7
9·6 | 316
456
588 | 830
778
737 | | | $\gamma = 7^{-2}$ | 1 | | | 6 | 589
672 | 30.8 | 714
835 | 704
677 | φ | (x) | (Y) | (T) | (v) | | 7
8
9
10 | 750
822
890
954 | 39.6
49.1
59.2
70.0 | 952
1065
1176
1283 | 653
633
616
600 | 2.2
5
1.0 | 931
530
204 | 26·9
10·7
1·9 | 610
426
188 | 3217
1647
1178 | | 11
12
13
14 | 1016
1074
1131
1185 | 93°3
105°8
118°8 | 1388
1492
1593
1693 | 586
574
563
552 | 0 | 0 | $\gamma = 7.6$ | ° | 1000 | | 15
16
17 | 1237
1288
1337 | 146·4
161·0 | 1792
1889
1986 | 543
535
527 | φ | (x) | (Y) | (T) | (v) | | 18
19
20 | 1385
1431
1477 | 176·0
191·6
207·7 | 2082
2177
2272 | 520
514
508 | 0
2'0
I'0 | 542
205
0 | 1.0 | 430
189 | 1701
1185
1000 | | 21
22
23
24
25 | 1521
1565
1608
1650
1691 | 224.4
241.6
259.3
277.5
296.4 | 2366
2459
2553
2646
2740 | 502
497
493
489
485 | 1
2
3
4
5 | 156
284
394
492
581 | 1·3
4·6
9·4
15·4
22·4 | 165
314
453
584
709 | 895
823
770
729
696 | | 26
27
28
29
30 | 1732
1772
1811
1851
1889 | 315.8
335.8
356.4
377.6
399.5 | 2833
2926
3020
3114
3209 | 481
478
475
472
470 | 6
7
8
9 | 662
737
807
873
936 | 30·2
38·7
48·0
57·9
68·3 | 828
944
1056
1164
1270 | 668
645
625
607
591 | XVI. (continued). | | | $\gamma = 7.0$ | 5 | | | | $\gamma = 8$ |) | | |----------------------------|--------------------------------------|---|--|---------------------------------|----------------------------------|--|---|--|---| | φ | (x) | (Y) | (T) | (v) | φ | (x) | (Y) | (T) | (v) | | 11° 12 13 14 | 996
1053
1107
1160
1211 | 79°4
91°0
103°1
115°7
128°8 | 1374
1476
1576
1674
1771 | 578
565
554
544
535 | 2.0
1.0
0
1
2 | 569
207
0
155
281
390 | 11.8
1.9
0
1.3
4.6
9.3 | 439
190
0
164
313
451 | 1837
1199
1000
889
817
763 | | 16
17
18
19
20 | 1260
1307
1354
1399
1443 | 142.4
156.6
171.2
186.3
201.9 | 1867
1963
2057
2151
2244
2336 | 526
519
512
506
500 | 4
5
6
7
8 | 486
572
652
725
794
858 | 29.6
37.9
46.9
56.6 | 580
704
822
936
1046
1153 | 722
688
660
637
617
599 | | 22
23
24
25 | 1528
1570
1610
1650 | 234.6
251.7
269.4
287.6 | 2428
2520
2612
2704
2796 | 489
485
481
477
473 | 10
11
12
13
14
15 |
919
977
1032
1085
1136 | 66·8
77·5
88·8
100·5
112·8
125·5 | 1360
1460
1559
1656 | 583
570
557
546
536
527 | | 27
28
29
30
31 | 1728
1767
1805
1842 | 325.7
345.7
366.2
387.4
409.2 | 2888
2980
3072
3165
3259 | 470
467
464
462
460 | 16
17
18
19 | 1233
1280
1325
1368
1411 | 138·7
152·4
166·6
181·3
196·4 | 1846
1940
2033
2125
2217 | 519
511
504
498
492 | | 32
33
34
35
36 | 1916
1952
1988
2024
2060 | 431.7
454.9
478.9
503.5 | 3353
3447
3542
3638
3735 | 458
456
454
453
452 | 21
22
23
24
25 | 1453
1494
1534
1573
1612 | 212'0
228'1
244'8
261'9
279'5 | 2308
2399
2489
2580
2670 | 487
482
477
473
469 | | 37
38
39
40 | 2096
2131
2166
2201 | 555°3
582°5
610°5
639°5 | 3833
3932
4033
4134
4237 | 451
450
449
449
448 | 26
27
28
29
30 | 1650
1688
1725
1762
1798 | 297 '7
316 '5
335 '8
355 '7
376 '2 | 2761
2851
2942
3033
3124 | 466
463
460
457
455 | | 42
43
44
45 | 2272
2307
2342
2377 | 700.6
732.7
765.9
800.4 | 4342
4448
4555
4665 | 448
448
448
448 | 31
32
33
34
35 | 1834
1869
1905
1940
1974 | 397'3
419'1
441'6
464'7
488'6 | 3216
3308
3402
3495
3590 | 452
450
449
447
446 | | | ı | $\gamma = 7.8$ | 3 | | 36
37
38
39 | 2009
2043
2077
2112 | 513.3
538.8
565.0
592.2 | 3685
3782
3879
3978 | 445
444
443
442 | | φ | (x) | (Y) | (T) | (v) | 40
41
42 | 2146
2180
2214 | 620°3
649°3
679°3 | 4078
4179
4282 | 441
441
441 | | 0
1.0
0 | 555
206
0 | 11°4
1°9
0 | 435
189
0 | 1764
1192
1000 | 43
44
45 | 2247
2281
2315 | 710.4
742.2
775.9 | 4386
4492
4600 | 441
441
441 | XVII. $\mbox{Values of } \{ 1000 \div v \}^{3}.$ | 7' | 0 | I | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | Δ | |----------|---------|-------|--------|--------|-------|----------------|----------------|--------|--------|----------------|----| | f.s. | | | | | | | | | | | - | | 40 | 15.63 | 15.21 | 15.39 | 15.58 | 15.12 | 15.02 | 14.94 | 14.83 | 14.72 | 14.62 | 11 | | 41 | 14.21 | 14'40 | 14.30 | 14.50 | 14.09 | 13.99 | 13.89 | 13.79 | 13.69 | 13.59 | 10 | | 42 | 13.20 | 13.40 | 13.31 | 13.51 | 13.15 | 13.03 | 12.04 | 1.983 | 12.76 | 1.820 | 84 | | 43 | 1 2.578 | 1.660 | 2.404 | 2.318 | 2.233 | 2.149 | 2.062
1.522 | 1.102 | 1.155 | 1.048 | 77 | | 44 45 | 0.974 | 0:901 | 0.829 | 0.757 | 0.686 | 0.616 | 0.242 | 0.478 | 0.409 | 0.341 | 70 | | 46 | 10.274 | 0.502 | 0.141 | 0.022 | 0.010 | *9.946 | *9.882 | *9.819 | *9.756 | *9.694 | 64 | | 47 | 09.632 | 9.571 | 9.210 | 9.450 | 9.390 | 9.331 | 9.272 | 9.214 | 9.156 | 9.099 | 59 | | 48 | 9.042 | 8.986 | 8.930 | 8.875 | 8.820 | 8.766 | 8.711 | 8.658 | 8.605 | 8.552 | 54 | | 49 | 8.500 | 8.448 | 8.397 | 8.346 | 8.295 | 8.245 | 8.195 | 8.146 | 8.097 | 8.048 | 50 | | 50 | 8.000 | 7.952 | 7.905 | 7.858 | 7.811 | 7.765 | 7.719 | 7.673 | 7.628 | 7.583 | 46 | | 51 | 7.539 | 7.494 | 7.451 | 7.407 | 7.364 | 7:321 | 7:279 | 7.237 | 7.195 | 7.153 | 43 | | 52 | 7.112 | 7.071 | 7.031 | 6.990 | 6.950 | 6.911 | 6.871 | 6.832 | 6.794 | 6.755 | 40 | | 53 | 6.717 | 6.679 | 6.642 | 6.604 | 6.267 | 6.230 | 6.494 | 6.458 | 6.422 | 6.386 | 37 | | 54 | 6.351 | 6.316 | 6.581 | 6.246 | 6.313 | 6.148 | 6.144 | 6.110 | 6.077 | 6.043 | 34 | | 55 | 6.011 | 5:978 | 5*945. | 5.913 | 2.881 | 5.850 | 5.818 | 5.787 | 5.756 | 5.725 | 32 | | 56 | 5.694 | 5.664 | 5.634 | 5.604 | 5.24 | 5.244 | 5.212 | 5.486 | 5.457 | 5.428 | 30 | | 57 | 5.400 | 5.372 | 5:343 | 2.312 | 5.288 | 5.260 | 5.533 | 5.506 | 5.179 | 5.12 | 28 | | 58 | 5.15 | 5.099 | 5.073 | 5.047 | 5.021 | 4.995 | 4.969 | 4.944 | 4.919 | 4.894 | 26 | | 59
60 | 4.869 | 4.844 | 4.820 | 4.261 | 4.238 | 4·747
4·516 | 4'724
4'494 | 4.471 | 4.676 | 4.653
4.427 | 24 | | 61 | 4.406 | 4.384 | 4.363 | 4.341 | 4.320 | 4.599 | 4.278 | 4.257 | 4.537 | 4.516 | 21 | | 62 | 4.196 | 4.176 | 4.126 | 4.136 | 4.116 | 4.096 | 4.076 | 4.057 | 4.038 | 4.018 | 20 | | 63 | 3.999 | 3.980 | 3.961 | 3.943 | 3.924 | 3.006 | 3.887 | 3.869 | 3.851 | 3.833 | 19 | | 64 | 3.815 | 3.797 | 3.779 | 3.762 | 3.744 | 3.727 | 3.709 | 3.692 | 3.675 | 3.658 | 17 | | 65 | 3.641 | 3 625 | 3.608 | 3.291 | 3.272 | 3.229 | 3.242 | 3.256 | 3.210 | 3.494 | 16 | | 66 | 3.478 | 3.463 | 3.447 | 3.43 F | 3.416 | 3.400 | 3.385 | 3.320 | 3.355 | 3.340 | 15 | | 67 | 3.322 | 3.310 | 3.295 | 3.581 | 3.266 | 3.52 | 3.237 | 3.553 | 3.500 | 3.194 | 15 | | 68 | 3.180 | 3.166 | 3.125 | 3.139 | 3.152 | 3.111 | 3.008 | 3.084 | 3.071 | 3.057 | 14 | | 69 | 3.044 | 3.031 | 3.018 | 3.002 | 2.992 | 2.979 | 2.966 | 2.023 | 2.041 | 2.928 | 13 | | 70 | 2.912 | 2.903 | 2.891 | 2.878 | 2.866 | 2.854 | 2.842 | 2.830 | 2.818 | 2.806 | 12 | | 71 | 2.794 | 2.782 | 2.770 | 2.759 | 2.747 | 2.736 | 2.724 | 2.713 | 2.702 | 2.690 | 12 | | 72 | 2.679 | 2.668 | 2.657 | 2.646 | 2.635 | 2.624 | 2.613 | 2.603 | 2.592 | 2.281 | II | | 73 | 2.271 | 2.260 | 2.220 | 2.239 | 2.259 | 2.218 | 2.208 | 2.458 | 2'488 | 2.478 | 10 | | 74 | 2.468 | 2.458 | 2.448 | 2.438 | 2.428 | 2.418 | 2.409 | 2:399 | 2.389 | 2.379 | 10 | | 75 | 2.340 | 2.361 | 2.325 | 2.345 | 2.333 | 2.324 | 2.314 | 2.302 | 2.296 | 2.582 | 9 | XVII. (continued). $$\{1000 \div v\}^3$$. | - | 14 | | 1 | | | | | | | | | |---------------------------------|--|---------------------------------------|---------------------------------------|---------------------------------------|--------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|----------------------------| | v | 0 | I | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | Δ | | 76 | 2· 2780 | 2691 | 2601 | 2513 | 2424 | 2337 | 2249 | 2162 | 2076 | 1990 | 88 | | 77 | 1904 | 1819 | 1734 | 1650 | 1566 | 1483 | 1400 | 1318 | 1235 | 1154 | 83 | | 78 | 1073 | 0992 | 0911 | 0831 | 0752 | 0672 | 0594 | 0515 | 0437 | 0360 | 79 | | 79 | 0282 | 0206 | 0129 | 0053 | *9977 | *9902 | *9827 | *9753 | *9679 | *9605 | 75 | | 80 | 1· 9531 | 9458 | 9386 | 9313 | 9241 | 9170 | 9098 | 9027 | 8957 | 8887 | 72 | | 81 | 1·8817 | 8747 | 8678 | 8609 | 8541 | 8473 | 8405 | 8337 | 8270 | 8203 | 68 | | 82 | 8137 | 8071 | 8005 | 7939 | 7874 | 7809 | 7744 | 7680 | 7616 | 7552 | 65 | | 83 | 7489 | 7426 | 7363 | 7301 | 7239 | 7177 | 7115 | 7054 | 6993 | 6932 | 62 | | 84 | 6872 | 6812 | 6752 | 6692 | 6633 | 6574 | 6515 | 6457 | 6399 | 6341 | 59 | | 85 | 6283 | 6226 | 6169 | 6112 | 6056 | 5999 | 5943 | 5888 | 5832 | 5777 | 56 | | 86 | 1. 5722 | 5667 | 5613 | 5559 | 5505 | 5451 | 5397 | 5344 | 5291 | 5239 | 54 | | 87 | 5186 | 5134 | 5082 | 5030 | 4978 | 4927 | 4876 | 4825 | 4775 | 4724 | 51 | | 88 | 4674 | 4624 | 4575 | 4525 | 4476 | 4427 | 4378 | 4329 | 4281 | 4233 | 49 | | 89 | 4185 | 4137 | 4090 | 4043 | 3996 | 3949 | 3902 | 3856 | 3809 | 3763 | 47 | | 90 | 3717 | 3672 | 3626 | 3581 | 3536 | 3491 | 3447 | 3402 | 3358 | 3314 | 45 | | 91 | 1° 3270 | 3227 | 3183 | 3140 | 3097 | 3054 | 3011 | 2969 | 2926 | 2884 | 43 | | 92 | 2842 | 2800 | 2759 | 2717 | 2676 | 2635 | 2594 | 2553 | 2513 | 2473 | 41 | | 93 | 2432 | 2392 | 2352 | 2313 | 2273 | 2234 | 2195 | 2156 | 2117 | 2078 | 39 | | 94 | 2040 | 2001 | 1963 | 1925 | 1887 | 1850 | 1812 | 1775 | 1738 | 1700 | 38 | | 95 | 1664 | 1627 | 1590 | 1554 | 1517 | 1481 | 1445 | 1410 | 1374 | 1338 | 36 | | 96
97
98
99
100 | 1°1303
0957
0625
0306
0000 | 1268
0923
0592
0275
*9970 | 1233
0889
0560
0244
*9940 | 1198
0856
0528
0213
*9911 | 0822
0496
0182
*9881 | 1128
0789
0464
0152
*9852 | 1094
0756
0432
0121
*9822 | 1059
0723
0400
0091
*9793 | 1025
0690
0369
0060
*9764 | 0991
0657
0337
0030
*9735 | 35
33
32
31
30 | | 101 | 0° 9706 | 9677 | 9649 | 9620 | 9592 | 9563 | 9535 | 9507 | 9479 | 9451 | 28 | | 102 | 9423 | 9396 | 9368 | 9341 | 9313 | 9286 | 9259 | 9232 | 9205 | 9178 | 27 | | 103 | 9151 | 9125 | 9098 | 9072 | 9046 | 9019 | 8993 | 8967 | 8941 | 8916 | 26 | | 104 | 8890 | 8864 | 8839 | 8814 | 8788 | 8763 | 8738 | 8713 | 8688 | 8663 | 25 | | 105 | 8638 | 8614 | 8 5 89 | 8565 | 8540 | 8516 | 8492 | 8468 | 8444 | 8420 | 24 | | 106 | 0·8396 | 8373 | 8349 | 8325 | 8302 | 8279 | 8255 | 8232 | 8209 | 8186 | 23 | | 107 | 8163 | 8140 | 8117 | 8095 | 8072 | 8050 | 8027 | 8005 | 7983 | 7960 | 23 | | 108 | 7938 | 7916 | 7894 | 7873 | 7851 | 7829 | 7808 | 7786 | 7765 | 7743 | 22 | | 109 | 7722 | 7701 | 7680 | 7658 | 7637 | 7617 | 7596 | 7575 | 7554 | 7534 | 21 | | 110 | 7513 | 7493 | 7472 | 7452 | 7432 | 7412 | 7392 | 7372 | 7352 | 7332 | 20 | | 111
112
113
114
115 | 0°7312
7118
6931
6750
6575 | 7292
7099
6912
6732
6558 | 7273
7080
6894
6714
6541 | 7253
7061
6876
6697
6524 | 7233
7042
6857
6679
6507 | 7214
7023
6839
6662
6490 | 7195
7005
6821
6644
6473 | 7175
6986
6803
6627
6457 | 7156
6967
6785
6610
6440 | 7137
6949
6768
6592
6423 | 19
19
18
17 | ${\bf XVII.} \ \ (continued).$ $\{ \log \div v \}^3.$ | | | | | | | | | | | 1 : | | |-------|---------------------|------|------|------|-------|-------|-------|-------|-------|-------|--------| | v | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | Δ | | f. s. | | | | | | | | | | | - | | 116 | 0.6407 | 6390 | 6374 | 6357 | 6341 | 6324 | 6308 | 6292 | 6276 | 6260 | 16 | | 117 | 6244 | 6228 | 6212 | 6196 | 6180 | 6164 | 6149 | 6133 | 6117 | 6102 | 16 | | 118 | 6086 | 6071
 6056 | 6040 | 6025 | 6010 | 5994 | 5979 | 5964 | 5949 | 15 | | 119 | 5934 | 5919 | 5904 | 5890 | 5875 | 5860 | 5845 | 5831 | 5816 | 5802 | 15 | | 120 | 5787 | 5773 | 5758 | 5744 | 5730 | 5715 | 5701 | 5687 | 5673 | 5659 | 14 | | 121 | o [.] 5645 | 5631 | 5617 | 5603 | 5589 | 5575 | 5562 | 5548 | 5534 | 5521 | 14 | | 122 | 5507 | 5494 | 5480 | 5467 | 5453 | 5440 | 5427 | 5413 | 5400 | 5387 | 13 | | 123 | 5374 | 5361 | 5348 | 5335 | 5322 | 5309 | 5296 | 5283 | 5270 | 5258 | 13 | | 124 | 5245 | 5232 | 5220 | 5207 | 5194 | 5182 | 5170 | 5157 | 5145 | 5132 | 13 | | 125 | 5120 | 5108 | 5096 | 5083 | 5071 | 5059 | 5047 | 5035 | 5023 | 5011 | 12 | | 126 | 0.4999 | 4987 | 4975 | 4964 | 4952 | 4940 | 4928 | 4917 | 4905 | 4893 | 12 | | 127 | 4882 | 4870 | 4859 | 4848 | 4836 | 4825 | 4813 | 4802 | 4791 | 4780 | 11 | | 128 | 4768 | 4757 | 4746 | 4735 | 4724 | 4713 | 4702 | 4691 | 4680 | 4669 | II | | 129 | 4658 | 4648 | 4637 | 4626 | 4615 | 4605 | 4594 | 4583 | 4573 | 4562 | II | | 130 | 4552 | 4541 | 4531 | 4520 | 4510 | 4500 | 4489 | 4479 | 4469 | 4458 | 10 | | 131 | 0.4448 | 4438 | 4428 | 4418 | 4408 | 4398 | 4388 | 4378 | 4368 | 4358 | 10 | | 132 | 4348 | 4338 | 4328 | 4318 | 4309 | 4299 | 4289 | 4279 | 4270 | 4260 | 10 | | 133 | 4251 | 4241 | 4231 | 4222 | 4212 | 4203 | 4194 | 4184 | 4175 | 4165 | 9 | | 134 | 4156 | 4147 | 4138 | 4128 | 4119 | 4110 | 4101 | 4092 | 4083 | 4074 | 9 | | 135 | 4064 | 4055 | 4046 | 4037 | 4029 | 4020 | 4011 | 4002 | 3993 | 3984 | 9 | | 136 | 0.3972 | 3967 | 3958 | 3949 | 3941 | 3932 | 3923 | 3915 | 3906 | 3898 | 9 | | 137 | 3889 | 3881 | 3872 | 3864 | 3855 | 3847 | 3838 | 3830 | 3822 | 3813 | 8
8 | | 138 | 3805 | 3797 | 3789 | 378o | 3772 | 3764 | 3756 | 3748 | 3740 | 3732 | 8 | | 139 | 3724 | 3716 | 3708 | 3700 | 3692 | 3684 | 3676 | 3668 | 3660 | 3652 | 8 | | 140 | 3644 | 3637 | 3629 | 3621 | 3613 | 3606 | 3598 | 3590 | 3583 | 3575 | 8 | | 141 | o [.] 3567 | 3560 | 3552 | 3545 | 3537 | 3530 | 3522 | 3515 | 3507 | 3500 | 8 | | 142 | 3493 | 3485 | 3478 | 3470 | 3463 | 3456 | 3449 | 3441 | 3434 | 3427 | 7 7 | | 143 | 3420 | 3413 | 3405 | 3398 | 3391 | 3384 | 3377 | 3370 | 3363 | 3356 | 7 | | 144 | 3349 | 3342 | 3335 | 3328 | 3321 | 3314 | 3308 | 3301 | 3294 | 3287 | 7 | | 145 | 3280 | 3273 | 3267 | 3260 | 3253 | 3247 | 3240 | 3233 | 3227 | 3220 | 7 | | 146 | 0.3 2132 | 2066 | 2001 | 1935 | 1870 | 1804 | 1739 | 1674 | 1610 | 1545 | 65 | | 147 | 1481 | 1417 | 1353 | 1289 | 1225 | 1162 | 1099 | 1036 | 0973 | 0910 | 63 | | 148 | 0847 | 0785 | 0722 | 0660 | 0598 | o537 | 0475 | 0414 | 0352 | 0291 | 62 | | 149 | 0230 | 0169 | 0109 | 0048 | *9988 | *9928 | *9868 | *9808 | *9748 | *9689 | 60 | | 150 | 0.2 9630 | 9570 | 9511 | 9452 | 9394 | 9335 | 9277 | 9219 | 9161 | 9103 | 59 | | 151 | 0°2 9045 | 8987 | 8930 | 8872 | 8815 | 8758 | 8701 | 8645 | 8588 | 8532 | 57 | | 152 | 8475 | 8419 | 8363 | 8307 | 8252 | 8196 | 8141 | 8086 | 8030 | 7975 | 56 | | 153 | 7921 | 7866 | 7811 | 7757 | 7703 | 7649 | 7595 | 7541 | 7487 | 7434 | 54 | | 154 | 7380 | 7327 | 7274 | 7221 | 7168 | 7115 | 7063 | 7010 | 6958 | 6906 | 53 | | 155 | 6854 | 6802 | 6750 | 6698 | 6647 | 6596 | 6544 | 6493 | 6442 | 6391 | 51 | XVIII. $$W_{\phi} = \tan \phi \left(\sec^5 \phi + \frac{5}{4} \sec^3 \phi + \frac{15}{8} \sec \phi \right) + \frac{15}{8} \log_e \tan \left(\frac{\pi}{4} + \frac{\phi}{2} \right).$$ | φ | W_{ϕ} | $\log W_{\phi}$ | $\operatorname{Log} \Delta W_{\phi}$ | φ | W_{ϕ} | $\text{Log }W_{\phi}$ | $\operatorname{Log} \Delta W_{\phi}$ | |--|---|--|---|--|--|---|--| | 1° 2 3 4 5 6 7 8 9 10 | 0°10476
0°20974
0°31517
0°42127
0°52829
0°63646
0°74603
0°85725
0°97040
1°0858 | 9·02020
9·32168
9·49855
9·62456
9·72287
9·80377
9·87276
9·93311
9·98695
0·03573 | 9'02020
9'02111
9'02296
9'02572
9'02947
9'03411
9'03969
9'04618
9'05366
9'05366 | 41°
42
43
44
45
46
47
48
49
50 | 9'7112
10'504
11'389
12'381
13'497
14'758
16'189
17'821
19'690
21'841
24'330 | 0.98727
1.02135
1.05648
1.09274
1.13023
1.16902
1.20922
1.25093
1.29424
1.33927
1.38612 | 9.89910
9.94691
9.99641
9.09647
0.10075
0.15573
0.21265
0.27160
0.33268
0.39595 | | 11
12
13
14
15
16
17
18
19 | 1.2036
1.3243
1.4482
1.5757
1.7070
1.8428
1.9834
2.1293
2.2811
2.4395 | 0.08049
0.12200
0.16083
0.19746
0.23224
0.26547
0.29740
0.32823
0.35815
0.38730 | 9.08174
9.09300
9.10527
9.11850
9.13271
9.14795
9.16415
9.18142
9.19967
9.21901 | 51
52
53
54
55
56
57
58
59
60
61 | 27.224
30.608
34.588
39.298
44.906
51.629
59.744
69.614
81.711 | 1.43495
1.48583
1.53893
1.59437
1.65230
1.71289
1.77630
1.84270
1.91228
1.98525 | 0'46151
0'52946
0'59992
0'67300
0'74882
0'82755
0'90931
0'99430
1'08268
1'17464 | | 21
22
23
24
25
26
27
28
29
30 | 2.6051
2.7786
2.9609
3.1529
3.3557
3.5703
3.7982
4.0406
4.2994
4.5763 | 0.41582
0.44383
0.47143
0.49871
0.52578
0.55271
0.57957
0.60645
0.63341
0.66051 | 9.23938
9.26081
9.28332
9.30698
9.33171
9.35761
9.38466
9.41286
9.44229 | 62
63
64
65
66
67
68
69
70 | 96.661
115.30
138.76
168.59
206.92
256.75
322.33
409.83
528.28
691.22 | 2.06184
2.14228
2.22684
2.31580
2.40951
2.50831
2.61260
2.72286
2.83962 | 1'27049
1'37035
1'47462
1'58353
1'69747
1'81681
1'94199
2'07352
2'21204
2'35804 | | 31
32
33
34
35
36
37
38
39
40 | 4.8734
5.1931
5.5383
5.9119
6.3177
6.7597
7.2427
7.7723
8.3550
8.9984 | 0.68783
0.71543
0.74337
0.77173
0.80056
0.82992
0.85990
0.89055
0.92195
0.92195 | 9'47293
9'50481
9'53800
9'57245
9'60826
9'64542
9'68399
9'72399
9'76545
9'80843
9'85297 | 71
72
73
74
75
76
77
78
79
80 | 919·27
1244·7
1719·2
2427·4
3513·3
5229·2
8035·4
12811
21321
37339 | 2.96344
3.09508
3.23532
3.38514
3.54572
3.71843
3.90501
4.10757
4.32880
4.57217 | 2.51250
2.67617
2.85019
3.03579
3.23448
3.44813
3.67899
3.92994
4.20462 | XIX. $\{1000 \div v\}^6.$ | | 1 . | | | | | | | | | | | |-------------------------|--------------------------|--------------------------|--|-------------------------|-------------------------|--------------------------------------|-------------------------|--------------------------|--------------------------|-------------------------|----------------| | 7' | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | Δ | | f. s.
50
51
52 | 64.00
56.83
50.24 | 63·24
56·17
50·00 | 62·49
55·51
49·42 | 61.74
54.87
48.86 | 61.01
54.53
48.31 | 60·30
53·60
47·76 | 59·58
52·98
47·22 | 58·88
52·37
46·68 | 58·19
51·76
46·15 | 57·50
51·17
45·63 | 72
63
55 | | 53
54
55 | 45.13
40.33
36.13 | 44.61
39.89
35.74 | 44.11
39.45
35.35 | 43.62
39.01
34.97 | 43·13
38·58
34·59 | 42.65
38.16
34.22 | 42°17
37°74
33°85 | 41·70
37·33
33·49 | 36·93
36·93 | 40·78
36·52
32·77 | 48
42
37 | | 56
57
58 | 32°42
29°16
26°27 | 32.08
28.85
26.00 | 31·74
28·55
25·73 | 31.40
28.25
25.47 | 25.51
24.06
31.04 | 30.74
27.67
24.95 | 30·42
27·38
24·70 | 30°10
27°10
24°44 | 29.78.
26.82
24.20 | 29°47
26°54
23°95 | 33
29
26 | | 59
60
61 | 23.41
21.43
19.41 | 23:47
21:22
19:22 | 19.03
51.01
53.53 | 23.00
20.80
18.85 | 22.77
20.60
18.66 | 22.24
20.39
18.48 | 22·30
18·30
18·30 | 18·13
18·13 | 21.87
19.80
17.95 | 21.65
19.60
17.78 | 23
20
18 | | 62
63
64 | 17.61
16.00
14.22 | 17·44
15·84
14·42 | 17·27
15·69
14·28 | 17.10
15.24
14.12 | 16·94
15·40
14·02 | 16·78
15·25
13·89 | 16·62
15·11
13·76 | 16·46
14·97
13·63 | 16·30
14·83 | 13.38
14.69
19.15 | 16
15
13 | | 65
66
67 | 13.52
13.52 | 13.14
11.00 | 13.05
11.88
10.89 | 12.30
11.77
10.76 | 12.78 | 12.66
11.26
10.27 | 12.22
11.46
10.48 | 12.43
11.36
10.39 | 12.30
11.52
10.30 | 10.50
11.12
10.50 | 12
11
9 | | 68
69
70 | 10.114
9.500
8.500 | 10.025
9.186
8.427 | 9·938
9·106
8·938 | 9·851
9·027
8·284 | 9·765
8·950
8·214 | 9·679
8·874
8·144 | 9·595
8·797
8·076 | 9.212
8.722
8.007 | 9.429
8.646
7.940 | 9°347
8°572
7°873 | 85
77
70 | | 71
72
73 | 7·806
7·178
6·608 | 7·741
7·119
6·554 | 7·676
7·060
6·500 | 7.611
7.001
6.447 | 7·548
6·943
6·395 | 7·4 ⁸ 5
6·886
6·343 | 7.422
6.829
6.291 | 7·360
6·773
6·240 |
7·299
6·718
6·190 | 7·238
6·662
6·140 | 63
57
52 | | 74
75
76 | 5.189
2.030 | 6.041
5.244
5.149 | 5.30
5.108 | 5.944
5.486
5.068 | 5.896
5.442
5.028 | 5·849
5·399
4·989 | 5.802
5.356
4.950 | 5.4.51
5.314
4.912 | 5·709
5·272
4·873 | 5.664
5.230
4.836 | 47
43
39 | | 77
78
79 | 4.440
4.114 | 4.404
4.404
4.083 | 4 [.] 724
4 [.] 373
4 [.] 052 | 4.687
4.339
4.051 | 4.921
4.309 | 4.612
4.523
3.961 | 4.280
4.580 | 4.209
3.902 | 4·509
4·177
3·872 | 4'475
4'145
3'843 | 36
33
30 | | So
81
82 | 3.812
3.289 | 3.786
3.265
3.265 | 3.758
3.489
3.242 | 3.463
3.463 | 3.438
3.192 | 3.675
3.412
3.172 | 3.647
3.387
3.149 | 3.362
3.126 | 3·594
3·338
3·103 | 3.264
3.314
3.081 | 28
25
23 | | 83
84
85 | 3.059
2.847
2.651 | 3.037
2.826
2.633 | 3.015
2.806
2.614 | 2·993
2·786
2·596 | 2·972
2·767
2·578 | 2.950
2.247
2.560 | 2·929
2·728
2·542 | 2·908
2·708
2·524 | 2·888
2·689
2·507 | 2·867
2·670
2·489 | 21
20
18 | XIX. (continued). $$\{1000 \div v\}^6$$. | v | 0 | I | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | Δ | |-------------------------|---------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|----------------| | F. s.
86
87
88 | 2·472
2·306
2·153 | 2.455
2.500
5.130 | 2·438
2·275
2·124 | 2,421
5,722
5,110 | 2'404
2'244
2'095 | 2.384
5.081 | 2.371
5.064 | 2°354
2°198
2°053 | 2.338
2.183
5.039 | 2'322
2'168
2'026 | 17
15
14 | | 89
90
91 | 2°012
1°882
1°761 | 1.999
1.869
1.749 | 1.985
1.857
1.738 | 1.972
1.844
1.727 | 1.959
1.832 | 1.946
1.820
1.704 | 1.808
1.808 | 1.920
1.796
1.682 | 1.907
1.784
1.671 | 1.894
1.773
1.660 | 13
12
11 | | 92
93
94 | 1.649
1.246
1.420 | 1.638
1.536
1.440 | 1.628
1.526
1.431 | 1.617
1.516
1.422 | 1.607
1.206 | 1 •596
1 •497
1 •404 | 1.286
1.487
1.395 | 1.576
1.478
1.386 | 1.378
1.378 | 1.356
1.459
1.369 | 10 | | 95 | 1° 3604 | 3518 | 3433 | 3349 | 3265 | 3182 | 3099 | 3017 | 2936 | 2855 | 83 | | 96 | 2775 | 2696 | 2617 | 2539 | 2461 | 2384 | 2307 | 2231 | 2155 | 2080 | 77 | | 97 | 2005 | 1931 | 1858 | 1785 | 1713 | 1641 | 1569 | 1498 | 1428 | 1358 | 72 | | 98 | 1. 1289 | 1220 | 1151 | 1084 | 1016 | 0949 | 0883 | 0817 | 0751 | o686 | 67 | | 99 | 0622 | 0557 | 0494 | 0431 | 0368 | 0305 | 0243 | 0182 | 0121 | oo6o | 62 | | 100 | 0000 | *9940 | *9881 | *9822 | *9764 | *9705 | *9647 | *9590 | *9533 | *9477 | 58 | | 101 | o· 9420 | 9365 | 9309 | 9254 | 9200 | 9146 | 9092 | 9038 | 8985 | 8932 | 54 | | 102 | 8880 | 8828 | 8776 | 8725 | 8674 | 8623 | 8573 | 8523 | 8473 | 8424 | 51 | | 103 | 8375 | 8326 | 8278 | 8230 | 8182 | 8135 | 8088 | 8041 | 7995 | 7949 | 47 | | 104 | 0° 7903 | 7858 | 7813 | 7768 | 7723 | 7679 | 7635 | 7591 | 7548 | 7505 | 44 | | 105 | 7462 | 7420 | 7378 | 7336 | 7294 | 7252 | 7211 | 7171 | 7130 | 7090 | 41 | | 106 | 7050 | 7010 | 6970 | 6931 | 6892 | 6853 | 6815 | 6777 | 6739 | 6701 | 39 | | 107 | o· 6663 | 6626 | 6589 | 6552 | 6516 | 6480 | 6444 | 6408 | 6372 | 6337 | 36 | | 108 | 6302 | 6267 | 6232 | 6198 | 6163 | 6129 | 6096 | 6062 | 6029 | 5996 | 34 | | 109 | 5963 | 5930 | 5897 | 5865 | 5833 | 5801 | 5769 | 5738 | 5707 | 5676 | 32 | | 110 | 0* 5645 | 5614 | 5584 | 5553 | 5523 | 5493 | 5463 | 5434 | 5405 | 5375 | 30 | | 111 | 5346 | 5318 | 5289 | 5261 | 5232 | 5204 | 5176 | 5149 | 5121 | 5094 | 28 | | 112 | 5066 | 5039 | 5012 | 4986 | 4959 | 4933 | 4906 | 4880 | 4854 | 4829 | 26 | | 113 | o· 4803 | 4778 | 4752 | 4727 | 4702 | 4678 | 4653 | 4628 | 4604 | 4580 | 25 | | 114 | 4556 | 4532 | 4508 | 4485 | 4461 | 4438 | 4415 | 4392 | 4369 | 4346 | 23 | | 115 | 4323 | 4301 | 4278 | 4256 | 4234 | 4212 | 4190 | 4169 | 4147 | 4126 | 22 | | 116
117
118 | 0° 4104
3898
3704
3521 | 4083
3878
3686
3504 | 4062
3859
3667
3486 | 4041
3839
3648
3469 | 4021
3819
3630
3451 | 4000
3800
3612
3434 | 3979
3781
3593
3417 | 3959
3761
3575
3400 | 3939
3742
3557
3383 | 3918
3723
3539
3366 | 21
19
18 | XX. ${ m Log}\, au$ corresponding to temperatures and pressures when the air is ${}^2_3{ m rds}$ saturated with moisture. | Tem- | 1 | - | | | | | | | | | |---------------|---------------------|--------------|--------|--------------|--------------|--------|----------------|----------------|----------------|----------------| | pera-
ture | 15 in. | 20 in. | 22 in. | 24 in. | 26 in. | 27 in. | 28 in. | 29 in. | 30 in. | 31 in. | | 9° | 9· 7453 | 8703 | 9117 | 9494 | 9842 | *0006 | *0164 | *0317 | *0464 | *0606 | | | 7444 | 8693 | 9107 | 9485 | 9832 | 9996 | *0154 | *0306 | *0454 | *0596 | | 11 | 7434
9 7425 | 8684
8674 | 9098 | 9476 | 9823 | 9987 | *0145
*0135 | *0297
*0288 | *0445
*0435 | *0587
*0577 | | 13 | 7415 | 8665
8656 | 9079 | 9457
9447 | 9804
9796 | 9968 | *0126
*0117 | *0278
*0269 | *0426
*0417 | *0568
*0559 | | 15 | 9° 7397 | 8646 | 9061 | 9438 | 9786 | 9950 | *0108 | *0260 | *0408 | *0550 | | 16 | 7388 | 8637 | 9051 | 9429 | 9777 | 9941 | *0099 | *0251 | *0398 | *0541 | | 17 | 7379 | 8628 | 9042 | 9420 | 9768 | 9931 | *0089 | *0242 | *0389 | *0532 | | 18 | 9· 7370 | 8619 | 9033 | 9411 | 9759 | 9922 | *0080 | *0233 | *0380 | *0522 | | 19 | 7360 | 8609 | 9023 | 9401 | 9749 | 9913 | *0071 | *0223 | *0371 | *0513 | | 20 | 7351 | 8600 | 9014 | 9392 | 9740 | 9903 | *0062 | *0215 | *0361 | *0503 | | 21 | 9° 7342 | 8591 | 9005 | 9383 | 9730 | 9895 | *0052 | *0205 | *0352 | *0495 | | 22 | 7332 | 8582 | 8996 | 9374 | 9721 | 9885 | *0043 | *0195 | *0343 | *0485 | | 23 | 7324 | 8573 | 8987 | 9365 | 9713 | 9876 | *0034 | *0187 | *0334 | *0476 | | 24 | 9· 7314 | 8564 | 8978 | 9356 | 9703 | 9867 | *0025 | *0177 | *0325 | *0467 | | 25 | 7305 | 8555 | 8968 | 9346 | 9694 | 9858 | *0016 | *0168 | *0315 | *0458 | | 26 | 7296 | 8545 | 8959 | 9337 | 9684 | 9848 | *0006 | *0159 | *0306 | *0448 | | 27 | 9· 7286 | 8536 | 8950 | 9327 | 9675 | 9839 | 9997 | *0149 | *0297 | *0439 | | 28 | 7277 | 8527 | 8941 | 9319 | 9667 | 9830 | 9988 | *0141 | *0288 | *0430 | | 29 | 7268 | 8517 | 8932 | 9309 | 9657 | 9821 | 9979 | *0131 | *0278 | *0421 | | 30 | 9° 7259 | 8508 | 8922 | 9300 | 9647 | 9811 | 9969 | *0122 | *0269 | *0412 | | 31 | 7250 | 8499 | 8913 | 9291 | 9639 | 9803 | 9961 | *0113 | *0260 | *0403 | | 32 | 7240 | 8490 | 8904 | 9281 | 9629 | 9793 | 9951 | *0103 | *0251 | *0393 | | 33 | 9· 7232 | 8481 | 8895 | 9273 | 9620 | 9785 | 9942 | *0095 | *0242 | *0384 | | 34 | 7222 | 8471 | 8886 | 9263 | 9611 | 9775 | 9933 | *0085 | *0233 | *0375 | | 35 | 7214 | 8463 | 8877 | 9255 | 9602 | 9766 | 9924 | *0077 | *0224 | *0366 | | 36 | 9 [.] 7204 | 8454 | 8868 | 9246 | 9593 | 9757 | 9915 | *0068 | *0215 | *0357 | | 37 | 7195 | 8444 | 8858 | 9236 | 9584 | 9747 | 9906 | *0058 | *0205 | *0347 | | 38 | 7186 | 8435 | 8850 | 9227 | 9575 | 9739 | 9897 | *0049 | *0197 | *0339 | | 39 | 9· 7176 | 8426 | 8840 | 9218 | 9565 | 9729 | 9887 | *0039 | *0187 | *0329 | | 40 | 7168 | 8418 | 8832 | 9210 | 9557 | 9721 | 9879 | *0032 | *0179 | *0321 | | 41 | 7160 | 8409 | 8823 | 9201 | 9548 | 9712 | 9870 | *0023 | *0170 | *0312 | | 42 | 9· 7150 | 8399 | 8813 | 9191 | 9539 | 9703 | 9861 | *0013 | *0160 | *0302 | | 43 | 7142 | 8391 | 8805 | 9183 | 9530 | 9694 | 9852 | *0005 | *0152 | *0294 | | 44 | 7132 | 8382 | 8795 | 9173 | 9521 | 9685 | 9843 | 9995 | *0142 | *0284 | | 45 | 9· 7124 | 8373 | 8787 | 9165 | 9512 | 9676 | 9834 | 9987 | *0134 | *0276 | | 46 | 7114 | 8363 | 8777 | 9155 | 9503 | 9667 | 9825 | 9977 | *0124 | *0267 | | 47 | 7105 | 8354 | 8768 | 9146 | 9494 | 9658 | 9815 | 9968 | *0115 | *0258 | | 48 | 9· 7097 | 8346 | 8760 | 9138 | 9486 | 9650 | 9807 | 9960 | *0107 | *0249 | | 49 | 7087 | 8337 | 8750 | 9128 | 9476 | 9640 | 9798 | 9950 | *0097 | *0240 | | 50 | 7078 | 8327 | 8741 | 9119 | 9466 | 9631 | 9789 | 9941 | *0088 | *0230 | | 51 | 9. 7070 | 8319 | 8733 | 9111 | 9459 | 9622 | 9780 | 9933 | *0080 | *0222 | | 52 | 7061 | 8311 | 8724 | 9103 | 9450 | 9614 | 9772 | 9925 | *0072 | *0214 | | 53 | 7052 | 8301 | 8716 | 9093 | 9441 | 9605 | 9763 | 9915 | *0063 | *0205 | ## XX. (continued). | Tem- | 1 | 1 | 1 | | 1 | 1 | 1 | | 1 | | |---------------|---------|--------------|--------------|--------------|--------------|--------------|---------------|---------------|----------------------|--------------| | pera-
ture | 15 in. | 20 in. | 22 in. | 24 in. | 26 in. | 27 in. | 28 in. | 29 in. | 30 in. | 31 in. | | 54° | 9· 7042 | 8292 | 8706 | 9083 | 9431 | 9595 | 9753 | 9905 | *0053 | *0195 | | 55 | 7033 | 8283 | 8696 | 9074 | 9422 | 9586 | 9744 | 9896 | *0043 | *0186 | | 56 | 7024 | 8273 | 8687 | 9065 | 9413 | 9577 | 9735 | 9887 | *0034 | *0177 | | 57 | 9. 7015 | 8264 | 8678 | 9056 | 9404 | 9567 | 9725 | 9878 | *0025 | *0167 | | 58 | 7007 | 8256 | 8670 | 9048 | 9395 | 9559 | 9717 | 9870 | *0017 | *0159 | | 59 | 6997 | 8246 | 8661 | 9038 | 9386 | 9550 | 9708 | 9860 | *0007 | *0150 | | 60 | 9· 6988 | 8237 | 8651 | 9029 | 9377 | 9540 | 9699 | 9851 | 9998 | *0141 | | 61 | 6980 | 8229 | 8643 | 9021 | 9368 | 9532 | 9690 | 9843 | 9990 | *0132 | | 62 | 6970 | 8220 | 8633 | 9011 | 9359 | 9523 | 9681 | 9833 | 9980 | *0123 | | 63 | 9· 6961 | 8211 | 8624 | 9002 | 9350 | 9514 | 9672 | 9824 | 9971 | *0114 | | 64 | 6952 | 8201 | 8615 | 8993 | 9340 | 9504 | 9662 | 9815 | 9962 | *0104 | | 65 | 6942 | 8191 | 8606 | 8983 | 9331 | 9495 | 9653 | 9805 | 9952 | *0095 | | 66 | 9° 6934 | 8183 | 8597 | 8975 | 9323 | 9487 | 9644 | 9797 | 9944 | *0086 | |
67 | 6925 | 8174 | 8588 | 8965 | 9313 | 9477 | 9635 | 9787 | 9935 | *0077 | | 68 | 6916 | 8165 | 8579 | 8957 | 9304 | 9468 | 9627 | 9779 | 9926 | *0069 | | 69 | 9· 6907 | 8156 | 8570 | 8948 | 9296 | 9460 | 9618 | 9770 | 9918 | *0060 | | 70 | 6898 | 8147 | 8561 | 8939 | 9287 | 9450 | 9609 | 9761 | 9908 | *0051 | | 71 | 6888 | 8138 | 8552 | 8929 | 9277 | 9441 | 9 5 99 | 9752 | 9899 | *0041 | | 72 | 9· 6880 | 8129 | 8543 | 8921 | 9269 | 9432 | 9590 | 9743 | 9890 | *0032 | | 73 | 6871 | 8120 | 8535 | 8912 | 9260 | 9424 | 9582 | 9734 | 9882 | *0024 | | 74 | 6862 | 8111 | 8526 | 8904 | 9251 | 9415 | 9573 | 9726 | 9873 | *0015 | | 75 | 9· 6853 | 8102 | 8516 | 8894 | 9242 | 9406 | 9564 | 9716 | 9863 | *0006 | | 76 | 6843 | 8093 | 8506 | 8885 | 9232 | 9396 | 9554 | 9706 | 9853 | 9996 | | 77 | 6835 | 8084 | 8498 | 8876 | 9224 | 9387 | 9545 | 9698 | 9845 | 9987 | | 78 | 9· 6825 | 8075 | 8488 | 8866 | 9214 | 9378 | 9536 | 9688 | 9835 | 9978 | | 79 | 6816 | 8066 | 8479 | 8858 | 9205 | 9369 | 9527 | 9679 | 9827 | 9969 | | 80 | 6807 | 8056 | 8470 | 8848 | 9195 | 9359 | 9517 | 96 7 0 | 9817 | 9959 | | 81 | 9· 6797 | 8046 | 8460 | 8838 | 9186 | 9350 | 9508 | 9660 | 9807 | 9950 | | 82 | 6788 | 8037 | 8452 | 8829 | 91 77 | 9341 | 9499 | 9651 | 9799 | 9941 | | 83 | 6779 | 8029 | 8443 | 8821 | 9168 | 9332 | 9490 | 9643 | 9790 | 9932 | | 84 | 9·6771 | 8020 | 8434 | 8812 | 9159 | 9323 | 9481 | 9634 | 9781 | 9923 | | 85 | 6761 | 8011 | 8424 | 8802 | 9150 | 9314 | 9471 | 9624 | 9771 | 9914 | | 86 | 6752 | 8001 | 8415 | 8793 | 9141 | 9304 | 9463 | 9615 | 9762 | 9905 | | 87 | 9· 6743 | 7993 | 8406 | 8784 | 9132 | 9296 | 9454 | 9606 | 9753 | 9896 | | 88 | 6733 | 7982 | 8397 | 8774 | 9122 | 9286 | 9444 | 9596 | 9744 | 9886 | | 89 | 6724 | 7973 | 8388 | 8766 | 9113 | 9277 | 9435 | 9588 | 9735 | 9877 | | 90 | 9° 6715 | 7964 | 8378 | 8756 | 9104 | 9268 | 9426 | 9578 | 9726 | 9868 | | 91 | 6706 | 7955 | 8369 | 8747 | 9094 | 9258 | 9416 | 9568 | 9716 | 9858 | | 92 | 6695 | 7945 | 8359 | 8737 | 9084 | 9248 | 9406 | 9559 | 9706 | 9848 | | 93 | 9· 6687 | 7936 | 8350 | 8728 | 9075 | 9239 | 9397 | 9550 | 9697 | 9839 | | 94 | 6677 | 7926 | 8340 | 8718 | 9066 | 9229 | 9387 | 9540 | 9687 | 9829 | | 95 | 6668 | 7917 | 8331 | 8709 | 9056 | 9220 | 9378 | 9531 | 9678 | 9820 | | 96 | 9· 6658 | 7907 | 8321 | 8699 | 9047 | 9210 | 9368 | 9521 | 9668 | 9810 | | 97 | 6647 | 7897 | 8311 | 8689 | 9036 | 9200 | 9358 | 9510 | 9658 | 9800 | | 98 | 6637 | 7887 | 8301 | 8679 | 9027 | 9190 | 9349 | 9501 | 9648 | 9790 | | 99 | 9·6619 | 7878
7868 | 8291
8281 | 8669
8659 | 9016
9007 | 9180
9171 | 9338
9329 | 9490
9482 | 9638
9 629 | 9780
9771 | ## XXI. Log τ for various heights, gravity and temperature being supposed constant. | | | | | | _ | | | | | | |------------------------------|---------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------| | Ht. | 000 | 100 | 200 | 300 | 400 | 500 | 600 | 700 | 800 | 900 | | Feet
39
38
37
36 | 9° 4646
4802
4958
5114 | 4630
4786
4942
5098 | 4615
4771
4927
5083 | 4599
4755
4911
5067 | 4583
4739
4895
5051 | 4568
4724
4880
5036 | 4552
4708
4864
5020 | 4537
4693
4849
5005 | 4521
4677
4833
4989 | 4505
4661
4817
4973 | | 35 | 9· 5270 | 5254 | 5239 | 5223 | 5207 | 5192 | 5176 | 5161 | 5145 | 5129 | | 34 | 5426 | 5410 | 5394 | 5379 | 5363 | 5348 | 5332 | 5316 | 5301 | 5285 | | 33 | 5582 | 5566 | 5550 | 5535 | 5519 | 5504 | 5488 | 5472 | 5457 | 5441 | | 32 | 9° 5738 | 5722 | 5706 | 5691 | 5675 | 5660 | 5644 | 5628 | 5613 | 5597 | | 31 | 5894 | 5878 | 5862 | 5847 | 5831 | 5816 | 5800 | 5784 | 5769 | 5753 | | 30 | 6050 | 6034 | 6018 | 6003 | 5987 | 5972 | 5956 | 5940 | 5925 | 5909 | | 29 | 9· 6206 | 6190 | 6174 | 6159 | 6143 | 6128 | 6112 | 6096 | 6081 | 6065 | | 28 | 6362 | 6346 | 6330 | 6315 | 6299 | 6284 | 6268 | 6252 | 6237 | 6221 | | 27 | 6518 | 6502 | 6486 | 6471 | 6455 | 6440 | 6424 | 6408 | 6393 | 6377 | | 26 | 9· 6674 | 6658 | 6642 | 6627 | 6611 | 6596 | 6580 | 6564 | 6549 | 6533 | | 25 | 6830 | 6814 | 6798 | 6783 | 6767 | 6752 | 6736 | 6720 | 6705 | 6689 | | 24 | 6985 | 6970 | 6954 | 6939 | 6923 | 690 7 | 6892 | 6876 | 6861 | 6845 | | 23 | 9· 7141 | 7126 | 7110 | 7095 | 7079 | 7063 | 7048 | 7032 | 7016 | 7001 | | 22 | 7297 | 7282 | 7266 | 7251 | 7235 | 7219 | 7204 | 7188 | 7173 | 7157 | | 21 | 7453 | 7438 | 7422 | 7407 | 7391 | 7375 | 7360 | 7344 | 7329 | 7313 | | 20 | 9· 7609 | 7594 | 7578 | 7563 | 7547 | 7531 | 7516 | 7500 | 7485 | 7469 | | 19 | 7765 | 7750 | 7734 | 7719 | 7703 | 7687 | 7672 | 7656 | 7641 | 7625 | | 18 | 7921 | 7906 | 7890 | 7875 | 7859 | 7843 | 7828 | 7812 | 779 7 | 7781 | | 17 | 9· 8077 | 8062 | 8046 | 8031 | 8015 | 7999 | 7984 | 7968 | 7953 | 7937 | | 16 | 8233 | 8218 | 8202 | 8187 | 8171 | 8155 | 8140 | 8124 | 8109 | 8093 | | 15 | 8389 | 8374 | 8358 | 8343 | 8327 | 8311 | 8296 | 8280 | 8265 | 8249 | | 14 | 9·8545 | 8530 | 8514 | 8498 | 8483 | 8467 | 8452 | 8436 | 8420 | 8405 | | 13 | 8701 | 8686 | 8670 | 8654 | 8639 | 8623 | 8608 | 8592 | 8576 | 8561 | | 12 | 8857 | 8842 | 8826 | 8810 | 8795 | 8779 | 8764 | 8748 | 8732 | 8717 | | 11 | 9· 9013 | 8998 | 8982 | 8966 | 8951 | 8935 | 8920 | 8904 | 8888 | 8873 | | 10 | 9169 | 9154 | 9138 | 9122 | 9107 | 9091 | 9076 | 9060 | 9044 | 9029 | | 9 | 9325 | 9310 | 9294 | 9278 | 9263 | 9247 | 9232 | 9216 | 9200 | 9185 | | 8 | 9· 9481 | 9466 | 9450 | 9434 | 9419 | 9403 | 9388 | 9372 | 9357 | 9341 | | 7 | 9637 | 9622 | 9606 | 9590 | 9575 | 9559 | 9544 | 9528 | 9512 | 9497 | | 6 | 9793 | 9778 | 9762 | 9746 | 9731 | 9715 | 9700 | 9684 | 9668 | 9653 | | 5 | 9· 9949 | 9934 | 9918 | 9902 | 9887 | 9871 | 9856 | 9840 | 9824 | 9809 | | 4 | 0· 0105 | 0089 | 0074 | 0058 | 0043 | 0027 | 0011 | *9996 | *9980 | *9965 | | 3 | 0261 | 0245 | 0230 | 0214 | 0199 | 0183 | 0167 | 0152 | 0136 | 0121 | | 2 | 0° 0417 | 0401 | 0386 | 0370 | 0355 | 0339 | 0323 | 0308 | 0292 | 0277 | | I | 0573 | 0557 | 0542 | 0526 | 0511 | 0495 | 0479 | 0464 | 0448 | 0433 | | O | 0729 | 0713 | 0698 | 0682 | 0667 | 0651 | 0635 | 0620 | 0604 | 0589 | | Feet | 0 | +10 | + 20 | +30 | +40 | + 50 | +60 | + 70 | +80 | + 90 | | Diff.
in
Log t | 0 | -'0002 | -,0003 | -,0002 | 0006 | - '0008 | 0000 | 1100'- | 0013 | -,001 | XXII. (1) Spherical Projectiles. | v | 2 in. | 3 in. | 4 in. | 5 in. | 6 in. | 7 in. | 8 in. | 9 in. | 10 in. | ıı in. | 12 in. | |-------|-------|------------|------------|------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------| | f. s. | lbs. lbs, | lbs. | lbs, | | 900 | 13 | 29 | 51 | 80 | 115 | 156 | 204 | 258 | 319 | 386 | 459 | | 1000 | 18 | 40 | 71 | 110 | 159 | 216 | 282 | 357 | 441 | 534 | 635 | | 1100 | 25 | 57 | 102 | 159 | 229 | 312 | 408 | 516 | 637 | 771 | 917 | | 1200 | 33 | 75 | 134 | 209 | 301 | 409 | 534 | 676 | 835 | 1010 | 1202 | | 1300 | 41 | 91 | 162 | 254 | 365 | 497 | 649 | 822 | 1015 | 1228 | 1461 | | 1400 | 48 | 109 | 194 | 303 | 436 | 593 | 775 | 981 | 1211 | 1466 | 1744 | | 1500 | 57 | 128 | 227 | 355 | 511 | 695 | 908 | 1149 | 1419 | 1716 | 2043 | | 1600 | 65 | 147 | 261 | 408 | 588 | 800 | 1045 | 1322 | 1633 | 1976 | 2351 | | 1700 | 74 | 167 | 296 | 463 | 666 | 907 | 1185 | 1499 | 1851 | 2240 | 2666 | | 1800 | 83 | 187 | 332 | 518 | 746 | 1016 | 1327 | 1679 | 2073 | 2508 | 2985 | | 1900 | 93 | 209 | 371 | 580 | 835 | 1137 | 1485 | 1880 | 2320 | 2808 | 3341 | | 2000 | 104 | 235 | 417 | 652 | 939 | 1278 | 1669 | 2112 | 2607 | 3155 | 3754 | | 2100 | 115 | 259
281 | 460
500 | 718
781 | 1035
1124 | 1408
1530 | 1839
1999 | 2328
2530 | 2874
3123 | 3477
3779 | 4138
4497 | ## (2) Ogival-headed Projectiles (1½ diameter). | | | | 8 | | | | (| 2 | | <i>/-</i> | | |----------------------------|--------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|----------------------------|----------------------------|----------------------------|----------------------------|-----------------------------| | f. s.
100
200
300 | lbs.
0.1
0.3 | lbs.
0.2
0.7
1.5 | lbs.
0°3
1°2
2°7 | lbs.
0.5
1.9
4.2 | lbs.
0.7
2.7
6.1 | lbs.
0'9
3'7
8'3 | lbs,
1·2
4·8
10·8 | lbs.
1.5
6.1
13.7 | lbs.
1·9
7·5
16·9 | lbs.
2°3
9°1
20°4 | lbs.
2.7
10.8
24.3 | | 400
500
600 | 1.3
1.3 | 2·7
4·2
6·1 | 4·8
7·5
10·8 | 16.9
11.8
16.9 | 10.8
16.9
24.3 | 14.7
23.0
33.1 | 19.3
30.1
43.3 | 24.4
38.1
54.8 | 30°1
47°0
67°6 | 36·4
56·9
81·8 | 43°3
67°7
97°3 | | 700
800
900 | 3°7
4°8
6°7 | 8·3
10·8
15·0 | 14.7
19.2
26.7 | 30·1
41·7 | 33·2
43·3
60·0 | 45°1
58°9
81°6 | 58·9
76·9
106·6 | 74.6
97.4
134.9 | 166·5
120·2 | 111.4
145.4
201.6 | 132.6
123.1
135.1 | | 1000
1100
1200 | 9°1
17°7
24 | 20·6
39·8
53 | 36·6
70·7
94 | 57°2
110°5
147 | 82·3
82·3 | 288
216.6
218.0 | 146·3
282·9
377 | 185°2
358°0
477 | 228·6
442·0
588 | 276·6
534·8
712 | 329·2
636·5
847 | | 1300 | 30 | 67 | 119 | 187 | 269 | 366 | 478 | 605 | 747 | 903 | 1075 | | 1400 | 36 | 81 | 143 | 224 | 323 | 439 | 574 | 726 | 897 | 1085 | 1291 | | 1500 | 41 | 93 | 165 | 258 | 371 | 506 | 660 | 836 | 1032 | 1248 | 1486 | | 1600 | 46 | 104 | 184 | 288 | 415 | 564 | 737 | 933 | 1151 | 1393 | 1658 | | 1700 | 51 | 115 | 204 | 319 | 459 | 624 | 816 | 1032 | 1274 | 1542 | 1835 | | 1800 | 56 | 126 | 224 | 351 | 505 | 687 | 897 | 1136 | 1402 | 1696 | 2019 | | 1900 | 62 | 138 |
246 | 385 | 554 | 754 | 985 | 1246 | 1539 | 1862 | 2215 | | 2000 | 68 | 153 | 272 | 426 | 613 | 834 | 1090 | 1379 | 1702 | 2060 | 2451 | | 2100 | 77 | 173 | 308 | 482 | 694 | 944 | 1233 | 1561 | 1927 | 2332 | 2775 | | 2200 | 87 | 196 | 348 | 544 | 784 | 1066 | 1393 | 1763 | 2177 | 2634 | 3134 | | 2300 | 94 | 212 | 376 | 588 | 846 | 1152 | 1504 | 1904 | 2351 | 2844 | 3385 | | 2400 | 98 | 220 | 392 | 612 | 881 | 1200 | 1567 | 1983 | 2448 | 2962 | 3525 | | 2500 | 103 | 231 | 411 | 642 | 924 | 1258 | 1643 | 2079 | 2567 | 3106 | 3697 | | 2600 | 112 | 253 | 450 | 703 | 1012 | 1378 | 1800 | 2278 | 2812 | 3403 | 4050 | | 2700 | 126 | 282 | 502 | 784 | 1130 | 1537 | 2008 | 2541 | 3138 | 3796 | 4518 | | 2800 | 140 | 314 | 559 | 873 | 1257 | 1711 | 2235 | 2829 | 3493 | 4226 | 5029 | XXIII. S_v for Spherical Projectiles. (w = 534.22 grams). | v | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | Diff. | |---|---|---|---|--------------------------------------|--|--|--|--|--|--|---------------------------------| | f. s.
40
41
42
43
44
45 | Feet
150
359
562
761
955
1146 | Feet
171
379
582
781
974
1164 | Feet
192
400
602
800
994
1183 | Feet 213 420 622 820 1013 1202 | Feet
234
441
642
839
1032
1221 | Feet
255
461
662
859
1051
1239 | Feet
276
481
682
878
1070
1258 | Feet
296
501
702
897
1089
1276 | Feet
317
522
722
917
1108
1295 | Feet
338
542
742
936
1127
1313 | +
21
20
20
19
19 | | 46
47
48
49
50 | 1331
1513
1691
1866
2036 | 1350
1531
1709
1883
2053 | 1368
1549
1726
1900
2070 | 1387
1567
1744
1917
2086 | 1405
1585
1761
1934
2103 | 1423
1602
1779
1951
2120 | 1441
1620
1796
1968
2137 | 1459
1638
1814
1985
2154 | 1477
1656
1831
2002
2171 | 1495
1673
1848
2019
2188 | 18
18
17
17 | | 51
52
53
54
55 | 2204
2368
2529
2687
2842 | 2221
2384
2545
2703
2858 | 2237
2401
2561
2718
2873 | 2254
2417
2577
2734
2888 | 2270
2433
2593
2749
2904 | 2287
2449
2608
2765
2919 | 2303
2465
2624
2780
2934 | 2319
2481
2640
2796
2949 | 2336
2497
2656
2811
2965 | 2352
2513
2671
2827
2980 | 16
16
16
16
15 | | 56
57
58
59
60 | 2995
3144
3291
3436
3578 | 3010
3159
3306
3450
3592 | 3025
3174
3320
3464
3606 | 3040
3189
3335
3478
3620 | 3055
3204
3349
3493
3634 | 3070
3218
3364
3507
3648 | 3085
3233
3378
3521
3662 | 3099
3248
3393
3535
3676 | 3114
3262
3407
3550
3690 | 3129
3277
3421
3564
3704 | 15
15
14
14
14 | | 61
62
63
64
65 | 3718
3855
3991
4124
4255 | 3731
3869
4004
4137
4268 | 3745
3883
4017
4150
4281 | 3759
3896
4031
4163
4294 | 3773
3910
4044
4176
4307 | 3786
3924
4058
4189
4319 | 3800
3937
4071
4203
4332 | 3814
3951
4084
4216
4345 | 3828
3964
4098
4229
4358 | 3841
3977
4111
4242
4371 | 14
14
13
13 | | 66
67
68
69
70 | 4384
4511
4636
4760
4881 | 4397
4524
4649
4772
4893 | 4410
4536
4661
4784
4905 | 4422
4549
4674
4796
4917 | 4435
4561
4686
4809
4929 | 4448
4574
4698
4821
4941 | 4461
4586
4711
4833
4953 | 4473
4599
4723
4845
4965 | 4486
4611
4735
4857
4977 | 4499
4624
4747
4869
4989 | 13
13
12
12
12 | | 71
72
73
74
75 | 5001
5119
5236
5351
5465 | 5013
5131
5248
5363
5476 | 5025
5143
5259
5374
5487 | 5037
5154
5271
5385
5498 | 5049
5166
5282
5397
5510 | 5060
5178
5294
5408
5521 | 5072
5190
5305
5420
5532 | 5084
5201
5317
5431
5543 | 5096
5213
5328
5442
5555 | 5107
5225
5340
5453
5566 | 12
12
12
11
11 | | 76
77
78
79
80 | 5577
5687
5796
5904
6010 | 5588
5698
5807
5914
6021 | 5599
5709
5818
5925
6031 | 5610
5720
5828
5936
6042 | 5621
5731
5839
5947
6052 | 5632
5742
5850
5957
6063 | 5643
5753
5861
5968
6073 | 5654
5764
5871
5979
6084 | 5665
5775
5882
5989
6094 | 5676
5785
5893
6000
6105 | 11 11 11 | | 81
82
83
84
85 | 6115
6219
6322
6423
6522 | 6126
6229
6332
6433
6532 | 6136
6240
6342
6443
6542 | 6147
6250
6352
6453
6552 | 6157
6260
6362
6463
6561 | 6168
6270
6372
6473
6571 | 6178
6281
6382
6483
6581 | 6188
6291
6392
6493
6591 | 6199
6301
6403
6503
6600 | 6209
6311
6413
6512
6610 | 10
10
10
10 | | 86
87
88
89
90 | 6619
6714
6807
6898
6986 | 6629
6724
6816
6907
6995 | 6639
6733
6825
6916
7004 | 6648
6742
6835
6925
7013 | 6658
6752
6844
6933
7021 | 6667
6761
6853
6942
7030 | 6677
6770
6862
6951
7039 | 6686
6779
6871
6960
7046 | 6696
6789
6880
6969
7056 | 6705
6798
6889
6978
7064 | 9
9
9
9 | XXIII. S_v for Spherical Projectiles (continued). | v | 0 | I | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | Diff. | |-------------------------------------|--|---|--|--|--|--|--|--|--|--|---------------------------------| | f. s.
91
92
93
94
95 | Feet
7073
7158
7241
7322
7402 | Feet
7082
7166
7249
7330
7409 | Feet
7090
7175
7257
7338
7417 | Feet
7099
7183
7266
7346
7425 | Feet
7107
7191
7274
7354
7433 | Feet
7116
7200
7282
7362
7441 | Feet
7124
7208
7290
7370
7448 | Feet
7133
7216
7298
7378
7456 | Feet
7141
7225
7306
7386
7464 | Feet
7149
7233
7314
7394
7472 | +
8
8
8
8 | | 96
97
98
99 | 7479
7556
7630
7703
7774 | 74 ⁸ 7
75 ⁶ 3
763 ⁸
77 ¹⁰
77 ⁸ 1 | 7495
7571
7645
7717
7788 | 7502
7578
7652
7725
7795 | 7510
7586
7660
7732
7802 | 7518
7593
7667
7739
7809 | 7525
7601
7674
7746
7816 | 7533
7608
7681
7753
7823 | 7541
7615
7689
7760
7830 | 7548
7623
7696
7767
7837 | 8
7
7
7
7 | | 101
102
103
104
105 | 7844
7912
7977
8041
8103 | 7851
7918
7984
8047
8109 | 7858
7925
7990
8053
8115 | 7864
7932
7997
8060
8121 | 7871
7938
8003
8066
8127 | 7878
7945
8010
8072
8133 | 7885
7951
8016
8078
8139 | 7892
7958
8022
8084
8145 | 7898
7964
8029
8091
8151 | 7905
7971
8035
8097
8157 | 7
7
6
6
6 | | 106
107
108
109 | 8163
8221
8278
8334
8387.8 | 8169
8227
8284
8339
393°1 | 8175
8233
8289
8345
398.4 | 8180
8238
8295
8350
403.8 | 8186
8244
8300
8356
409'I | 8192
8250
8306
8361
414.4 | 8198
8256
8312
8366
419*7 | 8204
8261
8317
8372
425°0 | 8209
8267
8323
8377
430°2 | 8215
8272
8328
8383
435 5 | 6
6
5
5.3 | | 111
112
113
114
115 | 8 440·8
492·7
543·6
593·5
642·5 | 446.0
497.8
548.6
598.4
647.3 | 451°2
502°9
553°6
603°3
652°1 | 456.5
508.1
558.7
608.3
657.0 | 461.7
513.2
563.7
613.2
661.8 | 466.9
518.3
568.7
618.1
666.6 | 472°1
523°4
573°7
623°0
671°4 | 477°2
528°4
578°6
627°9
676°2 | 482.4
533.5
583.6
632.7
680.9 | 487.5
538.5
588.5
637.6
685.7 | 5°2
5°1
5°0
4°9
4°8 | | 116
117
118
119
120 | 8 690·5
737·8
784·2
829·9
874·9 | 695°3
742°5
788°8
834°4
879°3 | 700°0
747°I
793°4
838°9
883°8 | 704.8
751.8
797.9
843.5
888.2 | 709°5
756°4
802°5
848°0
892°7 | 714.3
761.1
802.1
825.2
714.3 | 719.0
765.7
811.7
857.0
901.2 | 723.7
770.3
816.2
861.5
905.9 | 728.4
775.0
820.8
865.9
910.4 | 733'I
779'6
825'3
870'4
914'8 | 4.7
4.6
4.6
4.5
4.4 | | 121
122
123
124
125 | 8 919·2
963·0
9 006·1
048·9
090·9 | 923.6
967.3
010.4
053.1 | 928.0
971.6
014.7
057.3
099.3 | 932.4
976.0
019.0
061.5
103.5 | 936·8
980·3
023·3
065·7
107·7 | 941.2
984.6
927.6
969.9 | 945.6
988.9
031.9
074.1
116.1 |
949°9
993°2
036°1
078°3
120°2 | 954'3
997'5
040'4
082'5
124'4 | 958.6
*001.8
044.6
086.7
128.5 | 4°4
4°3
4°3
4°2
4°1 | | 126
127
128
129
130 | 9 132·7
173·8
214·6
254·9 | 136.8
177.9
218.6
258.9
298.9 | 140°9
182°9
262°9
302°9 | 145°1
186°1
226°7
267°0
306°8 | 149°2
190°2
230°8
271°0
310°8 | 153'3
194'3
234'8
275'0
314'8 | 157.4
198.4
238.8
279.0
318.8 | 161.5
202.4
242.8
283.0
322.7 | 165 6
206 5
246 9
286 9
326 7 | 169.7
250.9
290.9
330.6 | 4°I
4°O
4°O
4°O | | 131
132
133
134
135 | 9 334·6
373·7
412·5
450·9
488·8 | 338·5
377·6
416·4
454·7
492·6 | 342.4
381.5
420.2
458.5
496.4 | 346.4
385.4
424.1
462.3
500.1 | 350°3
389°3
427°9
466°1
503°9 | 354°2
393°2
431°8
469°9
507°7 | 358°1
397°1
435°6
473°7
511°4 | 362°0
400°9
439°4
477°5
515°2 | 365.9
404.8
443.3
481.5
518.9 | 369.8
408.6
447.1
485.0
522.7 | 3.9
3.8
3.8
3.8 | | 136
137
138
139
140 | 9 5 2 6 · 4
5 6 3 · 5
6 3 6 · 8
6 7 2 · 9 | 530°1
567°2
604°0
640°4
676°5 | 533.8
570.9
6044.0
680.1 | 537.6
574.6
611.3
647.7
683.6 | 541'3
578'3
614'9
651'3
687'2 | 545.0
582.0
618.6
654.9
690.8 | 548.7
585.7
622.2
658.5
694.4 | 552.4
589.3
625.9
662.1
697.9 | 556°1
593°0
629°5
665°7
701°5 | 559.8
596.6
633.2
669.3
705.0 | 3.7
3.7
3.6
3.6
3.6 | XXIII. S_v for Spherical Projectiles (continued). | 7' | 0 | I | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | Diff. | |--|--|---|---|---|---|---|---|---|---|---|--------------------------------------| | f. s.
141
142
143
144
145 | Feet
9708.6
744.1
779.1
813.8
848.3 | Feet
712·2
747·6
782·6
817·3
851·7 | Feet
715.7
751.1
786.1
820.7
855.1 | Feet
719.3
754.6
789.5
824.2
858.5 | Feet
722.8
758.1
793.0
827.6
861.9 | Feet
726.4
761.6
796.5
831.1
865.3 | Feet
729.9
765.1
800.0
834.5
868.7 | Feet
733.5
768.6
803.4
838.0
872.1 | Feet
737.0
772.1
806.9
841.4
875.5 | Feet
740.6
775.6
810.3
844.9
878.9 | +
3.6
3.5
3.5
3.5
3.4 | | 146
147
148
149
150 | 9 882·3
916·2
949·7
983·0
10 016·0 | 885.7
919.6
953.0
986.3
019.3 | 889·1
922·9
956·4
989·6
022·6 | 892·5
926·3
959·7
992·9
025·8 | 895.9
963.1
996.5
029.1 | 899·3
933·0
966·4
999·5
032 4 | 902·7
936·3
969·7
*002·8
035·7 | 906·1
939·7
973·0
*006·1
038·9 | 909.4
943.0
976.4
*009.4
042.2 | 912·8
946·4
979·7
*012·7
045·4 | 3'4
3'4
3'3
3'3
3'3 | | 151
152
153
154
155 | 10 048·7
081·1
113·3
145·3
177·0 | 051.9
084.3
116.5
148.5
180.1 | 055°2
087°6
119°7
151°7 | 058·4
090·8
122·9
154·8
186·4 | 061·7
094·1
126·1
158·0
189·6 | 064·9
097·3
129·3
161·2
192·7 | 068·1
100·5
132·5
164·4
195·8 | 071.4
103.7
135.7
167.5 | 074·6
106·9
138·9
170·7
202·1 | 077.9
110.1
142.1
173.8
205.3 | 3.5
3.5
3.5
3.5 | | 156
157
158
159
160 | 10 208·4
239·7
270·7
301·5
332·0 | 211·5
242·8
273·8
304·6
335·0 | 214.7
245.9
276.9
307.6
338.1 | 217·8
249·0
279·9
310·7
341·1 | 221.0
252.1
283.0
313.7
344.2 | 224·1
255·2
286·1
316·8
347·2 | 227·2
258·3
289·2
319·8
350·2 | 230.3
261.4
292.3
322.9 | 233.5
264.5
295.3
325.9
356.3 | 236·6
267·6
298·4
329·0
359·3 | 3.0
3.1
3.1
3.1
3.1 | | 161
162
163
164
165 | 10 362·3
392·4
422·4
452·1
481·6 | 365·3
395·4
425·4
455·1
484·5 | 368·3
398·4
428·4
458·0
487·5 | 371.4
401.4
431.3
461.0
490.4 | 374'4
404'4
434'3
463'9
493'4 | 377.4
407.4
437.3
466.9
496.3 | 380.4
410.4
440.3
469.8
499.2 | 383.4
413.4
443.2
472.8
502.2 | 386·4
416·4
446·2
475·7
505·1 | 389.4
419.4
449.1
478.7
508.1 | 3.0
3.0
3.0 | | 166
167
168
169
170 | 10 511.0
540.1
569.1
597.9
626.5 | 513.9
543.0
572.0
600.8
629.3 | 516·8
545·9
574·9
603·6
632·2 | 519·8
548·8
577·7
606·5
635·0 | 522.7
551.7
580.6
609.3
637.9 | 525.6
554.6
583.5
612.2
640.7 | 528·5
557·5
586·4
615·1
643·5 | 531·4
560·4
589·3
617·9
646·4 | 534°3
563°3
592°1
620°8
649°2 | 537·2
566·2
595·0
623·6
652·1 | 2.9
2.9
2.9
2.8 | | 171
172
173
174
175 | 10 654.9
683.2
711.2
739.3
767.1 | 657·7
686·0
714·1
742·1
769·9 | 660·6
688·8
716·9
744·9
772·6 | 663.4
691.7
719.7
747.6
775.4 | 666·3
694·5
722·5
750·4
778·1 | 669·1
697·3
725·3
753·2
780·9 | 671.9
700.1
728.1
756.0
783.7 | 674·7
702·9
730·9
758·8
786·4 | 677.6
705.7
733.7
761.5
789.2 | 680.4
708.5
736.5
764.3
791.9 | 2·8
2·8
2·8
2·8
2·8 | | 176
177
178
179
180 | 10 794·7
822·2
849·6
876·8
903·8 | 797.5
824.9
852.3
879.5
906.5 | 800°2
827°7
855°0
882°2
909°2 | 803.0
830.4
857.8
884.9
911.9 | 805.7
833.2
860.5
887.6
914.6 | 808·5
835·9
863·2
890·3
917·3 | 811.2
838.6
865.9
893.0
920.0 | 814.0
841.4
868.6
895.7
922.7 | 816·7
844·1
871·4
898·4
925·3 | 819·5
846·9
874·1
901·1
928·0 | 2·8
2·7
2·7
2·7
2·7 | | 181
182
183
184
185 | 10 930·7
957·5
984·1
11 010 6
036·9 | 933'4
960'2
986'8
013'2
039'5 | 936·1
962·8
989·4
015·9
042·1 | 938·7
965·5
992·1
018·5
044·8 | 941.4
968.1
994.7
021.2
047.4 | 944·1
970·8
997·4
023·8
050·0 | 946·8
973·5
*000·0
026·4
052·6 | 949.5
976.1
*002.7
029.0
055.2 | 952°1
978°8
*005°3
031°7
057°9 | 954.8
981.4
*008 0
034.3
060.5 | 2.7
2.7
2.6
2.6 | | 186
187
188
189
190 | 11 063·1
089·1
114·9
140·6
166·1 | 065.7
091.7
117.5
143.2
168.6 | 068·3
094·3
120·1
145·7
171·2 | 070·9
096·8
122·6
148·3
173·7 | 073·5
099·4
125·2
150·8
176·3 | 076·1
102·0
127·8
153·4
178·8 | 078·7
104·6
130·4
155·9
181·3 | 081·3
107·2
132·9
158·5
183·9 | 083.9
109.7
135.5
161.0
186.4 | 086·5
112·3
138·0
163·6
189·0 | 2.6
2.6
2.6
2.6
2.5 | XXIII. S_v for Spherical Projectiles (continued). | v | 0 | I | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | Di | |------|----------|-------|--------|--------|--------|--------|--------|--------|--------|--------|------| | . s. | Feet 1 | | 91 | 11 191.2 | 194'0 | 196.5 | 199.1 | 201.6 | 204'1 | 206.6 | 209'1 | 211.7 | 214'2 | 2 | | 92 | 216.7 | 219.2 | 221.7 | 224.2 | 226.7 | 229.2 | 231.7 | 234'2 | 236.7 | 239.2 | 2 | | 93 | 241.7 | 244.5 | 246.7 | 249 1 | 251.6 | 254.1 | 256.6 | 259.0 | 261.5 | 263'9 | 2 | | 94 | 266.4 | 268.9 | 271.4 | 273.8 | 276.3 | 278.8 | 281.3 | 283.7 | 286.2 | 288.6 | 2 | | 95 | 291.1 | 293.6 | 296.0 | 298.5 | 300.9 | 303.4 | 302.9 | 308.3 | 310.8 | 313.5 | 2 | | 96 | 11 315.7 | 318.1 | 320.6 | 323.0 | 325.2 | 327.9 | 330.3 | 332.8 | 335.5 | 337.7 | 2 | | 97 | 340.1 | 342.2 | 344.9 | 347'4 | 349.8 | 352.2 | 354.6 | 357.0 | 359.5 | 361.9 | 2 | | 98 | 364.3 | 366.7 | 369.1 | 371.2 | 373.9 | 376.3 | 378.7 | 381.1 | 383.2 | 385.9 | 2 | | 99 | 388.3 | 390.7 | 393.1 | 395 5 | 397.9 | 400.3 | 402.7 | 405.1 | 407'4 | 409.8 | 2 | | 00 | 412.2 | 414.6 | 417.0 | 419.3 | 421.7 | 424°I | 426.2 | 428.8 | 431.5 | 433.2 | 2 | | 10 | 11 435.9 | 438.3 | 440.7 | 443.0 | 445.4 | 447.8 | 450.5 | 452.2 | 454.9 | 457.2 | 2 | | 02 | 459.6 | 461.9 | 464.3 | 466.6 | 469.0 | 471.3 | 473'7 | 476.0 | 478.4 | 480.7 | 2 | | 03 | 483.1 | 485.4 | 487.8 | 490°I | 492.5 | 494.8 | 497.1 | 499.4 | 201.8 | 504.1 | 2 | | 04 | 506.4 | 508.4 | 211.0 | 513.4 | 515.7 | 518.0 | 520.3 | 522.6 | 525.0 | 527.3 | 2 | | 05 | 529.6 | 231.9 | 534.5 | 536.6 | 538.9 | 541.2 | 543.5 | 545.8 | 548.2 | 550.2 | 2 | | 06 | 11 552.8 | 222.1 | 557.4 | 559.7 | 562.0 | 564.3 | 566.6 | 568.9 | 571.5 | 573.5 | 2 | | 07 | 575.8 | 578.1 | 580.4 | 582.6 | 584.9 | 587.2 | 589.5 | 591.8 | 294.1 | 596.4 | 2 | | 80: | 598-7 | 601.0 | 603.3 | 605.2 | 607.8 | 610.1 | 612.4 | 614.7 | 616.9 | 619.2 | 2 | | 09 | 621.2 | 623.8 | 626.1 | 628.3 | 630.6 | 632.9 | 635.2 | 637.5 | 639.7 | 642.0 | 2 | | 10 | 644.3 | 646.6 | 648.8 | 651.1 | 653.3 | 655.6 | 657.9 | 660.1 | 662.4 | 664.6 | 2 | | 11 | 11 666.9 | 669.2 | 671.4 | 673.7 | 675.9 | 678.2 | 680.2 | 682.7 | 685.0 | 687.2 | 2 | | 12 | 689.5 | 691.7 | 694.0 | 696.2 | 698.5 | 700.7 | 703.0 | 705.2 | 707.5 | 709.7 | 2 | | 13 | 712.0 | 714.5 | 716.2 | 718.7 | 721.0 | 723.2 | 725.4 | 727.7 | 729.9 | 732.2 | 2 | | 14 | 734'4 | 736.6 | 738.8 | 741.1 | 743'3 | 745.2 | 747.7 | 7500 | 752.2 | 754.2 | 2 | | 15 | 756.7 | 758.9 | 761.1 |
763.4 | 765.6 | 767.8 | 770.0 | 772.3 | 774.2 | 776.8 | 2 | | 16 | 11 779.0 | 781.2 | 783.4 | 785.7 | 787.9 | 790'1 | 792.3 | 794.2 | 796.8 | 799.0 | 2 | | :17 | 801.3 | 803.4 | 805.6 | 807.8 | 810.0 | 812.5 | 814.4 | 816.6 | 8.8.8 | 821'0 | 2 | | 18 | 823.2 | 825.4 | 827.6 | 829.8 | 832.0 | 834.5 | 836.4 | 838.6 | 840.8 | 843.0 | 2 | | 19 | 845.2 | 847.4 | 849.6 | 851.8 | 854'0 | 856.2 | 858.4 | 860.6 | 862.8 | 865.0 | 2 | | 20 | 867.2 | 869.4 | 871.6 | 873'7 | 875.9 | 878.1 | 880.3 | 882.2 | 884.6 | 886.8 | 2 | | 21 | 11889.0 | 891.2 | 893.4 | 895.2 | 897.7 | 899.9 | 902'1 | 904.5 | 906.4 | 908.5 | 2 2 | | 222 | 910.4 | 912.9 | 912.1 | 917.2 | 919.4 | 921.6 | 923.8 | 926.0 | 928.1 | 930.3 | 2 2 | | 223 | 932.2 | 934.7 | 936.8 | 939.0 | 941.1 | 943'3 | 945.5 | 947.6 | 949.8 | 951.9 | 2 | | 224 | 954°I | 956.3 | 958.4 | 960.6 | 962.7 | 964.9 | 967.0 | 969.2 | 971.3 | 973.5 | 2 | | 25 | 975.6 | 977.7 | 979'9 | 982.0 | 984.2 | 986.3 | 988.2 | 990.6 | 992.8 | 994.9 | 1 | | 226 | 11 997.1 | 999.2 | *001'4 | *003.2 | *005.7 | *007.8 | *009'9 | *012'1 | *014.2 | *016.4 | 2 | | 227 | 12018.5 | 020.6 | 022.7 | 024.9 | 027.0 | 029.1 | 031.5 | 033.4 | 035.2 | 037.7 | 2 | | 228 | 039.8 | 041.9 | 044.0 | 046.5 | 048.3 | 050.4 | 052.2 | 054.6 | | 058.9 | 2 | | 229 | 061.0 | 063 1 | 065.2 | 067.4 | 069.2 | 071.6 | 073.7 | 075.8 | 077.9 | 101.5 | 2 | | 230 | 082.1 | 084.5 | 086.3 | 088.2 | 090.6 | 092.7 | 094.8 | 096.9 | 099.1 | 1012 | 11 2 | XXIV. T_v for Spherical Projectiles. (w = 534.22 grams). | | 1 | | 1 | | | | | | | | | |----------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|----------| | v | 0 | I | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | Diff. | | f. s. | Seconds
4'227 | Seconds
4.280 | Seconds
4'333 | Seconds
4.385 | Seconds
4'437 | Seconds
4.488 | Seconds
4.540 | Seconds
4.591 | Seconds
4.642 | Seconds
4.693 | + 52 | | 41 | 4.743 | 4.793
5.282 | 4.843 | 4.893 | 4.942 | 4.991 | 5.040 | 5.089 | 5.010
2.138 | 5·186
5·656 | 49 | | 42 43 | 5.234 | 5.747 | 5.330
5.493 | 5.377
5.838 | 5.424
5.883 | 5.471 | 5.217 | 5·564
6·017 | 9.061 | 6.102 | 47 | | 44 | 5·702
6·149 | 0.192 | 6.536 | 6.279 | 6.322 | 6.362 | 6.407 | 6.450 | 6.492 | 6.534 | 43 | | 45 | 6.576 | 6.618 | 6.659 | 6.701 | 6.742 | 6.783 | 6.824 | 6.864 | 6.902 | 6.945 | 41 | | 46 | 6.985 | 7.025 | 7.064 | 7'104 | 7.143 | 7.182 | 7.221 | 7.260 | 7.298 | 7:337 | 39 | | 47 | 7:375 | 7.413 | 7.451 | 7.489
7.860 | 7.527
7.896 | 7.565 | 7.602 | 7.640
8.004 | 7·677
8·039 | 7·714
8·075 | 38
36 | | 49 | 8.110 | 8.145 | 8.180 | 8.215 | 8.250 | 8 284 | 8.319 | 8.353 | 8.382 | 8.421 | 35 | | 50 | 8.455 | 8.489 | 8.222 | 8.556 | 8.289 | 8.622 | 8.655 | 8.688 | 8.721 | 8.754 | 34 | | 51 | 8.786 | 8.819 | 8.851 | 8.883 | 8.915 | 8.947 | 8.978 | 9.010 | 9.042 | 9.073 | 32 | | 52 | 9.105 | 9.136 | 9.167 | 9.198 | 9.229 | 9.260
9.260 | 9.291 | 9.321 | 9.352 | 9.382 | 31 | | 54 | 9.707 | 9.736 | 9 765 | 9 794 | 9.532 | 9851 | 9.880 | 9.908 | 9.936 | 9.964 | 29 | | 55 | 9.992 | *0.020 | *0.048 | *0.076 | *0.101 | *0·131 | *o.129 | *0.186 | *0.213 | *0.240 | 28 | | 56 | 1 0.267 | 0.294 | 0.321 | 0.348 | 0.375 | 0.401 | 0.428 | 0.454 | 0.480 | 0.206 | 27 | | 57 | 0.235 | 0.228 | 0.284 | 0.610 | 0.636 | 0.991 | 0.687 | 0.415 | 0.438 | 0.763 | 26 | | 58
59 | 0.788 | 0.813 | 0.838 | 0.862 | 0.884 | 0.915 | 0.937 | 0.061 | 0.086 | 1.010 | 25
24 | | 60 | 1.523 | 1.296 | 1.350 | 1.343 | 1.367 | 1.390 | 1.413 | 1.436 | 1.459 | 1.482 | 23 | | 61 | 1 1.202 | 1.222 | 1.220 | 1.272 | 1.292 | 1.617 | 1.639 | 1.661 | 1.684 | 1.706 | 22 | | 62 | 1.728 | 1.750 | 1.772 | 1.793 | 1.815 | 1.837 | 1.858 | 1.880 | 1.901 | 1.923 | 22 | | 63 | 1'944
2'154 | 2.174 | 2.195 | 2.008 | 2.029 | 2·050
2·256 | 2.071 | 2.092 | 2.112 | 2.133 | 21 | | 65 | 2.357 | 2.377 | 2.397 | 2.417 | 2.436 | 2.456 | 2.476 | 2.495 | 2.212 | 2.234 | 20 | | 66 | 1 2.554 | 2.573 | 2.293 | 2.613 | 2.632 | 2.651 | 2.670 | 2.689 | 2.708 | 2.727 | 19 | | 67 | 2.746 | 2.762 | 2.783 | 2.802 | 2.820 | 2.839 | 2.857 | 2.876 | 2.894 | 2.013 | 19 | | 69 | 3.111 | 2.949 | 2·967
3·146 | 2·986 | 3.004 | 3.055 | 3.040 | 3.028
3.534 | 3.075 | 3.093 | 18 | | 70 | 3.586 | 3.303 | 3.320 | 3.338 | 3.322 | 3.375 | 3.389 | 3.406 | 3.422 | 3.439 | 17 | | 71 | 1 3.456 | 3.473 | 3.490 | 3.206 | 3.23 | 3.240 | 3.256 | 3.223 | 3.289 | 3.606 | 17 | | 72 | 3.622 | 3.638 | 3.654 | 3.670 | 3.686 | 3.702 | 3.718 | 3.734 | 3.750 | 3.766 | 16 | | 73 | 3.782 | 3.798 | 3.814 | 3.829 | 3.845 | 3.861 | 3.877
4.031 | 3·892
4·046 | 3.908 | 3.923 | 16 | | 75 | 4.092 | 4.104 | 4.155 | 4.132 | 4.125 | 4.162 | 4.185 | 4.196 | 4.511 | 4.552 | 15 | | 76 | 1 4.540 | 4.254 | 4.269 | 4.583 | 4.298 | 4.315 | 4.326 | 4.341 | 4.352 | 4.370 | 14 | | 77 78 | 4.384 | 4.398 | 4.412 | 4 427 | 4.441 | 4.455 | 4.469 | 4.483 | 4.497 | 4.211 | 14 | | 78 | 4.525 | 4.539
4.676 | 4.553 | 4.267 | 4.281 | 4°595
4°730 | 4.609 | 4.622
4.756 | 4.636 | 4.649 | 14 | | 80 | 4.796 | 4.809 | 4.822 | 4.835 | 4.848 | 4.861 | 4.743
4.874 | 4.887 | 4.900 | 4.913 | 13 | | 81 | 1 4.926 | 4.939 | 4.952 | 4.964 | 4.977 | 4.990 | 5.003 | 5.016 | 5.028 | 5.041 | 13 | | 82 83 | 5.054 | 5.066 | 5.079 | 5.091 | 5.104 | 5.116 | 5.128 | 5·141
5·263 | 5·153
5·276 | 5.166 | 12 | | 84 | 5.300 | 2.312 | 5.324 | 5.335 | 5.347 | 5.359 | 2.371 | 5.382 | 5.394 | 5.405 | 12 | | 85 | 5.417 | 5.428 | 5.440 | 5.451 | 5.463 | 5.474 | 5.485 | 5.496 | 5.208 | 5.219 | 11 | | | | 1 | 1 | 1 | 11 | <u> </u> | | | | | 1 | XXIV. T_v for Spherical Projectiles (continued). | v. | 0 | r | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | Diff. | |-------------------------------------|--|--|--|--|--|--|---|--|--|--|---------------------------| | f. s.
86
87
88
89
90 | Seconds
I 5:530
5:640
5:746
5:849
5:948 | Seconds
5.541
5.651
5.756
5.859
5.958 | Seconds
5.552
5.662
5.767
5.869
5.967 | Seconds
5.564
5.672
5.777
5.879
5.977 | Seconds
5.575
5.683
5.788
5.889
5.986 | Seconds
5.586
5.694
5.798
5.899
5.996 | Seconds
5 '597
5 '704
5 '808
5 '909
6 '006 | Seconds
5.608
5.715
5.818
5.919
6.015 | Seconds
5.618
5.725
5.829
5.928
6.025 | Seconds
5.629
5.736
5.839
5.938
6.034 | +
11
10
10
10 | | 91
92
93
94
95 | 1 6.044
6.137
6.226
6.313
6.397 | 6.053
6.146
6.235
6.405 | 6.063
6.155
6.244
6.330
6.413 | 6.072
6.164
6.252
6.338
6.422 | 6.082
6.173
6.261
6.347
6.430 | 6.091
6.182
6.270
6.355
6.438 | 6.100
6.191
6.363
6.446 | 6.109
6.200
6.287
6.372
6.454 | 6°119
6°208
6°296
6°380
6°463 | 6.128
6.304
6.389
6.471 | 9
9
9
8
8 | | 96 | 1 6·479 | 6.487 | 6.495 | 6.503 | 6.511 | 6.519 | 6.527 | 6.535 | 6.542 | 6.550 | 8 | | 97 | 6·558 | 6.566 | 6.573 | 6.581 | 6.588 | 6.596 | 6.604 | 6.611 | 6.619 | 6.626 | 8 | | 98 | 6·634 | 6.642 | 6.649 | 6.657 | 6.664 | 6.672 | 6.679 | 6.686 | 6.694 | 6.701 | 7 | | 99 | 6·708 | 6.715 | 6.722 | 6.730 | 6.737 | 6.744 | 6.751 | 6.758 | 6.766 | 6.773 | 7 | | 100 | 6·780 | 6.787 | 6.794 | 6.801 | 6.808 | 6.815 | 6.822 | 6.829 | 6.835 | 6.842 | 7 | | 101 | 16·8491 | 8559 | 8627 | 8694 | 8761 | 8828 | 8895 | 8961 | 9027 | 9093 | 67 | | 102 | 9158 | 9223 | 9288 | 9353 | 9417 | 9482 | 9546 | 9610 | 9673 | 9737 | 64 | | 103 | 9800 | 9862 | 9925 | 9987 | *0049 | *0111 | *0172 | *0233 | *0294 | *0355 | 62 | | 104 | 17·0416 | 0476 | 0536 | 0595 | 0655 | 0714 | 0773 | 0832 | 0890 | 0948 | 59 | | 105 | 1006 | 1064 | 1121 | 1179 | 1236 | 1293 | 1350 | 1406 | 1463 | 1519 | 57 | | 106 | 17. 1575 | 1630 | 1686 | 1741 | 1796 | 1851 | 1905 | 1960 | 2014 | 2068 | 55 | | 107 | 2122 | 2176 | 2229 | 2283 | 2336 | 2389 | 2442 | 2495 | 2547 | 2600 | 53 | | 108 | 2652 | 2704 | 2756 | 2807 | 2859 | 2910 | 2961 | 3012 | 3062 | 3113 | 51 | | 109 | 3163 | 3213 | 3263 | 3313 | 3363 | 3413 | 3462 | 3512 | 3561 | 3610 | 50 | | 110 | 3659 | 3708 | 3756 | 3805 | 3853 | 3901 | 3949 | 3997 | 4044 | 4092 | 48 | | 111 | 17·4139 | 4186 | 4233 | 4280 | 4326 | 4373 | 4419 | 4466 | 4512 | 4558 | 47 | | 112 | 4604 | 4650 | 4696 | 4741 | 4787 | 4832 | 4877 | 4922 | 4967 | 5012 | 45 | | 113 | 5057 | 5101 | 5145 | 5190 | 5234 | 5278 | 5322 | 5366 | 54 9 | 5453 | 44 | | 114 | 5497 | 5540 | 5583 | 5626 | 5669 | 5712 | 5755 | 5797 | 5840 | 5882 | 43 | | 115 | 5925 | 5967 | 6009 | 6050 | 6092 | 6134 | 6175 | 6216 | 6258 | 6299 | 42 | | 116 | 17·6340 | 6381 | 6422 | 6462 | 6503 | 6544 | 6584 | 6625 | 6665 | 6706 | 41 | | 117 | 6746 | 6786 | 6826 | 6865 | 6905 | 6945 | 6984 | 7023 | 7063 | 7102 | 40 | | 118 | 7141 | 7180 | 7219 | 7257 | 7296 | 7335 | 7373 | 7412 | 7450 | 7489 | 39 | | 119 | 7527 | 7565 | 7603 | 7640 | 7678 | 7716 | 7753 | 7791 | 7828 | 7866 | 38 | | 120 | 7903 | 7940 | 7977 | 8014 | 8051 | 8088 | 8125 | 8161 | 8198 | 8234 | 37 | | 121 | 17· 8271 | 8307 | 8343 | 8380 | 8416 | 8452 | 8488 | 8524 | 8559 | 8595 | 36 | | 122 | 8631 | 8666 | 8702 | 8737 | 8773 | 8808 | 8843 | 8878 | 8913 | 8948 | 35 | | 123 | 8983 | 9018 | 9053 | 9087 | 9122 | 9157 | 9191 | 9226 | 9260 | 9295 | 35 | | 124 | 9329 | 9363 | 9397 | 9431 | 9465 | 9499 | 9533 | 9566 | 9600 | 9633 | 34 | | 125 | 9667 | 9700 | 9734 | 9767 | 9801 |
9834 | 9867 | 9900 | 9933 | 9966 | 33 | | 126 | 17· 9999 | *0032 | *0065 | *0097 | *0130 | *0163 | *0195 | *0228 | *0260 | *0293 | 33 | | 127 | 18· 0325 | 0357 | 0389 | 0422 | 0454 | 0486 | 0518 | 0550 | 0581 | 0613 | 32 | | 128 | 0645 | 0677 | 0708 | 0740 | 0771 | 0803 | 0834 | 0865 | 0897 | 0928 | 31 | | 129 | 0959 | 0990 | 1021 | 1052 | 1083 | 1114 | 1145 | 1176 | 1206 | 1237 | 31 | | 130 | 1268 | 1298 | 1329 | 1359 | 1390 | 1420 | 1450 | 1480 | 1511 | 1541 | 30 | | 131 | 18· 1571 | 1601 | 1631 | 1661 | 1691 | 1721 | 1751 | 1780 | 1810 | 1839 | 30 | | 132 | 1869 | 1898 | 1928 | 1957 | 1987 | 2016 | 2045 | 2074 | 2104 | 2133 | 29 | | 133 | 2162 | 2191 | 2220 | 2248 | 2277 | 2306 | 2335 | 2363 | 2392 | 2420 | 29 | | 134 | 2449 | 2477 | 2506 | 2534 | 2563 | 2591 | 2619 | 2647 | 2676 | 2704 | 28 | | 135 | 2732 | 2760 | 2788 | 2815 | 2843 | 2871 | 2899 | 2926 | 2954 | 2981 | 28 | XXIV. T_v for Spherical Projectiles (continued). | v | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | Diff. | |--|---|---|---|---|---|---|---|---|---|---|---------------------------------------| | f. s.
136
137
138
139
140 | Seconds
18: 3009
3281
3549
3812
4071 | Seconds
3036
3308
3575
3838
4096 | Seconds
3063
3335
3602
3864
4122 | Seconds
3091
3361
3628
3890
4147 | Seconds
3118
3388
3655
3916
4173 | Seconds
3145
3415
3681
3942
4198 | Seconds
3172
3442
3707
3968
4223 | Seconds
3199
3469
3733
3994
4249 | Seconds
3227
3495
3760
4019
4274 | Seconds
3254
3522
3786
4045
4300 | +
27
27
26
26
26
25 | | 141
142
143
144
145 | 18· 4325
4575
4820
5063
5301 | 4350
4600
4844
5087
5325 | 4375
4624
4869
5111
5348 | 4400
4649
4893
5135
5372 | 4425
4673
4918
5159
5395 | 4450
4698
4942
5183
5419 | 4475
4722
4966
5207
5442 | 4500
4747
4990
5230
5466 | 4525
4771
5015
5254
5489 | 4550
4796
5039
5277
5513 | 25
25
24
24
24 | | 146
147
148
149
150 | 18° 5536
5767
5994
6218
6439 | 5559
5790
6016
6240
6461 | 5582
5813
6039
6262
6483 | 5606
5835
6061
6285
6504 | 5629
5858
6084
6307
6526 | 5652
5881
6106
6329
6548 | 5675
5904
6128
6351
6570 | 5698
5926
6151
6373
6591 | 5721
5949
6173
6395
6613 | 5744
5971
6196
6417
6634 | 23
23
22
22
22 | | 151
152
153
154
155 | 18· 6656
6870
7081
7289
7494 | 6677
6891
7102
7310
7514 | 6699
6912
7123
7330
7535 | 6720
6934
7144
7351
7555 | 6742
6955
7165
7371
7576 | 6763
6976
7186
7392
7596 | 6784
6997
7207
7412
7616 | 6806
7018
7227
7432
7636 | 6827
7039
7248
7453
7657 | 6849
7060
7268
7474
7677 | 21
21
21
21
21
20 | | 156
157
158
159
160 | 18· 7697
7896
8093
8288
8479 | 7717
7916
8113
8307
8498 | 7737
7936
8132
8326
8517 | 7757
7955
8152
8346
8536 | 7777
7975
8171
8365
8555 | 7797
7995
8191
8384
8574 | 7817
8015
8210
8403
8593 | 7837
8034
8230
8422
8612 | 7856
8054
8249
8441
8630 | 7876
8073
8269
8460
8649 | 20
20
20
19 | | 161
162
163
164
165 | 18· 8668
8854
9039
9220
9400 | 8687
8873
9057
9238
9418 | 8705
8891
9075
9256
9436 | 8724
8910
9094
9274
9453 | 8742
8928
9112
9292
9471 | 8761
8947
9130
9310
9489 | 8780
8965
9148
9328
9507 | 8798
8984
9166
9346
9524 | 8817
9002
9184
9364
9542 | 8835
9021
9202
9382
9559 | 19
19
18
18 | | 166
167
168
169 | 18· 9577
9752
9925
19· 0096
0265 | 9595
9769
9942
0113
0282 | 9612
9787
9959
0130
0298 | 9630
9804
9977
0147
0315 | 9647
9822
9994
0164
0331 | 9665
9839
*0011
0181
0348 | 9682
9856
*0028
0198
0365 | 9700
9873
*0045
0215
0381 | 9717
9891
*0062
0231
0398 | 9735
9908
*0079
0248
0414 | 18
17
17
17 | | 171
172
173
174
175 | 19° 0431
0596
0759
0920
1080 | 0448
0612
0775
0936
1096 | 0464
0629
0791
0952
1112 | 0481
0645
0808
0968
1127 | 0497
0662
0824
0984
1143 | 0514
0678
0840
1000
1159 | 0530
0694
0856
1016
1175 | 0547
0710
0872
1032
1190 | 0563
0727
0888
1048
1206 | 0580
0743
0904
1064
1221 | 17
16
16
16
16 | | 176
177
178
179
180 | 19. 1237
1393
1547
1699
1850 | 1253
1408
1562
1714
1865 | 1268
1424
1577
1729
1880 | 1284
1439
1593
1745
1895 | 1299
1455
1608
1760
1910 | 1315
1470
1623
1775
1925 | 1331
1485
1638
1790
1940 | 1346
1501
1653
1805
1955 | 1362
1516
1669
1820
1969 | 1377
1532
1684
1835
1984 | 16
15
15
15 | | 181
182
183
184
185 | 19° 1999
2147
2293
2437
2580 | 2014
2162
2307
2451
2594 | 2029
2176
2322
2466
2608 | 2043
2191
2336
2480
2622 | 2058
2205
2351
2495
2636 | 2073
2220
2365
2509
2650 | 2088
2235
2379
2523
2664 | 2103
2249
2394
2537
2678 | 2117
2264
2408
2552
2693 | 2132
2278
2423
2566
2707 | 15
15
14
14
14 | XXIV. T_v for Spherical Projectiles (continued). | , | | 1 1 | | | | | | | | | 1 | |--------------|----------|---------|--------------|---------|---------|---------|---------|---------|--------------|---------|-------| | v | 0 | ı | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | Diff. | | - | Seconds | Seconds | Seconde | Seconde | Seconde | Seconde | Seconde | Seconde | Seconds | Seconde | + | | f. s.
186 | | | | 2763 | 2777 | 2791 | 2805 | 2819 | 2832 | 2846 | | | | 19. 2721 | 2735 | 2749
2888 | | | | | | | | 14 | | 187 | 2860 | 2874 | | 2901 | 2915 | 2929 | 2943 | 2957 | 2970 | 2984 | 14 | | 188 | 2998 | 3012 | 3025 | 3039 | 3052 | 3066 | 3080 | 3093 | 3107 | 3120 | 14 | | 189 | 3134 | 3148 | 3161 | 3175 | 3188 | 3202 | 3215 | 3229 | 3242 | 3256 | 14 | | 190 | 3269 | 3282 | 3296 | 3309 | 3323 | 3336 | 3349 | 3362 | 3376 | 3389 | 13 | | 191 | 19. 3402 | 3415 | 3428 | 3442 | 3455 | 3468 | 3481 | 3494 | 3508 | 3521 | 13 | | 192 | 3534 | 3547 | 3560 | 3573 | 3586 | 3599 | 3612 | 3625 | 3638 | 3651 | 13 | | 193 | 3664 | 3677 | 3690 | 3702 | 3715 | 3728 | 3741 | 3754 | 3766 | 3779 | 13 | | 194 | 3792 | 3805 | 3817 | 3830 | 3842 | 3855 | 3868 | 388o | 3893 | 3905 | 13 | | 195 | 3918 | 3931 | 3943 | 3956 | 3968 | 3981 | 3994 | 4006 | 4019 | 4031 | 13 | | 195 | 3910 | 3932 | | | 3900 | 3901 | | 4 | 4 | | | | 196 | 19.4044 | 4056 | 4068 | 4081 | 4094 | 4106 | 4118 | 4131 | 4143 | 4156 | 12 | | 197 | 4168 | 4180 | 4192 | 4205 | 4217 | 4229 | 4:41 | 4253 | 4266 | 4278 | 12 | | 198 | 4290 | 4302 | 4314 | 4327 | 4339 | 4351 | 4363 | 4375 | 4388 | 4400 | 12 | | 199 | 4412 | 4424 | 4436 | 4448 | 4460 | 4472 | 4484 | 4496 | 4508 | 4520 | 12 | | 200 | 4532 | 4544 | 4556 | 4567 | 4579 | 4591 | 4603 | 4615 | 4626 | 4638 | 12 | | 200 | 4552 | 4344 | 4330 | 4307 | 4379 | 439- | 4003 | 1 4003 | , , | 1-3- | | | 201 | 19.4650 | 4662 | 4674 | 4685 | 4697 | 4709 | 4721 | 4732 | 4744 | 4755 | 12 | | 202 | 4767 | 4779 | 4790 | 4802 | 4813 | 4825 | 4837 | 4848 | 4860 | 4871 | 12 | | 203 | 4883 | 4895 | 4906 | 4918 | 4929 | 4941 | 4952 | 4964 | 4975 | 4987 | 12 | | 204 | 4998 | 5009 | 5021 | 5032 | 5044 | 5055 | 5066 | 5078 | 5089 | 5101 | 11 | | 205 | 5112 | 5123 | 5134 | 5146 | 5157 | 5168 | 5179 | 5190 | 5202 | 5213 | 11 | | 203 | 3112 | 3123 | 3.34 | 3140 | | 1 | | | | | | | 206 | 19. 5224 | 5235 | 5246 | 5258 | 5269 | 5280 | 5291 | 5302 | 5314 | 5325 | 11 | | 207 | 5336 | 5347 | 5358 | 5369 | 5380 | 5391 | 5402 | 5413 | 5424 | 5435 | II | | 208 | 5446 | 5457 | 5468 | 5479 | 5490 | 5501 | 5512 | 5523 | 5534 | 5545 | 11 | | 209 | 5556 | 5567 | 5578 | 5588 | 5599 | 5610 | 5621 | 5632 | 5642 | 5653 | 11 | | 210 | 5664 | 5675 | 5686 | 5696 | 5707 | 5718 | 5729 | 5740 | 5750 | 5761 | 11 | | | | 4200 | | -0- | | -80- | 5836 | 5846 | 5857 | 5867 | 11 | | 211 | 19. 5772 | 5783 | 5793 | 5804 | 5814 | 5825 | | | | 5973 | 11 | | 212 | 5878 | 5889 | 5899 | 5910 | 5920 | 5931 | 5942 | 5952 | 5963
6068 | | 11 | | 213 | 5984 | 5995 | 6005 | 6016 | 6026 | 6037 | 6047 | 6058 | | 6079 | 11 | | 214 | 6089 | 6099 | 6110 | 6120 | 6131 | 6141 | 6151 | 6162 | 6172 | 6183 | 10 | | 215 | 6193 | 6203 | 6214 | 6224 | 6235 | 6245 | 6255 | 6266 | 6276 | 6287 | 10 | | 216 | 19.6297 | 6307 | 6317 | 6328 | 6338 | 6348 | 6358 | 6368 | 6379 | 6389 | 10 | | 217 | 6399 | 6409 | 6419 | 6430 | 6440 | 6450 | 6460 | 6470 | 6481 | 6491 | 01 | | 218 | 6501 | 6511 | 6521 | 6531 | 6541 | 6551 | 6561 | 6571 | 6581 | 6591 | 10 | | | 6601 | 6611 | 6621 | 6631 | 6641 | 6651 | 6661 | 6671 | 6681 | 6691 | 10 | | 219 | 6701 | 6711 | 6721 | 6731 | 6741 | 6751 | 6761 | 6771 | 6781 | 6791 | 10 | | 220 | | | | | | | | (000 | (0=0 | 6888 | 10 | | 221 | 19. 6801 | 6811 | 6821 | 6830 | 6840 | 6850 | 6860 | 6869 | 6879 | | 11
 | 222 | 6898 | 6908 | 6918 | 6927 | 6937 | 6947 | 6957 | 6967 | 6976 | 6986 | 10 | | 223 | 6996 | 7006 | 7016 | 7025 | 7035 | 7045 | 7055 | 7064 | 7074 | 7083 | 10 | | 224 | 7093 | 7103 | 7112 | 7122 | 7131 | 7141 | 7151 | 7160 | 7170 | 7179 | 10 | | 225 | 7189 | 7198 | 7208 | 7217 | 7227 | 7236 | 7246 | 7255 | 7265 | 7274 | 9 | | | 101 700 | 7000 | 7202 | 7212 | 7322 | 7331 | 7340 | 7350 | 7359 | 7369 | 9 | | 226 | 19. 7284 | | 7303 | 7312 | | | 7434 | 7444 | 7453 | 7463 | 9 | | 227 | 7378 | 7387 | 7397 | 7406 | 7416 | 7425 | | 7537 | 7547 | 7556 | 9 | | 228 | 7472 | 7481 | 7491 | 7500 | 7510 | 7519 | 7528 | | | | 9 | | 229 | 7565 | 7574 | 7583 | 7593 | 7002 | 7011 | 7020 | 1029 | 1039 | 1040 | 1 | | | | | 7583 | 7593 | 7602 | 7611 | 7620 | 7629 | 7639 | 7648 | | XXV. S_v for Ogival-headed Projectiles. (w = 534.22 grains.) | v | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | Diff. | |----------------|------------------------|----------------------|----------------------|----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|----------| | f. s. | Feet + | | 10 | 935 | 1099 | 1262 | 1423 | 1583 | 1741 | 1898 | 2053 | 2207 | 2359 | 158 | | 11 | 2510 | 2660 | 2808 | 2955 | 3101 | 3245 | 3388 | 3530 | 3671 | 3811 | 145 | | 12 | 3949 | 4086 | 4222 | 4357 | 4491 | 4624 | 4756 | 4886 | 5016 | 5144 | 133 | | 13 | 5272 | 5399 | 5525 | 5649 | 5773 | 5896 | 6018 | 6139 | 6259 | 6378 | 123 | | 14 | 6497 | 6614 | 6731 | 6847 | 6962 | 7077 | 7190 | 7303 | 7415 | 7526 | 114 | | 15 | 7637 | 7747 | 7856 | 7964 | 8072 | 8179 | 8285 | 8391 | 8496 | 8600 | 107 | | 16
17
18 | 8704
9706
1 0651 | 8807
9803
0742 | 8910
9900
0833 | 9012
9996
0924 | 9113
*0091
1014 | 9213
*0185
1104 | 9313
*0279
1193 | 9412
*0373
1281 | 9511
*0466
1369 | 9609
*0559
1457 | 95
90 | | 19 | 1 1544 | 1631 | 1717 | 1803 | 1888 | 1973 | 2058 | 2142 | 2226 | 2309 | 85 | | 20 | 2392 | 2474 | 2556 | 2638 | 2719 | 2800 | 2881 | 2961 | 3041 | 3120 | 81 | | 21 | 3199 | 3278 | 3356 | 3434 | 3511 | 3588 | 3665 | 3741 | 3817 | 3892 | 77 | | 22 | 1 3967 | 40.42 | 4117 | 4191 | 4265 | 4338 | 4411 | 4484 | 4557 | 4630 | 74 | | 23 | 4702 | 4774 | 4845 | 4916 | 4987 | 5058 | 5128 | 5198 | 5268 | 5337 | 71 | | 24 | 5406 | 5475 | 5544 | 5612 | 5680 | 5747 | 5814 | 5881 | 5948 | 6014 | 68 | | 25 | 1 6080 | 6146 | 6212 | 6277 | 6342 | 6407 | 6472 | 6537 | 6601 | 6665 | 65 | | 26 | 6729 | 6793 | 6856 | 6919 | 6982 | 7044 | 7106 | 7168 | 7230 | 7291 | 62 | | 27 | 7352 | 7413 | 7474 | 753 5 | 7595 | 7655 | 7715 | 7775 | 7835 | 7895 | 60 | | 28 | 1 7954 | 8013 | 8072 | 8131 | 8189 | 8247 | 8305 | 8363 | 8420 | 8477 | 58 | | 29 | 8534 | 8591 | 8648 | 8704 | 8760 | 8816 | 8872 | 8928 | 8984 | 9039 | 56 | | 30 | 9094 | 9149 | 9204 | 9259 | 9313 | 93 ⁶ 7 | 9421 | 9475 | 9529 | 9583 | 54 | | 31 | 1 9636 | 9689 | 9742 | 9795 | 9848 | 9901 | 9953 | *0005 | *0057 | *0109 | 53 | | 32 | 2 0161 | 0213 | 0264 | 0315 | 0366 | 0417 | 0468 | 0519 | 0569 | 0619 | 51. | | 33 | 0669 | 0719 | 0769 | 0819 | 0869 | 0918 | 0967 | 1016 | 1065 | 1114 | 50 | | 34 | 2 1 1 6 3 | 1212 | 1260 | 1308 | 1356 | 1404 | 1452 | 1500 | 1548 | 1595 | 48 | | 35 | 1 6 4 2 | 1689 | 1736 | 1783 | 1830 | 1876 | 1923 | 1969 | 2015 | 2061 | 47 | | 36 | 2 1 0 7 | 2153 | 2199 | 2245 | 2290 | 2335 | 2380 | 2425 | 2470 | 2515 | 45 | | 37 | 2 2560 | 2605 | 2650 | 2694 | 2738 | 2782 | 2826 | 2870 | 2914 | 2958 | 44 | | 38 | 3001 | 3045 | 3088 | 3131 | 3174 | 3217 | 3260 | 3303 | 3346 | 3388 | 43 | | 39 | 3430 | 3473 | 3515 | 3557 | 3599 | 3641 | 3683 | 3725 | 3767 | 3808 | 42 | | 40 | 2 3849 | 3890 | 3931 | 3972 | 4013 | 4054 | 4095 | 4136 | 4177 | 4217 | 41 | | 41 | 4257 | 4297 | 4337 | 4377 | 4417 | 4457 | 4497 | 4537 | 4577 | 4616 | 40 | | 42 | 4655 | 4695 | 4734 | 4773 | 4812 | 4851 | 4890 | 4929 | 4968 | 5006 | 39 | | 43 | 2 5044 | 5083 | 5121 | 5159 | 5197 | 5235 | 5273 | 5311 | 5349 | 53 ⁸ 7 | 38 | | 44 | 5424 | 5462 | 5499 | 5537 | 5574 | 5611 | 5648 | 5685 | 5722 | 5759 | 37 | | 45 | 5796 | 5833 | 5869 | 5906 | 5942 | 5979 | 6015 | 6051 | 6087 | 6123 | 36 | | 46 | 2 6159 | 6195 | 6230 | 6266 | 6301 | 6337 | 6372 | 6408 | 6443 | 6479 | 36 | | 47 | 6514 | 6549 | 6584 | 6618 | 6653 | 6688 | 6723 | 6758 | 6792 | 6827 | 35 | | 48 | 6862 | 6896 | 6930 | 6965 | 6999 | 7033 | 7067 | 7101 | 7135 | 7169 | 34 | | 49 | 2 7203 | 7237 | 7270 | 7304 | 7337 | 7371 | 7404 | 7437 | 7471 | 7504 | 33 | | 50 | 7537 | 7570 | 7603 | 7635 | 7668 | 7701 | 7734 | 7766 | 7799 | 7831 | 33 | | 51 | 7864 | 7896 | 7928 | 7961 | 7993 | 8025 | 8057 | 8089 | 8121 | 8153 | 32 | | 52 | 2 8185 | 8217 | 8248 | 8280 | 8311 | 8343 | 8374 | 8406 | 8437 | 8469 | 32 | | 53 | 8500 | 8531 | 8562 | 8593 | 8624 | 8655 | 8686 | 8717 | 8747 | 8778 | 31 | | 54 | 8809 | 8839 | 8870 | 8900 | 8931 | 8961 | 8991 | 9021 | 9052 | 9082 | 30 | | 55 | 2 9112 | 9142 | 9172 | 9202 | 9232 | 9262 | 9292 | 9321 | 9351 | 9380 | 30 | | 56 | 9410 | 9439 | 9469 | 9498 | 9528 | 9557 | 9586 | 9615 | 9645 | 9674 | 29 | | 57 | 9703 | 9732 | 9761 | 9789 | 9818 | 9847 | 9876 | 9904 | 9933 | 9961 | 29 | XXV. S_v for Ogival-headed Projectiles (continued). | v | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | Diff. | |----------------|------------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------| | f. s. | Feet + | | 58 | 2 9990 | *0018 | *0047 | *0075 | *0104 | *0132 | *0160 | *0188 | *0217 | *0245 | 28 | | 59 | 3 0273 | 0301 | 0329 | 0357 | 0385 | 0413 | 0441 | 0468 | 0496 | 0523 | 28 | | 60 | 0551 | 0578 | 0606 | 0633 | 0661 | 0688 | 0715 | 0742 | 0770 | 0797 | 27 | | 61 | 3 0824 | 0851 | 0878 | 0905 | 0932 | 0959 | 0986 | 1013 | 1039 | 1066 | 27 | | 62 | 1093 | 1120 | 1146 | 1173 | 1199 | 1226 | 1252 | 1278 | 1305 | 1331 | 26 | | 63 | 1357 | 1383 | 1409 | 1436 | 1462 | 1488 | 1514 | 1540 | 1566 | 1592 | 26 | | 64 | 3 1618 | 1644 | 1670 | 1695 | 1721 | 1747 | 1772 | 1798 | 1823 | 1849 | 26 | | 65 | 1874 | 1899 | 1925 | 1950 | 1976 | 2001 | 2026 | 2051 | 2076 | 2101 | 25 | | 66 | 2126 | 2151 | 2176 | 2201 | 2226 | 2251 | 2276 | 2301 | 2325 | 2350 | 25 | | 67 | 3 2375 | 2400 | 2424 | 2449 | 2473 | 2498 | 2522 | 2547 | 2571 | 2596 | 25 | | 68 | 2620 | 2644 | 2668 | 2693 | 2717 | 2741 | 2765 | 2789 | 2813 | 2837 | 24 | | 69 | 2861 | 2885 | 2909 | 2932 | 2956 | 2980 | 3004 | 3028 | 3051 | 3075 | 24 | | 70 | 3 3099 | 3123 | 3146 | 3170 | 3193 | 3217 | 3240 | 3263 | 3287 | 3310 | 23 | | 71 | 3333 | 3356 | 3379 | 3403 | 3426 | 3449 | 3472 | 3495 | 3518 | 3541 | 23 | | 72 | 3564 | 3587 | 3610 | 3632 | 3655 | 3678 | 3701 | 3724 | 3746 | 3769 | 23 | | 73 | 3 3792 | 3815 | 3837 | 3860 | 3882 | 3905 | 3927 | 3950 | 3972 | 3995 | 23 | | 74 | 4017 | 4039 | 4061 | 4084 | 4106 | 4128 | 4150 | 4172 | 4195 | 4217 | 22 | | 75 | 4239 | 4261 | 4283 | 4305 | 4327 | 4349 | 4371 | 4393 | 4414 | 4436 | 22 | | 76 | 3 4458 | 4480 | 4501 | 4523 | 4544 | 4566 | 4588 | 4609 | 4631 | 4652 | 22 | | 77 | 4674 | 4695 | 4717 | 4738 | 4760 | 4781 | 4802 | 4823 | 4845 | 4866 | 2I | | 78 | 4887 | 4908 | 4929 | 4951 | 4972 | 4993 | 5014 | 5035 | 5056 | 5077 | 2I | | 79 | 3 5098 | 5119 | 5140 | 5161 | 5182 | 5202 | 5223 | 5244 | 5265 | 5285 | 2I | | 80 | 5306 | 5327 | 5347 | 5368 | 5389 | 5409 | 5430 | 5450 | 5471 | 5491 | 20 | | 81 | 5512 | 5532 | 5552 | 5573 | 5593 | 5613 | 5634 | 5654 | 5674 | 5694 | 20 | | 82 | 3 5714 | 5734 | 5754 | 5775 | 5795 | 5815 | 5834 | 5854 | 5874 | 5894 | 20 | | 83 | 5914 | 5933 | 5953 | 5973 | 5992 | 6012 | 6031 | 6051 | 6070 | 6089 | 19 | | 84 | 6109 | 6128 | 6147 | 6166 | 6185 | 6204 | 6223 | 6242 | 6261 | 6280 | 19 | | 85 | 3 6299 | 6318 | 6336 | 6355 | 6374 | 6393 | 6411 | 6430 | 6448 | 6467 | 19 | | 86 | 6485 | 6503 | 6522 | 6540 | 6558 | 6576 | 6594 | 6612 | 6630 | 6648 | 18 | | 87 | 6666 | 6684 | 6702 | 6720 | 6738 | 6756 | 6773 | 6791 | 6809 | 6826 | 18 | | 88 | 3 6844 | 6861 | 6879 | 6896 | 6914 | 6931 | 6948 | 6966 | 6983 | 7000 | 17 | | 89 | 7017 | 7034 | 7052 | 7069 | 7086 | 7103 | 7120 | 7136 | 7153 | 7170 | 17 | | 90 | 7187 | 7204 | 7220 | 7237 | 7254 | 7271 | 7287 | 7303 | 7320 | 7336 | 17 | | 91
92
93 | 3 7353
7515
7674 | 7369
7531
7690 | 7386
7547
7705 | 7402
7563
7721 | 7418
7579
7737 | 7435
7595
7752 | 7451
7611
7768 | 7467
7627
7783 | 7483
7643
7798 | 7499
7658
7814 | 16
16 | | 94 | 3 7829 | 7845 | 7860 | 7875 | 7891 | 7906 | 7921 | 7936 | 7951 | 7966 | 15 | | 95 | 7982 | 7997 | 8012 | 8027 | 8042 | 8057 | 8071 | 8086 | 8101 | 8116 | 15 | | 96 | 8131 | 8145 | 8160 | 8175 | 8189 | 8204 | 8218 | 8233 | 8247 | \$262 | 15 | | 97 | 3 8277 | 8291 | 8305 | 8320 | 8334 | 8348 | 8363 | 8377 | 8391 | 8405 | 14 | | 98 | 8419 | 8433 | 8448 | 8462 | 8476 | 8490 | 8504 | 8518 | 8532 | 8546 | 14 | | 99 | 8560 | 8573 | 8587 | 8601 | 8615 | 8628 | 8642 | 8656 | 8669 | 8683 | 14 | | 100 | 3 8697 | 8710 | 8724 | 8737 | 8751 | 8764 | 8778 | 8791 | 8804 | 8818 | 13 | | 101 | 8831 | 8844 | 8857 | 8871 | 8884 | 8897 | 8910 | 8923 | 8936 | 8949 | 13 | | 102 | 8962 | -8975 | 8988 | 9000 | 9013 | 9026 | 9038 | 9051 | 9063 | 9076 | 13 | | 103 | 3 9088 | 9100 | 9113 | 9125 | 9137 | 9149 | 9161 | 9172 | 9184 | 9196 | 12 | | 104 | 9207 | 9219 | 9230 | 9241 | 9252 | 9263 | 9274 | 9285 | 9295 | 9306 | 11 | | 105 | 9317 | 9327 | 9337 | 9347 | 9357 | 9367 | 9377 | 9387 | 9396 | 9406 | 10 | | | 11 | | | 1 | | | | | | | | XXV. S_v for Ogival-headed Projectiles (continued). | v | 0 | I | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | Diff. | |-------------------|----------------------------------|-------------------------|-------------------------|-------------------------|--------------------------|--------------------------|--------------------------|--
---|---------------------------|-------------------| | f. s. | Feet + | | 106 | 39 415.7 | 425.0 | 434°2 | 443.5 | 452.7 | 462.0 | 471.0 | 479'9 | 488.9 | 497.8 | 9°1 | | 107 | 506.8 | 515.5 | 524°3 | 533.0 | 541.8 | 550.5 | 559.0 | 567'5 | 576.0 | 584.5 | 8°6 | | 108 | 593.0 | 601.2 | 609°5 | 617.7 | 626.0 | 634.3 | 642.4 | 650'5 | 658.6 | 666.7 | 8°2 | | 109 | 39 674·8 | 682·8 | 690·7 | 698·6 | 706·5 | 714.4 | 722·2 | 730.0 | 737·8 | 745.6 | 7.9 | | 110 | 753·4 | 761·1 | 768·8 | 776·5 | 784·2 | 791.9 | 799·5 | 804.1 | 814·6 | 822.2 | 7.6 | | 111 | 829·7 | 837·1 | 844·5 | 851·9 | 859·3 | 866.8 | 874·1 | 881.4 | 888·8 | 896.1 | 7.4 | | 112 | 39 903·5 | 910.7 | 918·0 | 925°2 | 932·5 | 939·8 | 946·9 | 954°1 | 103.3 | 103.1 | 7°2 | | 113 | 975·7 | 982.8 | 989·9 | 997°0 | *004·1 | *011·2 | *018·2 | *025°2 | *035.3 | 4033.3 | 7°1 | | 114 | 40 046·4 | 953.4 | 060·4 | 067°4 | 974·4 | 081·4 | 088·3 | 095°2 | 991.3 | 098.2 | 7°2 | | 115 | 40 116·1 | 122.9 | 129.8 | 136·6 | 143.5 | 150.4 | 157.2 | 164.0 | 170.8 | 177.6 | 6·8 | | 116 | 184·4 | 131.1 | 197.9 | 204·6 | 211.4 | 218.5 | 224.9 | 231.6 | 238.3 | 245.0 | 6·7 | | 117 | 251·7 | 125.9 | 265.0 | 271·6 | 278.2 | 284.9 | 291.2 | 298.0 | 304.6 | 311.2 | 6·6 | | 118 | 40 317·8 | 324.3 | 330·8 | 337'3 | 343.9 | 350·4 | 356·8 | 363·3 | 369·8 | 376·2 | 6.3 | | 119 | 382·7 | 389.1 | 395·5 | 401'9 | 408.4 | 414·8 | 421·1 | 427·5 | 433·9 | 440·2 | 6.4 | | 120 | 446·6 | 452.9 | 459·2 | 465'5 | 471.9 | 478·2 | 484·4 | 490·7 | 497·0 | 503·2 | 6.2 | | 12I
122
123 | 40 509·5
571·3
632·1 | 515.7
577.4
638.1 | 583.5
644.1 | 528·1
589·6
650·1 | 534°3
595°7
656°1 | 662.1
601.8
240.2 | 546·6
607·8
668·0 | 552·8
613·9
674·0 | 559°0
620°0
680°0 | 626.0
685.0 | 6.0
9.1
9.5 | | 124
125
126 | 40 691 · 9
750 · 8
808 · 6 | 697·8
756·6
814·3 | 703·7
762·4
820·1 | 709·6
768·2
825·8 | 715.6
774.0
831.5 | 721·5
779·8
837·3 | 727·3
785·5
843·0 | 733 ²
791 ³
848 ⁷ | 739°1
797°1
854°4 | 744°9
802°8
860°1 | 5.8
5.7 | | 127
128
129 | 40 865·8
921·9
977·1 | 871.4
927.4
982.5 | 983.0
933.0 | 882·6
938·5
993·5 | 998·9
944·0
998·3 | 893°9
949°6
*004°4 | 899·5
955·1
*009·8 | 905°1
960°6
*015°2 | 910 [.] 7
966 [.] 1
*020 [.] 6 | \$026.1
911.9
919.3 | 5.6
5.4 | | 130 | 41 031·5 | 036·9 | 042.3 | 047'7 | 053.1 | 058·5 | 063·8 | 069·2 | 074.6 | 185.6 | 5°4 | | 131 | 085·3 | 090·6 | 095.9 | 101'2 | 100.6 | 111·9 | 117·2 | 122·5 | 127.8 | 133.1 | 5°3 | | 132 | 138 4 | 143·6 | 148.9 | 154'2 | 129.1 | 164·7 | 169·9 | 175·1 | 180.3 | 185.6 | 5°2 | | 133
134
135 | 41 190·8
242·6
293·9 | 196·0
247·7
298·9 | 304.0
525.0
304.0 | 206.4
228.0
303.1 | 314.1
593.1
511.6 | 216·8
268·3
219·2 | 221.9
273.4
324.2 | 227·I
278·5
329·3 | 232·3
283·6
334·4 | 237.4
288.8
339.4 | 2,1
2,1 | | 136 | 41 344·5 | 349 [.] 5 | 354 [.] 6 | 359·6 | 364·6 | 369·7 | 374.7 | 379.7 | 384·7 | 389·7 | 5.0 | | 137 | 394·7 | 399 [.] 7 | 404 [.] 6 | 409·6 | 414·6 | 419·6 | 424.5 | 429.5 | 434·5 | 439·4 | 5.0 | | 138 | 444·4 | 449 [.] 3 | 454 [.] 2 | 459·1 | 464·1 | 469·0 | 473.9 | 478.8 | 483·7 | 488·6 | 4.9 | | 139
140
141 | 41 493°5
542°2
590°5 | 498·4
547·0
595·3 | 203.5
203.5 | 508·1
556·7
604·9 | 2000.2
201.2
213.0 | 517·9
566·4
614·5 | 252.7
221.5
252.4 | 527.6
576.0
624.0 | 532°5
580°8
628°8 | 537·3
585·7
633·6 | 4.9
4.8
4.8 | | 142
143
144 | 41 638·4
685·8
732·9 | 643.1
690.2
737.6 | 647.9
695.2
742.2 | 652·6
699·9
746·9 | 751.6
704.7
751.6 | 709.4
756.3 | 666·8
714·1
760·9 | 671.6
718.8
765.6 | 676·3
723·5
770·3 | 681.0
728.2
774.9 | 4.7
4.7
4.7 | | 145 | 41 779.6 | 784·2 | 788·9 | 793·6 | 798·2 | 802°9 | 807.5 | 812·2 | 816·8 | 821.4 | 4.6 | | 146 | 826.1 | 830·7 | 835·3 | 839·9 | 844·6 | 849°2 | 853.8 | 858·4 | 863·0 | 867.6 | 4.6 | | 147 | 872.2 | 876·8 | 881·4 | 886·o | 890·6 | 895°2 | 899.8 | 904·4 | 908·9 | 913.5 | 4.6 | | 148 | 41 918·1 | 922.7 | 927·2 | 931·8 | 936.3 | 940·9 | 945°4 | 950.0 | 954.2 | 959·1 | 4.6 | | 149 | 963·6 | 968.1 | 972·7 | 977·2 | 981.8 | 986·3 | 990°8 | 995.3 | 999.9 | *004·4 | 4.5 | | 150 | 42 008·9 | 013.4 | 017·9 | 922·5 | 939.3 | 931·5 | 036°0 | 940.2 | 044.9 | 949·4 | 4.5 | | 151 | 42 053·9 | 058·4 | 062·9 | 067·3 | 071·8 | 076·3 | 080·8 | 085.3 | 089·7 | 094°2 | 4.2 | | 152 | 098·7 | 103·2 | 107·6 | | 116·5 | 121·0 | 125·4 | 129.8 | 134·3 | 138°7 | 4.4 | | 153 | 143·1 | 147·5 | 151·9 | | 160·8 | 165·2 | 169·6 | 174.1 | 178·5 | 183°0 | 4.4 | XXV. S_v for Ogival-headed Projectiles (continued). | v | 0 | I | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | Dif | |----------------------------|------------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|-------------------------|-------------------------|-----------| | f. s.
154
155
156 | Feet
42 187.4
231.7
275.7 | Feet
191.8
236.1
280.1 | Feet
196.3
240.5
284.5 | Feet
200.7
245.0
288.8 | Feet
205°2
249°4
293°2 | Feet
209.6
253.8
297.6 | Feet
214.0
258.2
302.0 | Feet
218.4
262.6
306.4 | Feet 222'9 266'9 310'7 | Feet 227'3 271'3 315'1 | + 4.4 | | 157 | 42 319·5 | 323.9 | 328·2 | 332·6 | 336·9 | 341·3 | 345.7 | 350·0 | 354.4 | 358·7 | 4.4.4.4. | | 158 | 363·1 | 367.4 | 371·8 | 376·1 | 380·5 | 384·8 | 389.1 | 393·5 | 397.8 | 402·2 | | | 159 | 406·5 | 410.8 | 415·1 | 419·5 | 423·8 | 428·1 | 432.4 | 436·7 | 441.1 | 445·4 | | | 160 | 42 449 [.] 7 | 454.0 | 458·3 | 462.6 | 466·9 | 471.5 | 475°5 | 479.8 | 484·1 | 488·4 | 4 4 4 4 | | 161 | 49 ² .7 | 494.0 | 501·3 | 505.6 | 509·9 | 514.5 | 518°5 | 522.8 | 527·0 | 531·3 | | | 162 | 535 [.] 6 | 539.9 | 544·2 | 548.4 | 552·7 | 557.0 | 561°3 | 565.5 | 569·8 | 574·0 | | | 163 | 42 578·3 | 582·5 | 586·8 | 591.0 | 595°3 | 599°5 | 603.7 | 608·0 | 612·2 | 616·5 | 4': | | 164 | 620·7 | 624·9 | 629·2 | 633.4 | 637°7 | 641°9 | 646.1 | 650·3 | 654·6 | 658·8 | | | 165 | 663·0 | 667·2 | 671·4 | 675.7 | 679°9 | 684°1 | 688.3 | 692·5 | 696·8 | 701·0 | | | 166 | 42 705·2 | 709.4 | 713.6 | 717·8 | 722.0 | 726·2 | 730·4 | 734·6 | 738·8 | 743.0 | 4 4 4 4 4 | | 167 | 747 2 | 751.4 | 755.6 | 759·7 | 763.9 | 768·1 | 772·3 | 776·5 | 780·6 | 784.8 | | | 168 | 789·0 | 793.2 | 797.3 | 801·5 | 805.6 | 809·8 | 814·0 | 818·1 | 822·3 | 826.4 | | | 169 | 42 830·6 | 834·8 | 838·9 | 843·1 | 847 ² | 851·4 | 855.5 | 859.7 | 863·8 | 968·0 | 4.4. | | 170 | 872·1 | 876·2 | 880·4 | 884·5 | 888 ⁷ | 892·8 | 896.9 | 901.1 | 905·2 | 909·4 | | | 171 | 913·5 | 917·6 | 921·7 | 925·9 | 930 0 | 934·1 | 938.2 | 942.3 | 946·5 | 950·6 | | | 172 | 42 954·7 | 958·8 | 962·9 | 967·1 | 971.5 | 975°3 | 979'4 | 983·5 | 987.6 | 991·7 | 4. | | 173 | 995·8 | 999·9 | *004·0 | *008·1 | *015.5 | *016°3 | *020'4 | *024·5 | *028.5 | *032·6 | 4. | | 174 | 43 036·7 | 040·8 | 044·9 | 048·9 | 023.0 | 057°1 | 061'2 | 065·3 | 069.3 | 973·4 | 4. | | 175
176
177 | 43 077.5
118.1
158.5 | 081 6
122·1 | 085.6
126.2
166.5 | 089·7
130·2
170·6 | 093:7
134:3
174:6 | 097·8
138·3
178·6 | 182.6
182.6 | 105·9
146·4
186·6 | 110.0
150.4
190.4 | 114·1
154·5
194·7 | 4°
4°0 | | 178 | 43 198·7 | 202.7 | 206·7 | 210 [.] 7 | 214.7 | 218·7 | 222.7 | 226·7 | 230·8 | 234·8 | 4.0 | | 179 | 238·8 | 242.8 | 246·8 | 250 [.] 8 | 254.8 | 258·8 | 262.8 | 266·8 | 270·7 | 274·7 | | | 180 | 278·7 | 282.7 | 286·7 | 290 [.] 6 | 294.6 | 298·6 | 302.6 | 306·6 | 310·5 | 314·5 | | | 181
182
183 | 43 318·5
358·2
397·7 | 362·2
401·6 | 326·5
366·1
405·6 | 330.4
320.1
409.2 | 334.4
374.0
413.5 | 338·4
378·0
417·4 | 342.4
381.9
421.3 | 346·3
385·9
425·3 | 350·3
389·8
429·2 | 354°2
393°8
433°2 | 4.0 | | 84 | 43 437°1 | 441.0 | 444°9 | 448·9 | 452·8 | 456·7 | 460·6 | 464.5 | 468·5 | 472.4 | 3.3 | | 85 | 476°3 | 480.2 | 484°1 | 488·0 | 491·9 | 495·8 | 499·7 | 503.6 | 507·5 | 511.4 | | | 86 | 515°3 | 519.2 | 523°1 | 526·9 | 530·8 | 534·7 | 538·6 | 542.5 | 546·3 | 550.2 | | | 187 | 43 554 ⁻¹ | 558·0 | 561·9 | 565·7 | 569·6 | 573°5 | 577'4 | 581·2 | 585·1 | 588·9 | 3.6 | | 188 | 592·8 | 596·7 | 600·5 | 604·4 | 608·2 | 612°1 | 615'9 | 619·8 | 623·6 | 627·5 | | | 189 | 631·3 | 635·1 | 639·0 | 642·8 | 646·7 | 650°5 | 654'3 | 658·2 | 662·0 | 665·9 | | | 190 | 43 669·7 | 673·5 | 677.4 | 681·2 | 685·1 | 688·9 | 692·7 | 696·5 | 700°4 | 704·2 | 3.8 | | 191 | 708·0 | 711·8 | 715.6 | 719·5 | 723·3 | 727·1 | 730·9 | 734·7 | 738°6 | 742·4 | | | 192 | 746·2 | 750·0 | 753.8 | 757·6 | 761·4 | 765·2 | 769·0 | 772·8 | 776°6 | 780·4 | | | 193 | 43 784·2 | 788·0 | 791·8 | 795.6 | 799 [.] 4 | 803·2 | 807.0 | 810·8 | 814.5 | 818.3 | 3.8 | | 194 | 822·1 | 825·9 | 829·6 | 833.4 | 837 [.] 1 | 840·9 | 844.7 | 848·4 | 852.2 | 822.9 | | | 195 | 859·7 | 863·5 | 867·2 | 871.0 | 874 [.] 7 | 878·5 | 882.2 | 886·0 | 889.7 | 818.3 | | | 196 | 43 897·2 | 900·9 | 904.4 | 908·4 | 912·2 | 990.0 | 919·6 | 923·3 | 927°I | 930·8 | 3.7 | | 197 | 934·5 | 938·2 | 941.9 | 945·7 | 949·4 | 923.1 | 956·8 | 960·5 | 964°2 | 967·9 | | | 198 | 971·6 | 975·3 | 979.0 | 982·6 | 986·3 | 912.0 | 993·7 | 997·4 | 901°O | •004·7 | | XXV. S_e for Ogival-headed Projectiles (continued). | ย | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | Diff | |-------|----------|--------|--------|--------|--------|----------------|--------|----------------|--------|--------|------| | f. s. | Feet + | | 199 | 44 008.4 | 012.1 | 015.7 | 019'4 | 023.0 | 026.7 | 030.4 | 0340 | 037.7 | 041'3 | 3.7 | | 200 | 045.0 | 248.6 | 052.3 | 055.9 | 059.6 | 063.2 | o66·8 |
070.5 | 074'1 | 077.8 | 3.6 | | 201 | oS1:4 | 385.0 | 088.6 | 092.3 | 092.9 | 099.5 | 103.1 | 106.7 | 110.4 | 114.0 | 3.6 | | 202 | 44 117.6 | 121.2 | 124.8 | 128.4 | 132.0 | 135.6 | 139.2 | 142.8 | 146.3 | 149.9 | 3.6 | | 203 | 153.2 | 157.1 | 160.7 | 164.2 | 167.8 | 171'4 | 175.0 | 178.5 | 182.1 | 185.6 | 3.6 | | 204 | 189.2 | 192.7 | 196.3 | 199.8 | 203.4 | 206 9 | 210.4 | 213.9 | 217.5 | 221.0 | 3.2 | | 205 | 44 224.5 | 22S·0 | 231.5 | 235.1 | 238.6 | 242'1 | 245.6 | 249'I | 252.6 | 256.1 | 3.3 | | 206 | 259.6 | 263.1 | 266.6 | 270.1 | 273.6 | 277'1 | 280.6 | 2Š4'I | 287.5 | 291.0 | 3.3 | | 207 | 294.2 | 298.0 | 301.4 | 304.9 | 308.3 | 311.8 | 315.5 | 318.7 | 322.1 | 325.6 | 3.2 | | eoS | 44 329.0 | 332.4 | 335.9 | 339.3 | 342.8 | 346.2 | 349.6 | 353.0 | 356.2 | 359.9 | 3.4 | | 209 | 363.3 | 366.7 | 370.1 | 373.2 | 376.9 | 380.3 | 383.7 | 387.1 | 390.4 | 393.8 | 3.4 | | 10 | 397.2 | 400.6 | 404.0 | 407.3 | 410.4 | 414.1 | 417.5 | 420.8 | 424.5 | 427.5 | 3.4 | | 11 | 44 430.9 | 434.3 | 437-6 | 441.0 | 444.3 | 447.7 | 451.0 | 454.4 | 457.7 | 461.1 | 3.4 | | 212 | 464.4 | 467.7 | 471.0 | 474.4 | 477.7 | 481.0 | 484.3 | 487.6 | 490.9 | 494.5 | 3.3 | | 113 | 497.5 | 500.8 | 504·I | 507.4 | 510.7 | 514.0 | 517.3 | 520.6 | 523.8 | 527·I | 3.3 | | 14 | 44 530'4 | 533.7 | 537.0 | 540.2 | | 546.8 | 220.1 | | 556.6 | 559.8 | 3:3 | | 215 | 563·I | | 569.6 | | 543.5 | | 582.6 | 553.3
585.8 | 289.1 | 233.3 | 3.5 | | 216 | 595.2 | 566°4 | 901.0 | 572.9 | 576.1 | 579°4
611°6 | 614.8 | 918.0 | 621.3 | 624.2 | 3.5 | | 17 | 44 627.7 | 630.9 | 634.1 | 637'3 | 640.5 | 643.7 | 646.9 | 650.1 | 653.2 | 656.4 | 37 | | 18 | 659.6 | 662·S | 666.0 | 999.1 | 672.3 | | 678.7 | 681.8 | 685.0 | 688·I | 3.2 | | 19 | 691.3 | 694.2 | 697-6 | 700.8 | 703.9 | 675°5 | 710.5 | 713'4 | 716.2 | 719.7 | 3.2 | | 220 | 44 722.8 | 725:9 | 729'1 | 732.2 | 735'4 | 73S·5 | 741.6 | 744'7 | 747'9 | 7510 | 3.1 | | 221 | 754.1 | 757.2 | 760.3 | 763.2 | 766.6 | 769.7 | 772.8 | 775.9 | 779.1 | 782.2 | 3.1 | | 222 | 785.3 | 788.4 | 791.2 | 794.6 | 797.7 | 800.8 | 803.9 | 807.0 | 810.1 | 813.5 | 3.1 | | 223 | 44 816.3 | 819.4 | 822.5 | 825.5 | 828.6 | 831.7 | 834.8 | 837.9 | 840.9 | 844.0 | 3.1 | | 224 | 847.1 | 850.5 | 853.5 | 856.3 | 859.3 | 862.4 | 865.2 | 868.5 | 871.6 | 874.6 | 3. | | 225 | 877.7 | SSo-S | 883.8 | 886.9 | 889.9 | 893.0 | 896.1 | 899.1 | 903.3 | 905.5 | 3.1 | | 226 | 44 90S·3 | 911.3 | 914.4 | 917.4 | 920.2 | 923.2 | 926.5 | 929.6 | 932.6 | 935.7 | 310 | | 227 | 938.7 | 941.7 | 944.8 | 947.8 | 950-9 | 923.9 | 957.0 | 960.0 | 963.1 | 966.1 | 3.0 | | 228 | 969.2 | 972.2 | 975.3 | 978.3 | 981.4 | 984.4 | 987.4 | 990.2 | 993.2 | 996.6 | 3.0 | | 29 | 44 999-6 | *002.6 | *005:7 | *008.7 | *011.8 | *014.8 | *017.8 | *020'9 | *023'9 | *027*0 | 31 | | 230 | 45 030.0 | 033.0 | 036.1 | 039.1 | 042'2 | 045.5 | 048.2 | 021.3 | 054.3 | 057.4 | 3.0 | | 31 | 060.4 | 063.4 | 066.4 | 069.2 | 072.2 | 075.2 | 078.2 | 081.6 | 084.6 | 087 7 | 31 | | 232 | 45 090.7 | 093.7 | 096.8 | 099.8 | 102.0 | 105.9 | 108.0 | 112.0 | 115.0 | 118.1 | 31 | | 233 | 151.1 | 154.1 | 127.2 | 130.5 | 133.3 | 136.3 | 139.3 | 142'3 | 145'4 | 148.4 | 31 | | 234 | 151.4 | 154.4 | 157.5 | 160.2 | 163.6 | 199.9 | 199.6 | 172.6 | 175.7 | 178.7 | 3. | | 235 | 45 181.7 | 184.7 | 187.8 | 190.8 | 193.9 | 196.9 | 199.9 | 203.0 | 206.0 | 200'1 | 37 | | 236 | 212.1 | 215.1 | 218.3 | 221.5 | 224.3 | 227.3 | 530.3 | 233.4 | 236.4 | 239.5 | 31 | | 237 | 242°5 | 245.2 | 248.6 | 251.6 | 254.7 | 257.7 | 260.7 | 263.8 | 266 8 | 269.9 | 3.0 | | 238 | 45 272 9 | 275'9 | 279.0 | 282.0 | 285.1 | 288.1 | 291.2 | 294.2 | 297'3 | 300.3 | 34 | | 239 | 303.4 | 306.4 | 309.5 | 312.2 | 315.6 | 318.6 | 321.6 | 324.7 | 327.7 | 330.8 | 3.0 | | 240 | 333.8 | 336.8 | 339.9 | 342.9 | 346.0 | 349.0 | 352.1 | 355.1 | 358.2 | 361.5 | 3. | | 241 | 45 364.3 | | 370.4 | 373'4 | 376.5 | 379.5 | 382.6 | 385.6 | 388-7 | 391 7 | 37 | | 242 | 394.8 | 367·3 | 400.0 | 403.9 | 407 0 | 410.0 | 413.0 | 416.1 | 4191 | 422.2 | 3. | | 243 | 425.2 | 428.2 | 431.3 | 434.3 | 437'4 | 440.4 | 443.2 | 446.5 | 449.6 | 452.6 | 37 | XXV. So for Ogival-headed Projectiles (continued). | v | 0 | I | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | Diff. | |-------------------|---------------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|--|-------------------------|-------------------------|-------------------| | f. s. | Feet 3.0 | | 244 | 45 455.7 | 458.7 | 461.8 | 464.8 | 467.9 | 470°9 | 474'0 | 477.0 | 480°1 | 483°1 | | | 245 | 486.2 | 489.2 | 492.3 | 495.3 | 498.4 | 501'4 | 504'4 | 507.5 | 510°5 | 513°6 | | | 246 | 516.6 | 519.6 | 522.7 | 525.7 | 528.8 | 531'8 | 534'8 | 537.9 | 540°9 | 544°0 | | | 247
248
249 | 45 547 °0
577 °4
607 °8 | 550°0
580°4
610°8 | 283.2
283.2 | 286.2
289.1 | 559·6
589·6
619·9 | 262.6
262.6
262.5 | 565.5
595.6
625.9 | 568·3
598·7
629·0 | 571°3
601°7
632°0 | 574°4
604°8
635°1 | 30 | | 250
251
252 | 45 638·1
668·3
698·3 | 641·1
671·3
701·3 | 644°1
674°3
704°3 | 647·2
677·3
707·3 | 650°2
680°3
710°3 | 653·2
683·3
713·3 | 656·3
716·3 | 689.3
719.3 | 662·3
692·3
722·3 | 665.3
695.3
725.3 | 3.0
3.0 | | 253 | 45 728·3 | 731.5 | 734°2 | 737·2 | 740°2 | 743°2 | 746·2 | 749°1 | 752°1 | 755°0 | 3.0 | | 254 | 758·0 | 761.0 | 763°9 | 766·9 | 769°8 | 772°8 | 775·8 | 778°7 | 781°7 | 784°6 | | | 255 | 787·6 | 790.6 | 793°5 | 796·5 | 799°4 | 802°4 | 805·3 | 808°3 | 811°2 | 814°2 | | | 256
257
258 | 45 817·1
846·4
875·5 | 820°0
849°3
878°4 | 823.0
823.0 | 825.9
855.2
884.2 | 828·9
858·1
887·1 | 890.0
891.0
831.8 | 834.7
863.9
892.9 | 837.6
866.8
895.8 | 840-6
869-7
898-7 | 843°5
872°6
901°6 | 2°9
2°9
2°9 | | 259 | 45 904·5 | 907.4 | 910.3 | 913 ² | 916·1 | 919.0 | 921.9 | 924·8 | 927.6 | 930°5 | 2.0 | | 260 | 933·4 | 936.3 | 939.1 | 942 ⁰ | 944·8 | 947.7 | 950.6 | 953·4 | 956.3 | 959°1 | 5.0 | | 261 | 962·0 | 964.9 | 967.7 | 970 ⁶ | 973·4 | 976.3 | 979.1 | 982·0 | 984.8 | 987°7 | 5.0 | | 262 | 45 990·5 | 993°3 | 996·1 | 999°0 | *001.8 | *004.6 | °007'4 | *010.3 | 069.0 | *015.9 | 2.8 | | 263 | 46 018·7 | 021°5 | 024·3 | 027°1 | 029.9 | 032.7 | 035'5 | 038.3 | 041.1 | 043.9 | 2.8 | | 264 | 046·7 | 049°5 | 052·3 | 055°1 | 057.9 | 060.7 | 063'5 | 066.3 | 013.1 | 071.8 | 2.8 | | 265
266
267 | 46 074 ·6
102 · 2
129 · 6 | 077'4
104'9
132'3 | 080°1
107°7
135°0 | 082.9
110.4
137.8 | 085.6
113.2
140.5 | 088·4
115·9
143·2 | 118.6
118.6 | 093 [.] 9
121 [.] 4
148 [.] 6 | 096·7
124·1
151·3 | 099°4
126°9
154°0 | 2·8
2·7
2·7 | | 268
269
270 | 46 156·7
183·7
210·6 | 159.4
186.4
213.3 | 162·1
189·1 | 164.8
191.8
218.6 | 167·5
194·5
221·2 | 170·2
197·2
223·9 | 172.9
199.9
226.6 | 175.6
202.6
229.2 | 178·3
205·2
231·9 | 181°0
207°9
234°5 | 2.7
2.7
2.7 | | 271 | 46 237·2 | 292.2 | 242.2 | 245°2 | 247.8 | 250°5 | 253°1 | 308.5 | 258·4 | 251°1 | 2.7 | | 272 | 263·7 | 266.3 | 268.9 | 271°6 | 274.2 | 276°8 | 279°4 | 525.0 | 284·7 | 287°3 | 2.6 | | 273 | 289·9 | 239.9 | 295.1 | 297°8 | 300.4 | 303°0 | 305°6 | 525.8 | 310·8 | 313°4 | 2.6 | | 274
275
276 | 46 316·0
342·0
367·7 | 318·6
344·6 | 321·2
347·2
372 8 | 323·8
349·7
375·4 | 326·4
352·3
377·9 | 329°0
354°9
380°5 | 331.6
357.5
383.1 | 334°2
360°0
385°6 | 336·8
362·6
388·2 | 339°4
365°1
390°7 | 2 6
2 6
2 6 | | 277 | 46 393·3 | 395.8 | 398·4 | 400.9 | 403°5 | 406°0 | 408·5 | 411°0 | 413.6 | 416·1 | 2.2 | | 278 | 418·6 | 421.1 | 423·6 | 426.2 | 428°7 | 431°2 | 433·7 | 436°2 | 438.8 | 441·3 | 2.2 | | 279 | 443·8 | 446.3 | 448·8 | 451.3 | 453°8 | 456°3 | 458·8 | 461°3 | 463.8 | 466·3 | 5.2 | | 280 | 46 468·8 | 471°3 | 473.8 | 476°2 | 478·7 | 481°2 | 483.7 | 486°2 | 4\$8.6 | 491.1 | 2.2 | | 281 | 493·6 | 496°1 | 498.6 | 501°0 | 503·5 | 506°0 | 508.5 | 510°9 | 513.4 | 512.8 | 2.2 | | 282 | 518·3 | 520°7 | 523.2 | 525°6 | 528·1 | 530°5 | 532.9 | 535°4 | 537.8 | 540.3 | 2.4 | | 283 | 46 542·7 | 545°I | 547.6 | 550°0 | 552·5 | 554'9 | 221.2 | 559 [.] 7 | 562°2 | 564.6 | 2'4 | | 284 | 567·0 | 569°4 | 571.8 | 574°3 | 576·7 | 579'1 | 221.2 | 583 [.] 9 | 586°4 | 588.8 | 2'4 | | 285 | 591·2 | 593°6 | 596.0 | 598°4 | 600·8 | 603'2 | 221.3 | 608 [.] 0 | 610°4 | 612.8 | 2'4 | | 286 | 46 615·2 | 617·6 | 620.0 | 622°3 | 624.7 | 627°1 | 629°5 | 631°9 | 634°2 | 636-6 | 2'4 | | 287 | 639·0 | 641·4 | 643.7 | 646°1 | 648.4 | 650°8 | 653°2 | 655°5 | 657°9 | 660-2 | 2'4 | | 288 | 662·6 | 664·9 | 667.3 | 669°6 | 672.0 | 674°3 | 676°6 | 679°0 | 681°3 | 683-7 | 2'3 | | 289
290 | 46 686·0
709·3 | 688·3 | 690 [.] 7 | 693°0 | 695'4
718'6 | 697.7
720.9 | 700°0
723°2 | 702'3
725'5 | 704·7
727·9 | 707°0
730°2 | 5.3 | XXVI. T_v for Ogival-headed Projectiles. (w = 534.22 grains.) | v | 0 | I | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9. | Diff. | |-------------------------|--------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|----------------------| | f. s.
10
11
12 | Seconds
9.9
25.1
37.5 | Seconds
11.6
26.5
38.6 | Seconds
13.2
27.8
39.7 | Seconds
14.8
29.1
40.8 | Seconds
16.4
30.3
41.9 | Seconds
17.9
31.5
43.0 | Seconds
19.4
32.8
44.0 | Seconds
20'9
34'0
45'1 | Seconds
22.3
35.2
46.1 | Seconds
23.7
36.4
47.1 | +
1.2
1.1 | | 13
14
15 | 48·1
57·2
65·0 |
49.0
58.0
65.4 | 50.0
58.8
66.4 | 50·9
59·6
67·2 | 51·9
60·4
67·9 | 52·8
61·2
68·6 | 53.7
62.0
69.3 | 54.6
62.7
69.9 | 55.4
63.5
70.6 | 56·3
64·2
71·2 | 0.8
0.8 | | 16
17
18 | 71.91
77.99
83.39 | 72.55
78.56
83.90 | 73·18
79·12
84·40 | 73.81
79.67
84.90 | 74.43
80.22
85.39 | 75.04
80.76
85.88 | 75.64
81.29
86.36 | 76·24
81·82
86·84 | 76·83
82·35
87·31 | 77.41
82.87
87.78 | *61
*54
*49 | | 19
20
21 | 88·24
92·57
96·51 | 98.69
92.98
96.88 | 89·14
93·39
97·26 | 89·58
93·79
97·63 | 90.05
94.19
92.05 | 90·46
94·59
98·35 | 90·89
94·98
98·70 | 91.32
95.37
99.05 | 91.40
95.40
91.44 | 92·16
96·13
99·75 | '44
'40
'36 | | 22
23
24 | 03.32
06.32 | 00.43
03.66
06.64 | 03.97
06.92 | 01·10
04·27
07·20 | 01.43
04.28
04.48 | 01·76
04·88
07·75 | 02.03
02.18
08.03 | 02·40
05·47
08·30 | 02·72
05·77
08·57 | 03·04
06·05
0S·84 | *33
*30
*28 | | 25
26
27 | 1 09·10
11·65
14 00 | 09.37
11.90
14.53 | 09.63
12.14
14.45 | 09 89
12:38
14:68 | 10·15
12·62
14·90 | 10.40
12.82
15.12 | 10.66
13.09
12.34 | 10·91
13·32
15·55 | 13.22
13.22 | 11·41
13·78
15·98 | °26
°24
°22 | | 28
29
30 | 18.55
18.10 | 16.40
18.42
20.31 | 16.61
18.61
20.49 | 16.81
18.81
20.67 | 17.02
19.00
20.85 | 17.05
10.10 | 17.43
19.38
21.50 | 17.63
19.57
21.38 | 17·83
19·75
21·56 | 18.03
19.94
21.73 | .19
.18 | | 31
32
33 | 23 57
25 13 | 22.07
23.23
25.28 | 22.24
23.89
25.43 | 22.41
24.05
25.58 | 22·58
24·21
25·73 | 22.75
24.36
25.88 | 22.03
24.25
26.03 | 23.08
24.67
26.17 | 23·25
24·83
26·32 | 23.41
24.98
26.46 | 17
16 | | 34
35
36 | 27.99
29.31 | 26·74
28·12
29·44 | 26·88
28·26
29·57 | 27.02
28.39
29.69 | 27·16
28·53
29·82 | 27·30
28·66
29·94 | 27·44
28·79
30·07 | 27·58
28·92
30·19 | 30.31
20.02 | 27·85
29·18
30·43 | 14
13
12 | | 37
38
39 | 1 30·55
31·72
32·84 | 30.67
31.83 | 33.09
31.62
30.48 | 30.01
35.09
30.01 | 31.05
32.18
33.54 | 33.38
33.38
31.14 | 33.48
31.56 | 33.22
33.23 | 31.49
32.62
33.69 | 31.60
32.43
33.80 | 12
11
11 | | 40
41
42 | 35.86
34.91
33.90 | 32.00
32.01
34.00 | 36.02
32.10
34.11 | 36·14
35·20 | 34°31
35°29
36°24 | 34.41
35.39
36.33 | 34.21
35.48
36.42 | 36.21
32.28
34.61 | 34.41
35.64
36.60 | 34·81
35·77
36·69 | .10 | | 43
44
45 | 37.65
38.49 | 36·87
37·73
38·57 | 36·96
37·82
38·65 | 37.02
37.30
38.43 | 37°14
37°99
38·81 | 37·22
38·07
38·89 | 38.19
38.19 | 37·39
38·24
39·05 | 37.48
38.32
39.13 | 37·56
38·41
39·21 | .08
.08
.60. | | 46
47
48 | 1 39·29
40·05
40·78 | 39°36
40°86 | 39°44
40°20
40°93 | 39.22
40.27
41.00 | 39°59
40°35
41°07 | 39·67
40·42
41·14 | 39.75
40.49
41.51 | 39·82
40·57
41·28 | 39·90
40 64
41·35 | 39.97
40.71
41.42 | ·08
·07
·07 | | 49
50
51 | 1 41.49
42.16
42.81 | 41.26
42.23
42.87 | 41.63
42.29
42.94 | 41.70
42.36
43.00 | 41.76
42.42
43.06 | 41.83
42.49
43.12 | 41.90
42.26
43.19 | 41.96
42.62
43.25 | 42.69
43.31 | 42.09
42.75
43.37 | °07
°07
°06 | | 52
53
54 | 14 3·430
4·607 | 3.491
4.089
4.664 | 3.552
4.147
4.720 | 3.613
4.205
4.776 | 3.673
4.263
4.832 | 3.733
4.321
4.888 | 3.793
4.379
4.944 | 3·853
4·436
4·999 | 3.912
4.493
5.054 | 3.971
4.220
2.031 | .056
.026 | | 55
56
57 | 14 5·164
5·701
6·219 | 5.219
5.254
6.270 | 5.806
6.331 | 5.327
5.858
6.371 | 5.381
5.910
6.422 | 5.435
5.962
6.472 | 5.489
6.014
6.222 | 5·542
6·065
6·572 | 5.21
6.117
6.621 | 5·648
6·168
6·671 | ·054
·052
·050 | XXVI. T_v for Ogival-headed Projectiles (continued). | · · | 1 | | | | | | | | | | ıl. | |----------------|-------------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|--------------------------|--------------------------|--------------------------|----------------| | v | 0 | I | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | Diff. | | f. s. | Seconds + | | 58 | 14 6.720 | 6.769 | 6.818 | 6.866 | 6'915 | 6.963 | 7.011 | 7:059 | 7.107 | 7.154 | 48 | | 59 | 7.202 | 7.249 | 7.296 | 7.343 | 7'390 | 7.437 | 7.483 | 7:530 | 7.576 | 7.622 | 47 | | 60 | 7.668 | 7.714 | 7.759 | 7.805 | 7'850 | 7.896 | 7.941 | 7:986 | 8.031 | 8.076 | 45 | | 61 | 148.151 | 8.162 | 8·209 | 8·253 | 8·297 | 8 341 | 8·384 | 8·428 | 8·471 | 8.350 | 44 | | 62 | 8.258 | 8.601 | 8·643 | 8·686 | 8·728 | 8·771 | 8·813 | 8·855 | 8·897 | 8.339 | 42 | | 63 | 8.381 | 9.055 | 9·064 | 9·105 | 9·147 | 9·188 | 9·229 | 9·269 | 9·310 | 9.212 | 41 | | 64
65
66 | 14 9·391
9·787
15 0·172 | 9.431
9.826
0.310 | 9.471
9.865
0.248 | 9.510
9.903
0.285 | 9.323
9.342
0.323 | 0.391
0.381
0.280 | 9.629
0.398 | 9.669
*0.057
0.436 | 9.708
*0.096
0.473 | 9.748
*0.134
0.511 | 40
39
38 | | 67
68
69 | 0.010
1.502 | 0.285
0.345
1.296 | 0.621
0.981
1.331 | 0.628
1.016
1.362 | 0.694
1.022
1.400 | 0.434
1.434 | 0.767
1.122
1.468 | 0.803
1.157
1.502 | 0.838
1.192
1.536 | 0.874
1.227
1.570 | 36
35
34 | | 70
71
72 | 1.936
1.936 | 1.637
1.969
2.292 | 1.671
2.001
2.323 | 1.704
2.034
2.355 | 1.738
2.066
2.386 | 1.771
2.099
2.418 | 1.804
2.131
2.449 | 1.837
2.163
2.480 | 1.870
2.196
2.212 | 1.003
5.2543 | 33
32
31 | | 73 | 15 2·574 | 2.605 | 2.636 | 2.666 | 2.697 | 2·728 | 2·758 | 2·789 | 3.410 | 2·850 | 31 | | 74 | 2·880 | 2.910 | 2.940 | 2.969 | 2.999 | 3·029 | 3·059 | 3·088 | 3.118 | 3·147 | 30 | | 75 | 3·177 | 3.206 | 3.236 | 3.265 | 3.295 | 3·324 | 3·353 | 3·382 | 3.410 | 3·439 | 29 | | 76
77
78 | 15 3.468
3.751
4.025 | 3.497
3.779
4.052 | 3·525
3·806
4·079 | 3.554
3.834
4.107 | 3.582
3.861
4.134 | 3.889
3.811 | 3.639
4.188 | 3.667
3.943
4.215 | 3.695
3.971
4.541 | 3.723
3.998
4.268 | 28
27
27 | | 79 | 154.556 | 4·321 | 4·347 | 4.374 | 4.400 | 4·426 | 4.452 | 4.478 | 4.204 | 4.230 | 26 | | 80 | 4.810 | 4·582 | 4·607 | 4.633 | 4.658 | 4·684 | 4.453 | 4.735 | 4.200 | 4.286 | 26 | | 81 | 4.810 | 4·836 | 4·861 | 4.886 | 4.00 | 4·935 | 4.961 | 4.986 | 2.010 | 2.035 | 25 | | 82 | 5.235 | 5.084 | 5.281 | 5·133 | 5·158 | 5·182 | 5.506 | 5.230 | 5°253 | 5°277 | 24 | | 83 | 5.301 | 5.325 | 2.348 | 5·372 | 5·395 | 5·419 | 5.442 | 5.465 | 5°489 | 5°512 | 23 | | 84 | 5.235 | 5.558 | 2.100 | 5·603 | 5·626 | 5·649 | 5.671 | 5.694 | 5°716 | 5°739 | 23 | | 85
86
87 | 5.977
6.188 | 5·783
5·998
6·208 | 5·So5
6·019
6·229 | 5·826
6·041
6·249 | 5.848
6.062
6.270 | 5·870
6·083
6·290 | 5.891
6.104
6.891 | 6.330
6.152
6.13 | 5°934
6°146
6°350 | 6·370
6·370 | 22
21
20 | | 88
89
90 | 156·390
6·586
6·776 | 6.410
6.602
6.794 | 6.430
6.624
6.813 | 6.644
6.831 | 6·469
6·663
6·850 | 6·489
6·682
6·868 | 6·508
6·701
6·886 | 6·528
6·720
6·904 | 6.547
6.738
6.923 | 6·567
6·757
6·941 | 19
18 | | 91 | 7.308 | 6·977 | 6·995 | 7·012 | 7.030 | 7·048 | 7.066 | 7.083 | 7°101 | 7.118 | 18 | | 92 | 7.136 | 7·153 | 7·171 | 7·188 | 7.206 | 7·223 | 7.240 | 7.257 | 7°274 | 7.291 | 17 | | 93 | 7.136 | 7·325 | 7·342 | 7·358 | 7.375 | 7·392 | 7.409 | 7.425 | 7°442 | 7.458 | 17 | | 94 | 15 7·475 | 7.491 | 7.507 | 7.524 | 7.540 | 7.556 | 7.572 | 7.588 | 7.604 | 7.620 | 16 | | 95 | 7·636 | 7.652 | 7.667 | 7.683 | 7.698 | 7.714 | 7.730 | 7.745 | 7.761 | 7.776 | 16 | | 96 | 7·792 | 7.807 | 7.822 | 7.838 | 7.853 | 7.868 | 7.883 | 7.898 | 7.913 | 7.928 | 15 | | 97
98
99 | 157.943
8.090
8.232 | 7.958
8.104
8.246 | 7.973
8.118
8.260 | 7.987
8.133
8.273 | 8·002
8·147
8·287 | 8·017
8·161
8·301 | 8.032
8.175
8.315 | 8.046
8.189
8.329 | 8.204
8.342 | 8.075
8.218
8.356 | 14 | | 100 | 15 8·370 | 8·383 | 8·397 | 8.410 | 8·424 | 8·437 | 8·450 | 8·463 | 8·477 | 8·490 | 13 | | 101 | 8·503 | 8·516 | 8·529 | 8.542 | 8·555 | 8·568 | 8·581 | 8·594 | 8·606 | 8·619 | 13 | | 102 | 8·632 | 8·645 | 8·657 | 8.670 | 8·682 | 8·695 | 8·707 | 8·719 | 8·732 | 8·744 | 12 | | 103 | 15 8·756 | 8·768 | 8·779 | 8·791 | 8 802 | 8·814 | 8·825 | 8.836 | 8·848 | 8·859 | 10 | | 104 | 8·870 | 8·881 | 8·892 | 8·902 | 8 913 | 8·924 | 8·934 | 8.944 | 8·954 | 8·964 | | | 105 | 8·974 | 8·984 | 8·994 | 9·003 | 9 013 | 9·023 | 9·032 | 9.041 | 9·051 | 9·060 | | XXVI. T_v for Ogival-headed Projectiles (continued). | 7' | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | Diff. | |-------------------|----------------------------|-------------------------|-------------------------|-------------------------|--------------------------|-------------------------|---------------------------------|--------------------------|----------------------------------|--------------------------|-------------| | f. s. | Seconds + | | 106 | 15 9.069 | 9.078 | 9°087 | 9°095 | 9'104 | 9'113 | 9'121 | 9.130 | 9'138 | 9'147 | 9 | | 107 | 9.155 | 9.163 | 9°171 | 9°179 | 9'187 | 9'195 | 9'203 | 9.211 | 9'218 | 9'226 | 8 | | 108 | 9.234 | 9.242 | 9°250 | 9°257 | 9'265 | 9'273 | 9'281 | 9.288 | 9'296 | 9'303 | 8 | | 109
110
111 | 9°382
9°451 | 9.318
9.389
9.458 | 9°325
9°396
9°464 |
9.333
9.403
9.471 | 9°340
9°410
9°477 | 9°347
9°417
9°484 | 9°354
9°424
9°49 1 | 9.361
9.431
9.497 | 9 .3 68
9.437
9.504 | 9°375
9°444
9°510 | 7 7 7 | | 112
113
114 | 15 9·517
9·581
9·644 | 9.523
9.587
9.650 | 9.530
9.594
9.656 | 9.536
9.662 | 9.543
9.668 | 9°549
9°613
9°674 | 6.680
6.616
6.222 | 9.562
9.686 | 9.568
9.632
9.692 | 9.575
9.638
9.698 | 6 6 | | 115
116
117 | 15 9·704
9·764
9·822 | 9.710
9.770
9.828 | 9.716
9.776
9.833 | 9.722
9.839 | 9.728
9.787
9.844 | 9'734
9'793
9'850 | 9°740
9°799
9°856 | 9.861
9.861 | 9.752
9.810
9.867 | 9.758
9.816
9.872 | 6
6
6 | | 118
119
120 | 9.932
9.986 | 9.883
9.931
9.991 | 9.889
9.943
9.996 | 9.894
9.948
0.002 | 9°900
9°954
*0°007 | 9.959
9.90 <u>5</u> | 9.910
9.964
9.017 | 9.916
9.970
*0.022 | 9.921
9.976
0.028 | 9.927
9.981
*0.033 | 5
5
5 | | 12I | 160°0381 | 0432 | 0483 | 0535 | 0586 | 0637 | 0688 | 0738 | 0789 | 0839 | 51 | | 122 | 0890 | 0940 | 0990 | 1040 | 1090 | 1140 | 1189 | 1239 | 1288 | 1338 | 50 | | 123 | 1387 | 1436 | 1484 | 1533 | 1581 | 1630 | 1678 | 1726 | 1775 | 1823 | 48 | | 124 | 160° 1871 | 1919 | 1966 | 2014 | 2061 | 2109 | 2156 | 2203 | 2250 | 2297 | 47 | | 125 | 2344 | 2390 | 2437 | 2483 | 2529 | 2576 | 2622 | 2668 | 2713 | 2759 | 46 | | 126 | 2805 | 2850 | 2896 | 2941 | 2987 | 3032 | 3077 | 3122 | 3166 | 3211 | 45 | | 127 | 160° 3256 | 3300 | 3344 | 3389 | 3433 | 3477 | 3521 | 3565 | 3608 | 3652 | 44 | | 128 | 3696 | 3739 | 3782 | 3826 | 3869 | 3912 | 3955 | 3998 | 4040 | 4083 | 43 | | 129 | 4126 | 4168 | 4210 | 4253 | 4295 | 4337 | 4379 | 4421 | 4462 | 4504 | 42 | | 130 | 160° 4546 | 45 ⁸ 7 | 4629 | 4670 | 4712 | 4753 | 4794 | 4835 | 4876 | 4917 | 41 | | 131 | 4958 | 4999 | 5039 | 5080 | 5120 | 5161 | 5201 | 5241 | 5282 | 5322 | 40 | | 132 | 5362 | 5402 | 5442 | 5481 | 5521 | 5561 | 5600 | 5639 | 5679 | 5718 | 40 | | 133 | 160· 5757 | 5796 | 5835 | 5874 | 5913 | 5952 | 5991 | 6029 | 6067 | 6106 | 39 | | 134 | 6145 | 6183 | 6222 | 6260 | 6299 | 6337 | 6375 | 6413 | 6450 | 6488 | 38 | | 135 | 6526 | 6564 | 6601 | 6639 | 6676 | 6714 | 6751 | 6788 | 6826 | 6863 | 37 | | 136 | 160·6900 | 6937 | 6974 | 7011 | 7048 | 7085 | 7122 | 7158 | 7195 | 7231 | 37 | | 137 | 7268 | 7304 | 7340 | 7377 | 7413 | 7449 | 7485 | 7521 | 7557 | 7593 | 36 | | 138 | 7629 | 7665 | 7700 | 7736 | 7771 | 7807 | 7842 | 7878 | 7913 | 7949 | 36 | | 139 | 160° 7984 | 8019 | 8054 | 8089 | 8124 | 8159 | 8194 | 8229 | 8263 | 8298 | 35 | | 140 | 8333 | 8368 | 8402 | 8437 | 8471 | 8506 | 8540 | 8574 | 8609 | 8643 | 34 | | 141 | 8677 | 8711 | 8745 | 8778 | 8812 | 8846 | 8880 | 8914 | 8947 | 8981 | 34 | | 142 | 160° 9015 | 9048 | 9082 | 9115 | 9149 | 9182 | 9215 | 9248 | 9282 | 9315 | 33 | | 143 | 9348 | 9381 | 9414 | 9447 | 9480 | 9513 | 9546 | 9578 | 9611 | 9643 | 33 | | 144 | 9676 | 9799 | 9741 | 9774 | 9806 | 9839 | 9871 | 9904 | 9936 | 9968 | 32 | | 145 | 161·0000 | 0032 | 0064 | 0096 | 0128 | 0160 | 0192 | 0224 | 0255 | 0287 | 32 | | 146 | 0319 | 0351 | 0382 | 0414 | 0445 | 0477 | 0508 | 0540 | 0571 | 0603 | 32 | | 147 | 0634 | 0665 | 0696 | 0728 | 0759 | 0790 | 0821 | 0852 | 0882 | 0913 | 31 | | 148 | 161·0944 | 0975 | 1006 | 1036 | 1067 | 1098 | 1129 | 1159 | 1190 | 1220 | 31 | | 149 | 1251 | 1281 | 1312 | 1342 | 1373 | 1403 | 1433 | 1463 | 1494 | 1524 | 30 | | 150 | 1554 | 1584 | 1614 | 1644 | 1674 | 1704 | 1734 | 1764 | 1793 | 1823 | 30 | | 151 | 161·1853 | 1883 | 1913 | 1942 | 1972 | 2002 | 2031 | 2061 | 2090 | 2120 | 30 | | 152 | 2149 | 2178 | 2208 | 2237 | 2267 | 2296 | 2325 | 2354 | 2384 | 2413 | 29 | | 153 | 2442 | 2471 | 2500 | 2529 | 2558 | 2587 | 2616 | 2645 | 2673 | 2702 | 29 | XXVI. T_v for Ogival-headed Projectiles (continued). | 11 | | | | | | | | | | | | |-------------------|---------------------------|---------|----------------------|----------------------|---------|----------------------|----------------------|----------------------|----------------------|----------------------|----------| | v | 0 | I | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | Diff. | | f. s. | Seconds + | | 154 | 161·2731 | 2760 | 2788 | 2817 | 2845 | 2874 | 2902 | 2931 | 2959 | 2988 | 29 | | 155 | 3016 | 3044 | 3073 | 3101 | 3130 | 3158 | 3186 | 3214 | 3243 | 3271 | 28 | | 156 | 3299 | 3327 | 3355 | 3383 | 3411 | 3439 | 3467 | 3495 | 3523 | 3551 | 28 | | 157 | 161·3579 | 3607 | 3635 | 3662 | 3690 | 3718 | 3746 | 3773 | 3801 | 3828 | 28 | | 158 | 3856 | 3883 | 3911 | 3938 | 3966 | 3993 | 4020 | 4047 | 4075 | 4102 | 27 | | 159 | 4129 | 4156 | 4183 | 4211 | 4238 | 4265 | 4292 | 4319 | 4346 | 4373 | 27 | | 160 | 161·4400 | 4427 | 4454 | 4481 | 4508 | 4535 | 4562 | 4588 | 4615 | 4641 | 27 | | 161 | 4668 | 4695 | 4721 | 4748 | 4774 | 4801 | 4827 | 4854 | 4880 | 4907 | 27 | | 162 | 4933 | 4959 | 4986 | 5012 | 5039 | 5065 | 5091 | 5117 | 5144 | 5170 | 26 | | 163 | 161· 5196 | 5222 | 5248 | 5275 | 5301 | 5327 | 5353 | 5379 | 5404 | 5430 | 26 | | 164 | 5456 | 5482 | 5508 | 5533 | 5559 | 5585 | 5611 | 5636 | 5662 | 5687 | 26 | | 165 | 5713 | 5739 | 5764 | 5790 | 5815 | 5841 | 5866 | 5892 | 5917 | 5943 | 26 | | 166 | 161·5968 | 5993 | 6018 | 6044 | 6069 | 6094 | 6119 | 6144 | 6170 | 6195 | 25 | | 167 | 6220 | 6245 | 6270 | 6295 | 6320 | 6345 | 6370 | 6395 | 6420 | 6445 | 25 | | 168 | 6470 | 6495 | 6520 | 6544 | 6569 | 6594 | 6619 | 6643 | 6668 | 6692 | 25 | | 169 | 161·6717 | 6742 | 6766 | 6791 | 6815 | 6840 | 6864 | 6889 | 6913 | 6938 | 25 | | 170 | 6962 | 6986 | 7010 | 7035 | 7059 | 7083 | 7107 | 7131 | 7156 | 7180 | 24 | | 171 | 7204 | 7228 | 7252 | 7277 | 7301 | 7325 | 7349 | 7373 | 7397 | 7421 | 24 | | 172 | 161·7445 | 7469 | 7493 | 7516 | 7540 | 7564 | 7588 | 7612 | 7635 | 7659 | 24 | | 173 | 7683 | 7707 | 7730 | 7754 | 7777 | 7801 | 7825 | 7848 | 7872 | 7895 | 24 | | 174 | 7919 | 7942 | 7966 | 7989 | 8013 | 8036 | 8059 | 8082 | 8106 | 8129 | 23 | | 175 | 161·8152 | 8175 | 8198 | 8222 | 8245 | 8268 | 8291 | 8314 | 8338 | 8361 | 23 | | 176 | 8384 | 8407 | 8430 | 8453 | 8476 | 8499 | 8522 | 8545 | 8567 | 8590 | 23 | | 177 | 8613 | 8636 | 8658 | 8681 | 8703 | 8726 | 8749 | 8771 | 8794 | 8816 | 23 | | 178 | 161·8839 | 8862 | 8884 | 8907 | 8929 | 8952 | 8974 | 8997 | 9019 | 9042 | 23 | | 179 | 9064 | 9086 | 9108 | 9131 | 9153 | 9175 | 9197 | 9219 | 9242 | 9264 | 22 | | 180 | 9286 | 9308 | 9330 | 9353 | 9375 | 9397 | 9419 | 9441 | 9463 | 9485 | 22 | | 181 | 161·9507 | 9529 | 9551 | 9572 | 9594 | 9616 | 9638 | 9660 | 9681 | 9703 | 22 | | 182 | 9725 | 9747 | 9769 | 9790 | 9812 | 9834 | 9856 | 9877 | 9899 | 9920 | 22 | | 183 | 9942 | 9964 | 9985 | *0007 | *0028 | *0050 | *0071 | *0093 | *0114 | *0136 | 22 | | 184 | 162.0157 | 0178 | 0199 | 022I | 0242 | 0263 | 0284 | 0305 | 0327 | 0348 | 2I | | 185 | 0369 | 0390 | 0411 | 0432 | 0453 | 0474 | 0495 | 0516 | 0537 | 0558 | 2I | | 186 | 0579 | 0600 | 0621 | 0642 | 0663 | 0684 | 0705 | 0726 | 0746 | 0767 | 2I | | 187 | 162.0788 | 1014 | 0829 | 0850 | 0870 | 0891 | 0912 | 0932 | 0953 | 0973 | 21 | | 188 | 0994 | | 1035 | 1055 | 1076 | 1096 | 1116 | 1137 | 1157 | 1178 | 20 | | 189 | 1198 | | 1239 | 1259 | 1280 | 1300 | 1320 | 1340 | 1361 | 1381 | 20 | | 190 | 162° 1401 | 1622 | 1441 | 1461 | 1481 | 1501 | 1521 | 1541 | 1562 | 1582 | 20 | | 191 | 1602 | | 1642 | 1662 | 1682 | 1702 | 1722 | 1742 | 1761 | 1781 | 20 | | 192 | 1801 | | 1841 | 1860 | 1880 | 1900 | 1920 | 1940 | 1959 | 1979 | 20 | | 193
194
195 | 162· 1999
2194
2388 | 2213 | 2038
2233
2426 | 2058
2252
2446 | 2272 | 2097
2291
2484 | 2116
2310
2503 | 2136
2330
2522 | 2155
2349
2542 | 2175
2369
2561 | 19
19 | | 196
197
198 | 162· 2580
2769
2957 | 2599 | 2618
2807
2994 | 2637
2825
3013 | | 2675
2863
3050 | | 2713
2901
3087 | 2731
2919
3106 | 2750
2938
3124 | 19 | | 199
200
201 | 162° 3143
3326
3508 | 3344 | 3180
3362
3544 | 3198
3381
3562 | 3399 | 3235
3417
3598 | 3435 | 3271
3453
3634 | 3290
3472
3651 | 330S
3490
3669 | 18
18 | XXVI. T_v for Ogival-headed Projectiles (continued). | υ | 0 | I | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | Diff. | |-------|-----------|--------------|---------|---------|---------|---------|---------|---------|---------|---------|-------| | f. s. | Seconds + | | 202 | 162·3687 | 3705 | 3723 | 3740 | 3758 | 3776 | 3794 | 3811 | 3829 | 3846 | 18 | | 203 | 3864 | 3882 | 3899 | 3917 | 3934 | 3952 | 3969 | 3987 | 4004 | 4022 | 18 | | 204 | 4039 | 4056 | 4074 | 4091 | 4109 | 4126 | 4143 | 4160 | 4178 | 4195 | 17 | | 205 | 162·4212 | 4229 | 4246 | 4264 | 4281 | 4298 | 4315 | 4332 | 4349 | 4366 | 17 | | 206 | 4383 | 4400 | 4417 | 4434 | 4451 | 4468 | 4485 | 4502 | 4518 | 4535 | 17 | | 207 | 4552 | 4569 | 4586 | 4602 | 4619 | 4636 | 4653 | 4669 | 4686 | 4702 | 17 | | 208 | 162° 4719 | 4735 | 4752 | 4768 | 4785 | 4801 | 4817 | 4834 | 4850 | 4867 | 16 | | 209 | 4883 | 4899 | 4915 | 4932 | 4948 | 4964 | 4980 | 4996 | 5013 | 5029 | 16 | | 210 | 5045 | 5061 | 5077 | 5093 | 5109 | 5125 | 5141 | 5157 | 5173 | 5189 | 16 | | 211 | 162· 5205 | 522 1 | 5237 | 5252 | 5268 | 5284 | 5300 | 5316 | 5331 | 5347 | 16 | | 212 | 5363 | 5379 | 5394 | 5410 | 5425 | 5441 | 5457 | 5472 | 5488 | 5503 | 16 | | 213 | 5519 | 5535 | 5550 | 5566 | 5581 | 5597 | 5612 | 5628 | 5643 | 5659 | 16 | | 214 | 162· 5674 | 5689 | 5704 | 5720 | 5735 | 5750 | 5765 | 5780 | 5796 | 5811 | 15 | | 215 | 5826 | 5841 | 5856 | 5871 | 5886 | 5901 | 5916 | 5931 | 5946 | 5961 | 15 | | 216 | 5976 | 5991 | 6006 | 6021 | 6036 | 6051 | 6066 | 6081 | 6095 | 6110 | 15 | | 217 | 162·6125 | 6140 | 6154 | 6169 | 6183 | 6198 | 6213 | 6227 | 6242 | 6256 | 15 | | 218 | 6271 | 6286 | 6300 | 6315 | 6329 | 6344 | 6359 | 6373 | 6388 | 6402 | 15 | | 219 | 6417 | 6431 | 6446 | 6460 | 6475 | 6489 | 6503 | 6517 | 6532 | 6546 | 14 | | 220 | 162·6560 | 6574 | 6588 | 6603 |
6617 | 6631 | 6645 | 6659 | 6674 | 6688 | 14 | | 221 | 6702 | 6716 | 6730 | 6745 | 6759 | 6773 | 6787 | 6801 | 6815 | 6829 | 14 | | 222 | 6843 | 6857 | 6871 | 6885 | 6899 | 6913 | 6927 | 6941 | 6954 | 6968 | 14 | | 223 | 162·6982 | 6996 | 7010 | 7023 | 7037 | 7051 | 7065 | 7079 | 7092 | 7106 | 14 | | 224 | 7120 | 7134 | 7147 | 7161 | 7174 | 7188 | 7202 | 7215 | 7229 | 7242 | 14 | | 225 | 7256 | 7270 | 7283 | 7297 | 7310 | 7324 | 7338 | 7351 | 7365 | 7378 | 14 | | 226 | 162· 7392 | 7405 | 7419 | 7432 | 7446 | 7459 | 7472 | 7486 | 7499 | 7513 | 13 | | 227 | 7526 | 7539 | 7553 | 7566 | 7580 | 7593 | 7606 | 7620 | 7633 | 7647 | 13 | | 228 | 7660 | 7673 | 7687 | 7700 | 7714 | 7727 | 7740 | 7753 | 7767 | 7780 | 13 | | 229 | 162· 7793 | 7806 | 7819 | 7833 | 7846 | 7859 | 7872 | 7886 | 7899 | 7913 | 13 | | 230 | 7926 | 7939 | 7952 | 7966 | 7979 | 7992 | 8005 | 8018 | 8032 | 8045 | 13 | | 231 | 8058 | 8071 | 8084 | 8097 | 8110 | 8123 | 8136 | 8149 | 8162 | 8175 | 13 | | 232 | 162· 8188 | 8201 | 8214 | 8228 | 8241 | 8254 | 8267 | 8280 | 8293 | 8306 | 13 | | 233 | 8319 | 8332 | 8345 | 8358 | 8371 | 8384 | 8397 | 8410 | 8423 | 8436 | 13 | | 234 | 8449 | 8462 | 8475 | 8488 | 8501 | 8514 | 8527 | 8540 | 8553 | 8566 | 13 | | 235 | 162· 8579 | 8592 | 8605 | 8617 | 8630 | 8643 | 8656 | 8669 | 8682 | 8695 | 13 | | 236 | 8708 | 8721 | 8734 | 8746 | 8759 | 8772 | 8785 | 8798 | 8810 | 8823 | 13 | | 237 | 8836 | 8849 | 8862 | 8874 | 8887 | 8900 | 8913 | 8926 | 8938 | 8951 | 13 | | 238 | 162·8964 | 8977 | 8990 | 9002 | 9015 | 9028 | 9041 | 9054 | 9066 | 9079 | 13' | | 239 | 9092 | 9105 | 9117 | 9130 | 9142 | 9155 | 9168 | 9181 | 9193 | 9206 | 13 | | 240 | 9219 | 9232 | 9244 | 9257 | 9269 | 9282 | 9295 | 9308 | 9320 | 9333 | 13 | | 241 | 162· 9346 | 9359 | 9371 | 9384 | 9396 | 9409 | 9422 | 9434 | 9447 | 9459 | 13 | | 242 | 9472 | 9485 | 9497 | 9510 | 9522 | 9535 | 9548 | 9560 | 9573 | 9585 | 13 | | 243 | 9598 | 9610 | 9623 | 9635 | 9648 | 9660 | 9673 | 9685 | 9698 | 9710 | 12 | | 244 | 162· 9723 | 9735 | 9748 | 9760 | 9773 | 9785 | 9797 | 9810 | 9822 | 9835 | 12 | | 245 | 9847 | 9859 | 9872 | 9884 | 9897 | 9909 | 9921 | 9934 | 9946 | 9959 | 12 | | 246 | 9971 | 9983 | 9996 | *0008 | *0021 | *0033 | *0045 | *0058 | *0070 | *0083 | 12 | | 247 | 163° 0095 | 0107 | 0119 | 0132 | 0144 | 0156 | 0168 | 0180 | 0193 | 0205 | 12 | | 248 | 0217 | 0229 | 0241 | 0254 | 0266 | 0278 | 0290 | 0302 | 0315 | 0327 | 12 | | 249 | 0339 | 0351 | 0363 | 0376 | 0388 | 0400 | 0412 | 0424 | 0437 | 0449 | 12 | **XXVI.** T_v for Ogival-headed Projectiles (continued). | 11 | | | | | - | | | | | | - | |-------------------|---------------------------|----------------------|----------------------|----------------------|----------------------|-----------------------|----------------------|----------------------|----------------------|----------------------|----------| | ข | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | Diff. | | f. s. | Seconds + | | 250 | 163. 0461 | 0473 | 0485 | 0497 | 0509 | · 0521 | 0533 | 0545 | 0557 | 0569 | 12 | | 251 | 0581 | 0593 | 0605 | 0617 | 0629 | 0641 | 0653 | 0665 | 0677 | 0689 | 12 | | 252 | 0701 | 0713 | 0725 | 0736 | 0748 | 0760 | 0772 | 0784 | 0795 | 0807 | 12 | | 253 | 163° 0819 | 0831 | 0843 | 0854 | 0866 | 0878 | 0890 | 0902 | 0913 | 0925 | 12 | | 254 | 0937 | 0949 | 0960 | 0972 | 0983 | 0395 | 1007 | 1018 | 1030 | 1041 | 12 | | 255 | 1053 | 1065 | 1076 | 1088 | 1099 | 1111 | 1123 | 1134 | 1146 | 1157 | 12 | | 256 | 163·1169 | 1180 | 1192 | 1203 | 1215 | 1226 | 1237 | 1249 | 1260 | 1272 | 11 | | 257 | 1283 | 1294 | 1305 | 1317 | 1328 | 1339 | 1350 | 1362 | 1373 | 1385 | | | 258 | 1396 | 1407 | 1418 | 1430 | 1441 | 1452 | 1463 | 1474 | 1486 | 1497 | | | 259 | 163· 1508 | 1519 | 1530 | 1542 | 1553 | 1564 | 1575 | 1586 | 1597 | 1608 | 11 | | 260 | 1619 | 1630 | 1641 | 1652 | 1663 | 1674 | 1685 | 1696 | 1707 | 1718 | 11 | | 261 | 1729 | 1740 | 1751 | 1762 | 1773 | 1784 | 1795 | 1806 | 1816 | 1827 | 11 | | 262 | 163· 1838 | 1849 | 1860 | 1870 | 1881 | 1892 | 1903 | 1914 | 1924 | 1935 | 11 10 | | 263 | 1946 | 1957 | 1967 | 1978 | 1988 | 1999 | 2010 | 2020 | 2031 | 2041 | | | 264 | 2052 | 2062 | 2073 | 2083 | 2094 | 2104 | 2115 | 2125 | 2136 | 2146 | | | 265
266
267 | 163·2157
2261
2363 | 2167
2271
2373 | 2178
2281
2383 | 2188
2292
2394 | 2199
2302
2404 | 2209
2312
2414 | 2219
2322
2424 | 2230
2332
2434 | 2240
2343
2445 | 2251
2353
2455 | 10
10 | | 268
269
270 | 163° 2465
2566
2666 | 2475
2576
2676 | 2485
2586
2686 | 2496
2596
2695 | 2506
2606
2705 | 2516
2616
2715 | 2526
2626
2725 | 2536
2636
2735 | 2546
2646
2744 | 2556
2656
2754 | 10
10 | | 27I | 163° 2764 | 2774 | 2784 | 2793 | 2803 | 2813 | 2823 | 2833 | 2842 | 2852 | 10 | | 272 | 2862 | 2872 | 2881 | 2891 | 2900 | 2910 | 2920 | 2929 | 2939 | 2948 | | | 273 | 2958 | 2968 | 2977 | 2987 | 2996 | 3006 | 3016 | 3025 | 3035 | 3044 | | | 274 | 163· 3054 | 3063 | 3073 | 3082 | 3092 | 3101 | 3110 | 3120 | 3129 | 3139 | 9 9 | | 275 | 3148 | 3157 | 3167 | 3176 | 3186 | 3195 | 3204 | 3214 | 3223 | 3233 | | | 276 | 3242 | 3251 | 3260 | 3270 | 3279 | 3288 | 3297 | 3306 | 3316 | 3325 | | | 277 | 163° 3334 | 3343 | 3352 | 3362 | 3371 | 3380 | 3389 | 3398 | 3497 | 3416 | 9 9 | | 278 | 3425 | 3434 | 3443 | 3452 | 3461 | 3470 | 3479 | 3488 | 3497 | 3506 | | | 279 | 3515 | 3524 | 3533 | 3542 | 3551 | 3560 | 3569 | 3578 | 3587 | 3596 | | | 280
281
282 | 163° 3605
3693
3781 | 3614
3702
3790 | 3623
3711
3798 | 3631
3719
3807 | 3640
3728
3815 | 3649
3737
3824 | 3746 | 3667
3755
3842 | 3675
3763
3850 | 3684
3772
3859 | 9 9 | | 283
284
285 | 163· 3868
3954
4038 | 3962 | | 3894
3979
4063 | 3902
3988
4072 | 3911
3996
4080 | | 4013 | 4105 | 3945
4030
4114 | 988 | | 286
287
288 | 163° 4122
4205
4287 | 4130 | 4221 | 4230 | | 4164
4246
4328 | 4254 | 4262 | 427 I | 4279 | 8 8 | | 289
290 | 163·4369
4449 | 4377 | 4385 | 4393 | | 44 0 9
4489 | | | | 4441
4521 | 8 8 | XXVII. Values of $\frac{k}{g}$ for the Newtonian Law, and of $\frac{3k}{g}$ for the Cubic Law of the Resistance of the Air to Spherical and Ogival-headed Projectiles ($\Pi = 1.206$ kil.; or $\omega = 527$ grains; g = 9.809 m. s.). | | Sphe:
Projec | rical
ctiles. | Ogival-
Proje | headed
ctiles. | | Sphe
Projec | rical
ctiles. | Ogival-l
Projec | headed
tiles. | |---------------------------------|--------------------------------------|---|--------------------------------------|---|--|--------------------------------------|---|--------------------------------------|--------------------------------------| | | Newtonian
Law | Cubic
Law | Newtonian
Law | Cubic
Law | | Newtonian
Law | Cubic
Law | Newtonian
· Law | Cubic
Law | | b | t g | $\frac{\mathbf{R}}{\mathbf{g}}$ | t g | $\frac{\mathbf{z}}{\mathbf{g}}$ | b | tt g | $\frac{\mathbf{R}}{\mathbf{g}}$ | tt g | $\frac{\mathbf{It}}{\mathbf{g}}$ | | m s.
50
60
70
80 | | | 1.40
1.40
1.40
1.40
1.40 | 28·10
23·41
20·07
17·55
15·60 | m. s.
450
460
470
480
490 | 4.69
4.71
4.73
4.75
4.76 | 10.42
10.25
10.07
9.90
9.72 | 3°43
3°42
3°40
3°38
3°36 | 7·62
7·44
7·24
7·04
6·85 | | 100
110
120
130
140 | | | 1.40
1.40
1.40
1.40 | 14.03
12.76
11.69
10.02 | 500
510
520
530
540 | 4.77
4.78
4.78
4.78
4.78 | 9·55
9·37
9·19
9·02
8·85 | 3'34
3'31
3'29
3'27
3'25 | 6·67
6·50
6·32
6·16
6·02 | | 150
160
170
180
190 | | | 1.40
1.40
1.40
1.40 | 9·36
8·77
8·25
7·79
7·39 | 550
560
570
580
590 | 4.78
4.78
4.78
4.80
4.83 | 8·68
8·53
8·39
8·28
8·18 | 3.23
3.21
3.20
3.19
3.18 | 5.87
5.73
5.60
5.48
5.38 | | 200
210
220
230
240 | | | 1.40
1.40
1.40
1.40 | 7.02
6.68
6.38
6.10
5.85 | 600
610
620
630
640 | 4·85
4·87
4·88
4·88
4·87 | 8·08
7·98
7·87
7·74
7·60 | 3·17
3·18
3·20
3·23
3·26 | 5.28
5.13
5.16
5.13 | | 250
260
270
280
290 | 2.68
2.79
2.89
3.00
3.11 | 10.72
10.72
10.72
10.72
10.72 | 1.41
1.46
1.51
1.57
1.62 | 5·62
5·60
5·60
5·60
5·60 | 650
660
670
680
690 | 4.85
4.83
4.82
4.80
4.79 | 7·46
7·32
7·19
7·07
6·94 | 3:30
3:33
3:36
3:37
3:35 | 5.07
5.05
5.01
4.95
4.86 | | 300
310
320
330
340 | 3.23
3.39
3.63
3.84
4.01 | 10.75
10.93
10.35
11.63 | 1.68
1.75
2.12
2.59
2.79 | 5·60
5·66
6·64
7·83
8·21 | 700
710
720
730
740 | 4.78 | 6.82 | 3:32
3:28
3:23
3:18
3:14 | 4.75
4.62
4.49
4.36
4.24 | | 350
360
370
380
390 | 4.15
4.27
4.36
4.42
4.47 | 11·86
11·87
11·64
11·45 | 2.91
3.00
3.09
3.17
3.25 | 8·34
8·34
8·34
8·34
8·34 | 750
760
770
780
790 | | | 3.10
3.07
3.08
3.08
3.10 | 4.13
4.04
3.99
3.95
3.95 | | 400
410
420
430
440 | 4.50
4.54
4.59
4.63
4.66 | 11.24
10.32
10.46
10.24 | 3'32
3'37
3'40
3'42
3'43 | 8·30
8·21
8·10
7·96
7·80 | 800
810
820
830
840 | | | 3.13
3.17
3.20
3.24
3.28 | 3.80
3.80
3.81
3.81
3.81 | Approximate Laws of the Resistance of the Air to the Motion of Projectiles (French Measures). $\Pi = 1.206 \text{ kil.}; \ \omega = 527 \text{ grains}; \ g = 9.809 \text{ m. s.}$ ### XXVIII. Spherical Projectiles. # XXIX.
Ogival-headed Projectiles. | b > 396 m. s., | $ ho \propto \mathfrak{b}^2$, | $\frac{k}{g} = 3.275,$ | $\log \frac{g}{k} = 0.2121S,$ | |-----------------------------|---------------------------------|---|--| | b < 396 > 335 m. s., | $\rho \propto \mathfrak{b}^3$, | $\frac{11}{g} = 8.302,$ | $\log \frac{11}{8} = 0.91916,$ | | b<335>305 m. s., | $ ho \propto \mathfrak{b}^6$, | $\frac{\mathbf{g}}{\mathbf{g}} = 200.92,$ | $\log \frac{3L}{g} = 2.315 \text{So},$ | | b<305>250 m. s., | $ ho \propto \mathfrak{b}^3$, | $\frac{g}{g}$ = 5.600, | $\log \frac{\mathbf{R}}{g} = 0.74822,$ | | b < 250 m, s. , | $\rho \propto t^2$, | $\frac{\mathbf{k}}{\mathbf{g}} = 1.403,$ | $\log \frac{k}{g} = 0.14710.$ | 312 GENERAL TABLES (French Measures). XXX. $\lesssim_{\mathfrak{b}}$ for Spherical Projectiles ($\Pi=1.206$ kil, or $\omega=527$ grains). | Decoration Dec | | | | | | | ` | | | | | | |--|--------|---------|--------|--------|--------|--------|---------------|--------|--------|--------|--------|--------| | 12 | b | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | Diff. | | 12 | 111.5. | Metres + | | 14 | 12 | 68 | | 682 | | | | | | | | | | 14 | 13 | | 3327 | | 3891 | | | 4721 | | | | | | 10 | 14 | 5798 | 6062 | 6325 | | | | 7358 | | | 8114 | | | 17 | 15 | 8363 | 8610 | 8856 | 9100 | 9342 | 9582 | 9821 | *0058 | *0294 | *0528 | 241 | | 18 | 16 | 10761 | 0993 | 1223 | 1452 | 16So | 1906 | 2131 | 2355 | 2577 | | 226 | | 18 | 17 | 3018 | 3237 | 3454 | 3670 | 3884 | 4097 | 4309 | 4519 | 4728 | | | | 19 | 18 | 5142 | | 5552 | 5755 | 5957 | | | | 6753 | 6951 | | | 21 | 19 | 7149 | | 7537 | 7730 | 7922 | | | | 8683 | 8871 | | | 22 | 20 | 9059 | 9245 | 9430 | 9613 | 9795 | 9976 | *0156 | | *0514 | *0692 | 182 | | 22 | 21 | 2 0868 | 1044 | 1219 | 1393 | 1567 | 1740 | 1913 | 2085 | 2257 | | 173 | | 23 | 22 | 2597 | 2766 | 2934 | 3101 | 3267 | 3433 | 3598 | 3762 | 3926 | 4088 | | | 24 | 23 | | 4411 | 4571 | | 4890 | 5048 | 5206 | 5363 | 5519 | 5675 | 158 | | 2 2 2 8808 8948 9987 9224 9361 9496 9631 9764 9897 *co29 136 27 30161 o291 o420 o547 o674 o799 o926 l049 1171 l293 l26 28 l144 1535 1655 1774 l893 2011 2128 2244 2359 2473 l18 29 2587 2700 2812 2923 3034 3144 3253 3361 3469 3576 l10 3082 3787 3892 3995 4098 4200 4301 4401 4500 4598 l10 31 3469 4576 | 24 | 5830 | 5985 | 6139 | 6293 | 6446 | 6598 | | 6900 | | | | | 26 | 25 | 7348 | 7497 | 7645 | 7792 | 7939 | 8085 | 8231 | 8376 | 8521 | 8665 | 146 | | 28 | 26 | | 8948 | 9087 | 9224 | 9361 | 9496 | 9631 | 9764 | 9897 | *0029 | 136 | | 28 | 27 | 30161 | 0291 | 0420 | 0547 | 0674 | 0799 | 0926 | 1049 | 1171 | 1293 | 126 | | 298 | 28 | 1414 | 1535 | | 1774 | 1893 | 2011 | 2128 | 2244 | 2359 | | 118 | | 31 34695 4791 4887 4982 5076 5168 5260 5350 5439 5528 93 32 5616 5703 5790 5876 5961 6646 6131 6215 6298 6377 85 34 7230 7305 7379 7453 7526 7599 7671 7743 7814 7885 73 35 7955 8025 8094 8163 8232 8300 8368 8436 8503 8570 68 36 38636 8702 8768 8834 8899 8964 9028 9092 9156 9220 65 38 9906 9966 *0026 *0086 *0145 *0204 *0263 *0323 *0382 *0411 59 39 40500 0559 0617 0675 0733 0791 0848 0905 0962 1019 58 41 41632 1686 1740 | 29 | | | | 2923 | | | 3253 | 3361 | 3469 | | | | 34 7230 7305 7379 7453 7526 7599 7671 7743 7814 7885 73 35 7955 8025 8094 8163 8232 8300 8368 8436 8503 8570 68 36 38636 8702 8768 8834 8899 8964 9028 9956 9529 9156 9220 65 38 9906 9966 *0026 *0086 *0145 *0204 *0263 *0323 *0382 *0441 59 39 4 0500 0559 0617 0675 0733 0791 0848 0905 0962 1019 58 40 1076 1133 1190 1246 1302 1358 1413 1465 1523 1578 56 41 4 1632 1686 1740 1794 1848 1902 1955 2099 2063 2117 54 42 2171 | 30 | 3682 | 3787 | 3892 | 3995 | 4098 | 4200 | 4301 | 4401 | 4500 | 4598 | 102 | | 34 7230 7305 7379 7453 7526 7599 7671 7743 7814 7885 73 35 7955 8025 8094 8163 8232 8300 8368 8436 8503 8570 68 36 38636 8702 8768 8834 8899 8964 9028 9956 9529 9156 9220 65 38 9906 9966 *0026 *0086 *0145 *0204 *0263 *0323 *0382 *0441 59 39 4 0500 0559 0617 0675 0733 0791 0848 0905 0962 1019 58 40 1076 1133 1190 1246 1302 1358 1413 1465 1523 1578 56 41 4 1632 1686 1740 1794 1848 1902 1955 2099 2063 2117 54 42 2171 | 31 | 3 4695 | 4791 | 4887 | 4982 | 5076 | 5168 | 5260 | 5350 | 5439 | 5528 | 93 | | 34 7230 7305 7379 7453 7526 7599 7671 7743 7814 7885 73 35 7955 8025 8094 8163 8232 8300 8368 8436 8503 8570 68 36 38636 8702 8768 8834 8899 8964 9028 9956 9529 9156 9220 65 38 9906 9966 *0026 *0086 *0145 *0204 *0263 *0323 *0382 *0441 59 39 4 0500 0559 0617 0675 0733 0791 0848 0905 0962 1019 58 40 1076 1133 1190 1246 1302 1358 1413 1465 1523 1578 56 41 4 1632 1686 1740 1794 1848 1902 1955 2099 2063 2117 54 42 2171 | | | 5703 | 5790 | 5876 | 5961 | 6046 | 6131 | | 6298 | 6377 | 85 | | 34 7230 7305 7379 7453 7526 7599 7671 7743 7814 7885 73 35 7955 8025 8094 8163 8232 8300 8368 8436 8503 8570 68 36 38636 8702 8768 8834 8899 8964 9028 9956 9529 9156 9220 65 38 9906 9966 *0026 *0086 *0145 *0204 *0263 *0323 *0382 *0441 59 39 4 0500 0559 0617 0675 0733 0791 0848 0905 0962 1019 58 40 1076 1133 1190 1246 1302 1358 1413 1465 1523 1578 56 41 4 1632 1686 1740 1794 1848 1902 1955 2099 2063 2117 54 42 2171 | 33 | 6456 | 6536 | 6615 | | 6772 | 68 5 0 | | 7004 | 7080 | 7155 | 78 | | 35 7955 8025 8094 8163 8232 8300 8368 8436 8503 8570 65 36 3 8636 8702 8768 8834 8899 8964 9028 9092 9156 9220 65 37 9283 9347 9410 9473 9535 9598 9660 9722 9784 9845 62 38 9906 9966 *0026 *0086 *0145 *0204 *0263 *0323 *0382 *0441 59 39 4.0 1076 1133 1190 1246 1302 1358 1413 1468 1523 1578 56 41 4.1632 1686 1740 1794 1848 1902 1955 2009 2063 2117 54 42 2171 2224 2277 2330 2382 2434 2485 2537 2588 2640 52 43 2691 2997 | 34 | 7230 | 7305 | 7379 | 7453 | 7526 | 7599 | | 7743 | 7814 | | 73 | | 37 9283 9347 9410 9473 9535 9598 9660 9722 9784 9845 62 38 9906 9966 *0026 *0086 *0145 *0204 *0263 *0323 *0382 *0441 59 40 1076 1133 1190 1246 1302 1358 1413 1468 1523 1578 56 41 4 1632 1686 1740 1794 1848 1902 1955 2009 2063 2117 54 42 2171 2224 2277 2330 2382 2434 2485 2537 2588 2640 52 43 2691 2743 2794 2845 2896 2947 2997 3047 3096 3146 51 44 3195 3245 3294 3344 3393 3443 3492 3541 3591 3640 49 45 3688 3736 | 35 | 7955 | 8025 | 8094 | | 8232 | 8300 | 8368 | 8436 | 8503 | 8570 | 68 | | 37 9283 9347 9410 9473 9535 9598 9660 9722 9784 9845 62 38 9906 9966 *0026 *0086 *0145 *0204 *0263 *0323 *0382 *0441 59 40 1076 1133 1190 1246 1302 1358 1413 1468 1523 1578 56 41 4 1632 1686 1740 1794 1848 1902 1955 2009 2063 2117 54 42 2171 2224 2277 2330 2382 2434 2485 2537 2588 2640 52 43 2691 2743 2794 2845 2896 2947 2997 3047 3096 3146 51 44 3195 3245 3294 3344 3393 3443 3492 3541 3591 3640 49 45 3688 3736 | 36 | 3 8636 | 8702 | 8768 | 8834 | 8899 | | | 9092 | 9156 | 9220 | 65 | | 38 9966 9966 *0026 *0086 *0145 *0204 *0263 *0323 *0382 *0411 59 39 40500 0559 0617 0675
0791 0848 0905 0962 1019 58 40 1076 1133 1190 1246 1302 1358 1413 1468 1523 1578 56 41 4 1632 1686 1740 1794 1848 1902 1955 2009 2063 2117 54 42 2171 2224 2277 2330 2382 2434 2485 2537 2588 2640 52 43 2691 2743 2794 2845 2896 2947 2997 3047 3096 3146 51 44 3195 3245 3294 3344 3393 3443 3492 3542 3591 3640 49 452 4628 4674 4719 | 37 | | 9347 | | 9473 | 9535 | 9598 | | | | 9845 | 62 | | 1076 | 38 | | | | *0086 | | *0204 | | *0323 | | | 59 | | 41 4 1632 1686 1740 1794 1848 1902 1955 2009 2063 2117 54 42 2171 2224 2277 2330 2382 2434 2485 2537 2588 2640 52 43 2691 2743 2794 2845 2896 2947 2997 3047 3096 3146 51 44 3195 3245 3394 3344 3393 3443 3492 3542 3591 3640 49 45 3688 3736 3784 3832 3879 3926 3973 3421 4068 4115 47 46 4 4162 4210 4257 4304 4351 4398 4444 4490 4536 4582 46 47 4628 4674 4719 4764 4809 4854 4899 4944 4989 5034 45 49 5521 5565 56 | | | | | | | | | | | | 58 | | 42 2171 2224 2277 2330 2382 2434 2485 2537 2588 2640 52 43 2691 2743 2794 2896 2947 2997 3047 3096 3146 51 44 3195 3245 3394 3344 3393 3443 3492 3542 3591 3640 49 45 3688 3736 3784 3832 3879 3926 3973 4021 4068 4115 47 46 4 4162 4210 4257 4304 4351 4398 4444 4490 4536 4582 46 47 4628 4674 4719 4764 4809 4854 4899 4944 4989 5534 5478 44 48 5079 5124 5169 5214 5258 5302 5346 5390 5434 5478 44 49 5521 5365 5609 | 40 | 1076 | 1133 | 1190 | 1246 | 1302 | 1358 | | 1468 | 1523 | 1578 | 56 | | 42 2171 2224 2277 2330 2382 2434 2485 2537 2588 2640 52 43 2691 2743 2794 2896 2947 2997 3047 3096 3146 51 44 3195 3245 3394 3344 3393 3443 3492 3542 3591 3640 49 45 3688 3736 3784 3832 3879 3926 3973 4021 4068 4115 47 46 4 4162 4210 4257 4304 4351 4398 4444 4490 4536 4582 46 47 4628 4674 4719 4764 4809 4854 4899 4944 4989 5534 5478 44 48 5079 5124 5169 5214 5258 5302 5346 5390 5434 5478 44 49 5521 5365 5609 | 41 | 4 1632 | 1686 | 1740 | 1794 | 1848 | 1902 | 1955 | 2009 | 2063 | 2117 | | | 44 3195 3245 3294 3344 3893 3443 3492 3542 3591 3608 49 45 3688 3736 3784 3832 3879 3926 3973 4021 4608 4115 47 46 44162 4210 4257 4304 4351 4398 4444 4490 4536 4582 46 47 4628 4674 4719 4764 4809 4854 4899 4944 4989 5034 45 48 5079 5124 5169 5214 5258 5302 5346 5390 5434 5478 44 49 5521 5565 5609 5653 5696 5739 5782 5825 5868 5911 43 50 5954 5997 6039 6082 6125 6168 6210 6252 6294 6336 42 51 46378 6420 6462 | 42 | | 2224 | 2277 | 2330 | | 2434 | 2485 | 2537 | 2588 | 2640 | 52 | | 46 4 4162 4210 4257 4304 4351 4398 4444 4490 4536 4582 46 47 4628 4674 4719 4764 4809 4854 4899 4944 4989 5034 45 48 5579 5124 5169 5214 5258 5302 5346 5390 5434 5478 44 49 5521 5565 5609 5653 5696 5739 5782 5825 5868 5911 43 50 5954 5997 6039 6082 6125 6168 6210 6252 6294 6336 42 51 4 6378 6420 6462 6504 6545 6586 6627 6668 6708 6749 41 52 6780 6830 6870 6911 6952 6993 7033 7074 7111 7155 41 53 7195 7635 76 | 43 | 2691 | 2743 | | 2845 | 2896 | 2947 | | | 3096 | | 51 | | 46 4 4162 4210 4257 4304 4351 4398 4444 4490 4536 4582 46 47 4628 4674 4719 4764 4809 4854 4899 4944 4989 5034 45 48 5579 5124 5169 5214 5258 5302 5346 5390 5434 5478 44 49 5521 5565 5609 5653 5696 5739 5782 5825 5868 5911 43 50 5954 5997 6039 6082 6125 6168 6210 6252 6294 6336 42 51 4 6378 6420 6462 6504 6545 6586 6627 6668 6708 6749 41 52 6780 6830 6870 6911 6952 6993 7033 7074 7111 7155 41 53 7195 7635 76 | | 3195 | | | | | | | | | | | | 47 4628 4674 4719 4764 4809 4854 4899 4944 4989 5034 45 48 5079 5124 5169 5214 5258 5302 5346 5390 5434 5478 44 49 5521 5565 5609 5633 5696 5739 5782 5825 5868 5911 43 50 5954 5997 6039 6082 6125 6168 6210 6252 6294 6336 42 51 46378 6420 6462 6504 6545 6586 6627 6668 6708 6749 41 52 6789 6830 6870 6911 6952 6993 7033 7074 7111 7155 41 53 7195 7236 7276 7316 7356 7396 7436 7476 7516 7556 40 54 7595 76535 7674 | 45 | | 3736 | 3784 | 3832 | 3879 | 3926 | 3973 | 4021 | 4068 | 1 - | 47 | | 48 5079 5124 5169 5214 5258 5302 5346 5390 5434 5478 44 49 5521 5565 5609 5653 5696 5739 5782 5825 5868 5911 43 50 5954 5997 6039 6682 6125 6168 6210 6252 6294 6336 42 51 4 6378 6420 6462 6504 6545 6586 6627 6688 6708 6749 41 52 6789 6830 6870 6911 6952 6993 7033 7074 7111 7155 41 53 7195 7236 7276 7316 7356 7396 7436 7476 7516 7556 40 54 7595 7635 7674 7713 7752 7792 7831 7870 7909 7948 39 56 48371 8449 844 | 46 | | | | | 4351 | 4398 | 4444 | 4490 | 4536 | 4582 | 46 | | 49 5521 5565 5609 5653 5696 5739 5782 5825 5868 3911 43 50 5954 5997 6039 6082 6125 6168 6210 6252 6294 6336 42 51 4 6378 6420 6462 6504 6545 6586 6627 6668 6708 6749 41 52 6789 6830 6870 6911 6952 6993 7033 7074 7114 7155 41 53 77195 7236 7276 7316 7356 7396 7436 7476 7516 7556 40 54 7595 7635 7674 7713 7752 7792 7831 7870 7909 7948 39 55 7987 8026 8064 8103 8141 8180 8218 8257 8295 8333 38 57 8749 8786 882 | | | | | | | | | | 4989 | | 45 | | 50 5954 5997 6039 6082 6125 6168 6210 6252 6294 6336 42 51 4 6378 6420 6462 6504 6545 6586 6627 6668 6708 6749 41 52 6789 6830 6870 6911 6952 6993 7033 7074 7114 7155 41 53 7195 7236 7276 7316 7356 7396 7436 7476 7516 7556 40 54 7595 7635 7674 7713 7752 7792 7831 7870 7909 7948 39 55 7987 8026 8064 8103 8141 8180 8218 8257 8295 8333 38 56 4 8371 8409 8447 8485 8523 8561 8599 8637 8674 8712 38 57 8749 8786 88 | | | | | 5214 | 5258 | | 5346 | | 5434 | 5478 | | | 51 4 6378 6420 6462 6504 6545 6586 6627 6668 6708 6749 41 52 6789 6830 6870 6911 6952 6993 7033 7074 7114 7155 41 53 7195 7236 7276 7316 7356 7396 7436 7476 7516 7556 40 54 7595 7635 7674 7713 7752 7792 7831 7870 7909 7948 39 55 7987 8026 8064 8103 8141 8180 8218 8257 8295 8333 38 56 4 8371 8409 8447 8485 8523 8561 8599 8637 8674 8712 38 8749 8786 8823 8861 8898 8935 8972 9009 9046 9083 37 58 9119 9156 9192 | | | | | 5653 | | 5739 | 5782 | | | | | | 52 6789 6830 6870 6911 6952 6993 7033 7074 7114 7155 41 53 7195 7236 7276 7316 7356 7366 7436 7476 7516 7556 40 54 7595 7635 7674 7713 7752 7792 7831 7870 7909 7948 39 55 7987 8026 8064 8103 8141 8180 8218 8257 8295 8333 38 56 48371 8409 8447 8485 8523 8561 8599 8637 8674 8712 38 57 8749 8786 8823 8861 8898 8935 8972 9009 9046 9083 37 58 9119 9156 9192 9229 9265 9301 9337 9409 9445 36 60 9835 9870 9905 9940< | 1 - | | | | | | | 1 | | 1 | | 42 | | 52 6789 6830 6870 6911 6952 6993 7033 7074 7114 7155 41 53 7195 7236 7276 7316 7356 7366 7436 7476 7516 7556 40 54 7595 7635 7674 7713 7752 7792 7831 7870 7909 7948 39 55 7987 8026 8064 8103 8141 8180 8218 8257 8295 8333 38 56 48371 8409 8447 8485 8523 8561 8599 8637 8674 8712 38 57 8749 8786 8823 8861 8898 8935 8972 9009 9046 9083 37 58 9119 9156 9192 9229 9265 9301 9337 9409 9445 36 60 9835 9870 9905 9940< | | | | | | | | | | | | | | 54 7595 7035 7074 7713 7752 7792 7831 7870 7909 7948 39 55 7987 8026 8064 8103 8141 8180 8218 8257 8295 8333 38 56 4 8371 8409 8447 8485 8523 8561 8598 8637 8674 8712 38 57 8749 8786 8823 8861 8898 8935 8972 9009 9046 9083 37 58 9119 9156 9192 9229 9265 9301 9337 9373 9409 9445 36 60 9835 9870 9905 9940 9975 *0010 *0045 *005 *0114 *0148 35 61 50182 0217 0251 0285 0319 0353 0387 0421 0455 0489 34 62 0523 0557 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>7033</td><td></td><td></td><td>7155</td><td></td></td<> | | | | | | | | 7033 | | | 7155 | | | 55 7997 8020 8064 8103 8141 8180 8218 8257 8295 8333 38 56 4 8371 8409 8447 8485 8523 8561 8599 8637 8674 8712 38 57 8749 8786 8823 8861 8898 8935 8972 9009 9046 9083 37 58 9119 9156 9192 9229 9265 9301 9337 9409 9445 36 59 9481 9517 9552 9588 9623 9659 9694 9730 9765 9800 35 60 9835 9870 9995 9940 9975 *0010 *0045 *coco *0114 *0148 35 61 50182 0217 0251 0285 0319 0353 0387 0421 0455 0489 34 62 0523 0557 0590 <t< td=""><td></td><td></td><td>7236</td><td></td><td>7316</td><td></td><td></td><td>7436</td><td></td><td></td><td></td><td></td></t<> | | | 7236 | | 7316 | | | 7436 | | | | | | 56 4 8371 8409 8447 8485 8523 8561 8599 8637 8674 8712 38 57 8749 8786 8823 8861 8898 8935 8972 9009 9046 9083 37 58 9119 9156 9192 9229 9265 9301 9337 9373 9409 9445 36 59 9481 9517 9552 9588 9623 9659 9694 9730 9765 9800 35 60 9835 9870 9905 9940 9975 *0010 *0045 *0050 *0114 *0148 35 61 50182 0217 0251 0285 0319 0353 0387 0421 0455 0489 34 62 0523 0557 0590 0624 0657 0690 0723 0757 0790 0823 33 64 1186 1219 1252 | | | 7635 | | 7713 | 7752 | 7792 | 7831 | | | 7948 | 39 | | 57 8749 8786 8823 8861 8898 8935 8972 9009 9046 9083 37 58 9119 9156 9192 9229 9265 9301 9337 9373 9409 9445 36 59 9481 9517 9552 9588 9623 9659 9694 9730 9765 9800 35 60 9835 9870 9905 9940 9975 *0010 *045 *050 *0114 *0148 35 61 50182 0217 0251 0285 0319 0353 0387 0421 0455 0489 34 62 0523 0557 0590 0624 0657 0690 0723 0757 0790 0823 33 63 0856 0889 0922 0955 0988 1021 1054 1087 1120 1153 33 64 1186 1219 12 | | | 1 - | | | | | 1 | 1 | | | 38 | | 58 9119 9150 9192 9229 9265 9301 9337 9499 9445 30 59 9481 9517 9552 9588 9623 9659 9694 9730 9765 9800 35 60 9835 9870 9905 9940 9975 *0010 *045 *050 *0114 *0148 35 61 50182 0217 0251 0285 0319 0353 0387 0421 0455 0489 34 62 0523 0557 0590 0624 0657 0690 0723 0757 0790 0823 33 63 0856 0889 0922 0955 0988 1021 1054 1087 1120 1153 33 64 1186 1219 1252 1285 1317 1350 1382 1415 1447 1479 33 65 1511 1544 1576 16 | | | | | 8485 | | | | | | | 38 | | 58 9119 9150 9192 9229 9265 9301 9337 9499 9445 30 59 9481 9517 9552 9588 9623 9659 9694 9730 9765 9800 35 60 9835 9870 9905 9940 9975 *0010 *045 *050 *0114 *0148 35 61 50182 0217 0251 0285 0319 0353 0387 0421 0455 0489 34 62 0523 0557 0590 0624 0657 0690 0723 0757 0790 0823 33 63 0856 0889 0922 0955 0988 1021 1054 1087 1120 1153 33 64 1186 1219 1252 1285 1317 1350 1382 1415 1447 1479 33 65 1511 1544 1576 16 | 57 | | | | 1 | | | | | | | 37 | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 58 | | | | | | | | | | 9445 | 36 | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 1 59 | | | | | | 9059 | 9094 | 9730 | | | | | 62 0523 0557 0590 0624 0657 0690 0723 0757 0790 0823 33 63 0856 0889 0922 0955 0988 1021 1054 1087 1120 1153 33 64 1186 1219 1252 1285 1317 1350 1382 1415 1447 1479 33 65 1511 1544 1576 1608 1640 1673 1705 1737 1769 1801 32 66 5 1833 1865 1897 1991 1993 2024 2056 2088 2120 32 67 2151 2183 2214
2246 2277 2309 2340 2371 2402 2434 31 68 2465 2496 2527 2558 2589 2620 2651 2682 2713 2744 31 | | | 4 | | | 1 | | | | 1 . | | li I | | 63 0856 0889 0922 0955 0988 1021 1054 1087 1120 1153 33 64 1186 1219 1252 1285 1317 1350 1382 1415 1447 1479 33 65 1511 1544 1576 1608 1640 1673 1705 1737 1769 1801 32 66 5 1833 1865 1897 1929 1961 1993 2024 2056 2088 2120 32 67 2151 2183 2214 2246 2277 2309 2340 2371 2402 2434 31 68 2465 2496 2527 2558 2589 2620 2651 2682 2713 2744 31 | | | | | 0285 | | | 0387 | | | | | | 64 1186 1219 1252 1285 1317 1350 1382 1415 1447 1479 33 65 1511 1544 1576 1608 1640 1673 1705 1737 1769 1801 32 66 5 1833 1865 1897 1929 1961 1993 2024 2056 2088 2120 32 67 2151 2183 2214 2246 2277 2309 2340 2371 2402 2434 31 68 2465 2496 2527 2558 2589 2620 2651 2682 2713 2744 31 | | | 0557 | | | 0657 | | 0723 | | | | 33 | | 65 1511 1544 1576 1608 1640 1673 1705 1737 1769 1801 32 66 5 1833 1865 1897 1929 1961 1993 2024 2056 2088 2120 32 67 2151 2183 2214 2246 2277 2309 2340 2371 2402 2434 31 68 2465 2496 2527 2558 2589 2620 2651 2682 2713 2744 31 | 03 | | 1 - | | 0955 | | | 1054 | | 1 | | | | 66 5 1833 1865 1897 1929 1961 1993 2024 2056 2088 2120 32 67 2151 2183 2214 2246 2277 2309 2340 2371 2402 2434 31 68 2465 2496 2527 2558 2589 2620 2651 2682 2713 2744 31 | 65 | | | | | | | | | | | | | 67 2151 2183 2214 2246 2277 2309 2340 2371 2402 2434 31 68 2465 2496 2527 2558 2589 2620 2651 2682 2713 2744 31 | | 11 | | 4 5 | 1 | | | 1 - | 1 | | | 11 - 1 | | 68 2465 2496 2527 2558 2589 2620 2651 2682 2713 2744 31 | | | 1805 | | | | | | | 1 | 1 | | | | 68 | | | | | | | | | | | | | 9 2113 2000 2031 2000 2099 2030 2000 2091 3021 3052 31 | | | | | 2550 | | | | | | | | | | 1_09 | 11 -113 | 1 2000 | 1 203/ | 1 2000 | 1 2099 | 2930 | 1 2900 | - 4991 | 3021 | 3052 | 11 21 | XXXI. \mathfrak{T}_{ν} for Spherical Projectiles (II = 1.206 kil. or $\omega = 527$ grains). | December Seconds Sec | | | | | | | | | | | | | |---|------|----------|---------|---------|---------|---------|---------|---------|----------|---------|---------|--------| | 12 | b | 0 | I | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | Diff. | | 12 | m.s. | Seconds 1 | | 13 | | | | | | | | | | | | | | 1 | | 70.8 | | 84.2 | | | | | | | | | | 118\ \times\ 119\ \times\ 119\ \times\ 121\ \times\ 137\ \times\ 137\ \times\ \ | | | | | | | | | | | | | | 133:5 135:0 136:4 137:8 139:2 140:6 142:0 143:4 144:7 146:0 144:18 144:1 | | | | | | | | | | | | 11 | | 147-2 | | 1 | | | - | _ | | | | _ | | | | 18 | | | | | | | | | | | | | | 1 | | | | | | | | | | | | | | 180 | 18 | 159.2 | | | | | | | | | | | | 188-83 | 19 | 170.2 | 171.2 | | 173.2 | | 175.2 | 176.2 | 177.1 | | | 1.0 | | 23 | 20 | 180.0 | 180.0 | 181.8 | 182.2 | 183.6 | 184.2 | 185.4 | 186.3 | 187.1 | 188.0 | 0.0 | | 23 | 21 | T 88.83 | 80.66 | 90.49 | 01.31 | 92.13 | 92'91 | 93.75 | 94.24 | 95.33 | 96.10 | ·81 | | 23 | | | | | | 99.88 | | *01.35 | | *02 81 | | 7.1 | | 24 | | | | 02.61 | | 06:07 | | 08:33 | | | 10.31 | .68 | | 1715 | | | | | | | | | | | | | | 26 | | | | | | | | | | | | 11 1 | | 27 27 96 28 4 28 91 29 38 29 85 30 31 30 77 31 32 31 67 32 51 146 29 36 65 37 04 37 43 37 81 38 19 38 56 38 93 39 29 39 55 40 10 37 30 40 36 40 71 41 10 5 41 39 41 73 42 97 42 44 42 74 43 43 64 65 65 32 46 62 46 89 47 15 47 42 47 68 47 94 48 20 48 46 48 71 33 49 20 49 44 49 68 49 92 50 15 50 38 50 61 50 53 53 53 53 53 53 53 | | | | | | 1 | | | | | | 11 - 1 | | 28 32-55 32-98 33-40 33-82 34-24 34-55 35-06 35-86 36-26 41 | | 2 22.84 | | | | | | | | | | | | 29 | 27 | 27.96 | 28.44 | | 29.38 | | | | | | | | | 29 | 28 | 32.22 | 32.98 | 33.40 | 33.82 | | | | | | 36.56 | 41 | | 30 | 29 | 36.65 | 37.04 | 37'43 | 37.81 | 38.19 | 38.56 | 38.93 | 39*29 | 39.65 | 40.01 | 37 | | 31 243°68 43°99 44'29 44'60 44'90 45'20 45'49 45'60 46'64 46'71 47'15 47'42 47'68 47'94 48'20 48'46 48'71 48'90 26'80 33 49'20 49'44 49'68 49'92 50'15 50'38 50'61 50'84 51'70 51'29 '23 34 51'51 51'73 51'95 52'17 52'38 52'59 52'80 53'01 53'21 53'41 '21 36 25'554 55'72 55'90 56'08 56'26 56'44 56'61 56'79 56'95 57'13 18'8 37 57'30 57'47 57'64 57'81 57'98 58'15 58'15 58'45 58'64 58'80 117 38 58'96 59'12 59'28 59'44 59'59 59'90 60'05 60'65 60'80 60'10 61'29 61'39 61'50 60'50 80'60 60'10 | 30 | | | 41.05 | | 41.73 | 42'07 | 42.41 | 42.74 | 43.06 | 43:37 | 33 | | 32 | 1 | | | | | | | | | | | 11 1 | | 33 | | 243.08 | | | | | | 48:20 | | | | | | 34 51-51 51-73 51-95 52-17 52-38 52-39 52-80 53-01 53-21 53-41 '21 35 53-61 53-81 54-01 54-21 54-40 54-60 54-79 54-98 55-17 55-36 19 36 255-54 55-72 55-90 56-86 56-26 56-44 56-61 56-79 56-66 57-13 118 37 57-30 57-47 57-64 57-81 57-98 58-15 58-31 58-86 58-64 58-80 17 38 58-96 59-12 59-28 59-44 59-39 59-75 59-90 60-05 60-20 60-35 61-10 61-25 61-39 61-50 66-63 60-76 66-80 60-95 61-10 61-25 62-66 62-80 62-94 63-07 63-21 114 41 263-34 63-68 66-61 66-62 66-38 66-50 66-68 66-79 66-91 1 | | | | | | | | 49 20 | | | 1 | | | 35 | | | | | | | | 50.01 | | | | | | 36 25554 55.72 55.90 56.08 56.26 56.44 56.61 56.79 56.96 57.13 18 37 57.30 57.47 57.64 57.81 57.98 58.15 58.31 58.48 58.64 58.80 17 38 58.96 59.12 59.28 59.44 59.59 59.75 59.90 60.05 60.20 60.35 15. 40 61.96 62.10 62.24 62.38 62.52 62.66 62.80 62.94 63.07 63.21 14. 41 263.34 63.48 63.61 63.74 63.87 64.00 64.12 64.25 64.38 64.51 13. 42 64.63 64.76 64.88 65.01 65.13 65.26 65.38 65.50 65.62 65.74 12. 43 65.86 65.98 66.10 66.22 66.33 66.45 66.56 66.88 66.79 66.91 12. 44 67.02 67.14 67.25 67.36 67.47 67.58 67.69 67.80 67.91 68.02 11. 45 68.13 68.24 68.34 68.45 68.55 68.66 68.76 68.87 68.97 69.07 10. 46 269.17 69.28 69.38 69.48 69.58 69.68 69.78 69.88 69.98 70.08 10. 47 70.17 70.27 70.36 70.46 70.56 70.65 70.75 70.84 70.94 71.03 10. 48 27 11.123 1.216 1.308 1.400 1.492 1.583 1.674 1.765 1.795 1.945 70.92 1.30 1.40 1.492 1.583 1.674 1.765 1.795 1.945 70.92 1.30 1.595 70.75 70.84 70.94 71.03 10. 49 2.034 2.123 2.211 2.299 2.387 2.474 2.561 2.648 2.733 4.2820 0.87 5.31 5.39 5.390 5.747 5.546 6.924 6.994 7.063 3.244 3.328 3.411 3.495 3.578 3.661 0.84 1.55 1.75 6.64 6.737 6.20 6.282 6.354 6.426 6.498 6.570 6.640 6.712 0.72 6.783 6.854 6.924 6.994 7.063 7.133 7.202 7.217 7.340 7.409 9.50 9.408 9.469 9.529 9.589 9.648 9.708 9.708 8.62 8.726 0.65 9.408 9.469 9.529 9.589 9.648 9.708 9.708 9.709 1.00 0.75 5.70 5.84 8.598 8.62 8.726 0.65 5.70 5.84 8.598 8.62 8.726 0.65 5.70 5.84 8.726 0.65 5.70 5.84 8.598 8.62 8.726 0.65 5.70 5.84 8.726 0.65 5.70 5.84 8.726 0.65 5.70 5.84 8.726 0.65 5.70 5.84 8.726 0.65 5.70 5.84 8.726 0.65 5.70 5.84 8.726 0.65 5.70
5.84 8.726 0.65 5.70 5.84 8.726 0.65 5.70 5.84 8.726 0.65 5.70 5.84 8.726 0.65 5.70 5.84 8.726 0.65 5.70 5.84 8.726 0.65 5.70 5.84 8.726 0.65 5.70 5.84 8.726 0.65 5.70 5.84 8.726 0.65 5.70 5.84 8.726 0.65 5.70 5.84 8.726 0.65 5.70 5.84 8.726 0.65 5.70 5.84 8.726 0.65 5.70 5.84 8.726 0.65 5.70 5.724 0 | 34 | | | | | | | | | | | 11 1 | | 37 57.30 57.47 57.64 57.81 57.98 58.15 58.31 58.48 58.64 58.80 17.7 38 58.96 59.12 59.28 59.44 59.59 59.75 59.90 60.05 60.05 60.05 60.95 61.10 61.29 61.39 61.53 61.67 61.82 11.4 41 263.34 63.48 63.61 63.74 63.87 64.00 64.12 64.25 64.38 64.51 11.3 42 64.63 64.76 64.88 65.01 66.22 66.33 66.56 66.66 66.60 66.22 66.33 66.56 66.66 66.60 66.22 66.34 66.56 66.66 66.60 66.22 66.34 66.56 66.66 66.60 66.91 12 44 67.02 67.14 67.25 67.36 67.47 67.58 67.69 67.80 67.91 68.02 11 45 68.13 68.24 <td< td=""><td>35</td><td>53.61</td><td>53.81</td><td>24.01</td><td></td><td></td><td>54.00</td><td></td><td>54.98</td><td></td><td></td><td>11 - 1</td></td<> | 35 | 53.61 | 53.81 | 24.01 | | | 54.00 | | 54.98 | | | 11 - 1 | | 37 57:30 57:47 57:64 57:81 57:98 58:15 58:31 58:48 58:64 58:80 177 38 58:96 59:12 59:28 59:44 59:59 59:75 59:90 60:05 60:20 60:35 115 40 61:96 62:10 62:24 62:38 62:52 62:66 62:80 62:94 63:07 63:21 114 41 263:34 63:48 63:61 63:74 63:87 64:00 64:12 64:25 64:38 64:51 113 42 64:63 64:76 64:88 65:01 65:13 66:74 65:66 66:76 66:68 66:79 66:91 12 43 65:86 65:98 66:10 66:25 67:36 67:47 67:58 67:69 67:80 67:91 68:02 111 45 68:13 68:24 68:34 68:45 68:55 68:66 68:76 68:87 69:98 70:08 | 36 | 255.54 | 55.72 | 55.90 | 56.08 | 56.56 | 56.44 | 56.61 | 56.79 | | 57.13 | 81. | | 38 58.96 59.12 59.28 59.44 59.59 59.75 59.90 60.05 60.20 60.35 115 39 60.95 60.10 60.24 60.38 60.95 61.10 61.25 61.39 61.53 61.67 61.82 115 41 263.34 63.48 63.01 63.74 63.87 64.00 64.12 64.25 64.38 64.71 13 42 64.63 64.76 64.88 65.01 65.13 65.26 65.38 65.50 65.62 65.74 12 43 65.86 65.98 66.10 66.22 66.33 66.45 66.56 66.67 66.79 66.91 12 45 68.13 68.24 68.34 68.45 68.55 68.66 68.76 68.87 68.97 69.90 10 46 269.17 70.27 70.36 70.46 70.56 70.65 70.75 70.84 70.94 71.03 10 | | | 57.47 | 57.64 | 57.81 | 57.98 | | 58.31 | 58.48 | 58.64 | 58.80 | 17 | | 39 | | F8:06 | 50.13 | 50.28 | | | | | | 60.20 | | 15 | | 40 61·96 62·10 62·24 62·38 62·52 62·66 62·80 62·94 63·07 63·21 14 41 263·34 63·48 63·61 63·74 63·87 64·00 64·12 64·25 64·38 64·51 13 42 66·63 64·76 64·88 65·01 65·21 65·13 65·26 65·38 65·50 65·62 65·74 112 43 65·86 65·98 66·10 66·22 66·33 66·45 66·68 66·79 66·91 12 44 67·02 67·14 67·25 67·36 67·47 67·58 67·69 67·80 67·91 68·02 111 45 68·13 68·24 68·34 68·45 68·55 68·66 68·76 68·87 68·97 69·07 10 46 26·91 70·27 70·27 70·36 70·46 70·56 70·65 70·75 70·84 70·94 71·03 10 48 27 1·123 1·216 1·308 1·400 1·492 1·583 1·674 1·765 1·855 1·945 092 49 2·034 2·123 2·211 2·299 2·387 2·474 2·561 2·648 2·734 2·820 087 50 2·995 2·990 3·075 3·160 3·244 3·338 3·411 3·495 3·578 3·661 084 51 27 3·743 3·825 3·907 3·988 4·069 4·150 4·230 4·310 4·389 4·468 081 52 4·547 4·625 4·703 4·781 4·859 4·936 5·013 5·090 5·167 5·243 077 53 5·319 5·395 5·471 5·546 5·621 5·666 6·498 6·570 6·640 6·712 075 55 6·783 6·854 6·924 6·994 7·063 7·33 7·202 7·271 7·340 7·499 1075 55 6·783 6·854 6·924 6·994 7·063 7·815 7·82 7·948 8·014 8·081 5·99 9·408 9·409 9·529 9·589 9·648 9·409 9·529 9·589 9·648 9·409 9·529 9·589 9·648 9·409 1·192 1·184 1·238 1·292 1·346 1·400 1·453 1·500 1·559 1·612 0·54 0·55 0·56 1·568 2·737 0·633 0·689 0·745 0·800 0·855 0·910 0·965 1·020 1·075 0·55 0·56 1·184 1·238 1·292 1·346 1·400 1·453 1·500 1·559 1·612 0·54 0·54 0·66 1·568 2·386 2·386 2·386 2·386 2·386 2·386 3·988 3·984 4·030 4·046 0·463 0·520 0·55 0·55 0·66 0·688 2·386 2·386 2·386 2·386 2·386 2·386 2·386 3·398 4·409 0·406 0·463 0·520 0·55 0·55 0·56 0·56 0·56 0·56 0·56 0·5 | | | | | 60.02 | | | | | 61.67 | | | | 41 263'34 63'48 63'61 63'74 63'87 64'00 64'12 64'25 64'38 64'51 '13 42 64'63 64'76 64'88 65'01 65'13 65'26 65'38 65'50 65'62 65'74 '12 43 65'86 65'98 66'10 66'22 66'33 66'45 66'56 66'68 66'79 66'91 '12 44 67'02 67'14 67'25 67'36 67'47 67'58 67'69 67'80 67'91 68'02 '11 45 68'13 68'24 68'34 68'34 68'45 68'55 68'66 68'76 68'87 68'97 90'07 '10 46 269'17 69'28 69'38 69'48 69'58 69'68 69'78 69'88 69'98 70'08 '10 47 70'17 70'27 70'36 70'46 70'56 70'65 70'75 70'84 70'94 71'03 '10 48 27 1'123 1'216 1'308 1'400 1'492 1'583 1'674 1'765 1'555 1'945 '092 2'905 2'990 3'075 3'160 3'244 3'328 3'411 3'495 3'578 3'661 '084 45 46'43 3'825 3'997 3'988 4'069 4'150 4'230 4'310 4'389 4'468 '081 51 27 37'43 3'825 3'997 3'988 4'069 4'150 4'230 4'310 4'389 4'468 '081 52 4'547 4'625 4'703 4'781 4'859 4'936 5'013 5'090 5'167 5'243 '077 53 5'319 5'395 5'471 5'546 5'621 5'696 5'770 5'844 5'917 5'911 '075 55 6'783 6'854 6'924 6'994 7'063 7'133 7'202 7'271 7'340 7'7499 '070 55 6'783 6'854 6'924 6'994 7'063 7'133 7'202 7'271 7'340 7'7499 '070 56 27 7'477 7'545 7'613 7'681 7'748 8'451 8'534 8'598 8'662 8'726 '065 57 8'145 8'210 8'275 8'340 8'405 8'471 8'534 8'598 8'662 8'726 '065 58 8'789 8'852 8'915 8'978 9'040 9'102 9'163 9'225 9'286 9'347 '062 9'408 9'469 9'529 9'589 9'648 9'708 9'767 9'826 9'885 9'944 '060 28 0'001 0'119 0'177 0'234 0'292 0'349 0'406 0'463 0'520 0'58 60 28 0'003 0'061 0'119 0'177 0'234 0'292 0'349 0'406 0'463 0'520 0'58 61 28 0'577 0'633 0'689 0'745 0'800 0'855 0'910 0'965 1'020 1'075 0'55 62 1'129 1'184 1'238 1'292 1'346 1'400 1'453 1'506 1'559 2'133 0'52 63 1'665 1'718 1'770 1'822 1'874 1'926 1'977 2'029 2'080 2'132 0'52 64 2'183 2'234 2'285 2'336 2'386 2'437 2'487 2'537 2'587 2'637 0'50 66 28 3'178 3'226 3'274 3'322 2'885 2'934 2'983 3'938 3'984 4'030 4'40'66 0'458 4'122 4'168 4'213 4'259 4'304 4'349 4'349 4'349 4'349 4'484 4'529 0'45 | | | | 1 | 62:28 | | | | | | | | | 42 64·63 64·76 64·88 65·01 65·13 65·26 65·38 65·50 65·62 65·74 12 43 65·86 65·98 66·10 66·22 66·33 66·45 66·56 66·68 66·79 66·91 12 44 67·02 67·14 67·25 67·36 67·47 67·58 66·56 66·68 67·91 68·02 11 45 68·13 68·24 68·34 68·34 68·45 68·55 68·66 68·76 68·87 68·97 19 46 269·17 69·28 69·38 69·48 69·58 69·68 69·78 69·88 69·98 70·08 10 47 70·17 70·27 70·36 70·46 70·56 70·65 70·75 70·84 70·94 71·03 10 48 27 1·123 1·216 1·308 1·400 1·492 1·583 1·674 1·765 1·555 1·945 1092 1090 2·905 2·990 3·075 3·160 3·244 3·328 3·411 3·495 3·578 3·661 0×84 10 | 1 | | | | | | | | | | _ | 11 . 1 | | 43 | | | | 03.01 | | 03.07 | | 04 12 | 04 25 | | | | | 44 | 42 | 64.63 | | | | | | | 05.20 | 66.02 | | | | 45 | 43 | 65.86 | | | | | | | | 60.79 | | | | 45 68·13 68·24 68·34 68·35 68·55 68·66 68·76 68·87 68·87 69·97 69·07 16 46 269·17 69·28 69·38 69·38 69·38 69·68 69·78 69·88 69·98 | 44 | 67.02 | 67.14 | | 67.36 | | 67.58 | | | | | 11 1 | | 46 | | 68.13 | 68.24 | 68.34 | 68.45 | 68.22 | 68.66 | 68.76 | 68.87 | | | 10 | | 10 | | | 60:28 | 60:28 | 60.48 | 69.58 | 69.68 | 69.78 | 69.88 | 69.98 | 70.08 | 01. | | 1.48 | | | 1 | | | | 70.65 | 70.75 | 70.84 | 70.04 | 71.03 | .IO | | 49 2·034 2·123 2·211 2·299 2·367 2·474 2·501 2·048
2·378 3·661 084 51 2·995 2·990 3·075 3·160 3·244 3·328 3·411 3·495 3·578 3·661 084 51 2·7 3·743 3·825 3·907 3·988 4·069 4·150 4·230 4·310 4·389 4·468 081 52 4·547 4·625 4·703 4·781 4·859 4·936 5·013 5·090 5·167 5·243 077 53 5·319 5·395 5·471 5·546 5·621 5·696 5·770 5·844 5·917 5·91 075 54 6·644 6·137 6·209 6·282 6·354 6·426 6·498 6·570 6·640 6·712 072 56 27.747 7·545 7·613 7·681 7·748 7·815 7·815 8·614 8·080 6·6750 9·248 9·349 | 4/8 | | | | | | | | | 1.855 | 1.945 | 1002 | | 50 2·995 2·996 3·075 3·160 3·244 3·328 3·411 3·495 3·578 3·661 0·84 51 2·7 3·743 3·825 3·907 3·988 4·069 4·150 4·230 4·310 4·389 4·468 081 52 4·547 4·625 4·703 4·781 4·859 4·936 5·013 5·090 5·167 5·243 077 53 5·319 5·395 5·471 5·546 5·696 5·770 5·844 5·917 5·91 077 075 54 6·064 6·137 6·209 6·282 6·354 6·426 6·498 6·570 6·640 6·712 072 55 6·783 6·854 6·924 6·994 7·063 7·133 7·202 7·271 7·340 7·409 070 075 06 27 7·477 7·545 7·613 7·681 7·748 7·815 7·882 7·948 8·014 8·080 067 06 <td></td> <td>2.820</td> <td>087</td> | | | | | | | | | | | 2.820 | 087 | | 51 27 3743 3:825 3:907 3:988 4:069 4:150 4:230 4:310 4:389 4:468 081 52 4:547 4:625 4:703 4:781 4:859 4:936 5:013 5:090 5:167 5:243 077 53 5:319 5:395 5:471 5:546 5:621 5:696 5:770 5:844 5:917 5:917 075 54 6:064 6:137 6:209 6:282 6:354 6:426 6:498 6:570 6:640 6:712 072 55 6:783 6:854 6:924 6:994 7:063 7:133 7:202 7:271 7:340 7:409 072 56 277:477 7:545 7:613 7:681 7:748 7:853 7:948 8:014 8:080 067 58 8:789 8:852 8:915 8:978 9:040 9:102 9:163 9:225 9:286 9:347 062 59 | | | | 1 | | | | | | | 3.661 | | | 52 4'547 4'625 4'703 4'781 4'859 4'936 5'013 5'090 5'167 5'243 '077 53 5'319 5'395 5'471 5'546 5'621 5'696 5'770 5'844 5'91 5'91 0'75 0'75 0'75 0'75 0'71 0'72 0'72 0'72 0'72 0'72 0'72 0'72 0'72 0'72 0'74 0'74 0'749 0'70 0'74 | 1 - | | | | | | | | | | | 11 | | 52 47347 4035 4761 57546 57621 57696 5770 5844 57917 5991 075 53 57319 57395 57471 57546 6783 6783 6783 6783 6784 67924 67994 77063 77133 77202 77271 77409 070 | | 27 3.743 | | | 3.988 | | | | | 4 309 | 7.242 | | | 53 5·319 5·395 5·471 5·546 5·621 5·696 5·770 5·844 5'97 5'97 6·640 6·640 6·640 6·640 6·712 072 073 074 0 | 52 | | | 4.703 | 4.781 | 4.859 | | | | | | | | 55 6783 6·854 6·924 6·994 7·063 7·133 7·202 7·271 7·340 7·409 9·70 56 27 7·477 7·545 7·613 7·681 7·748 7·815 7·882 7·948 8·014 8·050 067 57 8·145 8·210 8·275 8·340 8·495 8·471 8·534 8·598 8·662 8·726 065 58 8·789 8·852 8·915 8·989 9·940 9·102 9·103 9·225 9·286 9·347 062 59 9·469 9·529 9·589 9·648 9·708 9·769 9·826 9·885 9·944 060 28 0·003 0·061 0·119 0·177 0·234 0·292 0·349 0·406 0·463 0·520 0·58 61 28 0·577 0·633 0·689 0·745 0·800 0·855 0·910 0·965 1·020 1·075 0·55 62 1·129 | 53 | 5.319 | 5'395 | | 5.246 | 2.621 | | | | | 5 991 | | | 55 6·783 6·854 6·924 6·994 7·063 7·133 7·202 7·271 7'340 7'409 6'97 6'70 6'854 6'924 6'994 7·063 7'133 7'202 7'271 7'340 7'409 6'70 6'70 6'81 7'948 8'014 8'080 6'67 6'726 6'726 6'67 8'145 8'210 8'275 8'340 8'405 8'471 8'534 8'598 8'662 8'726 6'65 8'726 6'85 9'347 662 9'286 9'347 662 9'859 9'488 9'768 9'225 9'286 9'347 662 9'859 9'848 9'708 9'767 9'826 9'859 9'44 660 9'287 9'940 9'103 9'163 9'225 9'286 9'347 662 9'859 9'448 9'708 9'767 9'826 9'859 9'44 660 9'859 9'448 9'293 0'349 0'406 0'463 0'520 0'58 0'5 | | 6.064 | 6.137 | | 6.585 | 6.354 | | | | | | | | 56 27 7'477 7'545 7'613 7'681 7'748 7'815 7'882 7'948 8'014 8'067 0'657 57 8'145 8'210 8'275 8'340 8'405 8'471 8'534 8'598 8'662 8'726 0'655 58 8'789 8'852 8'915 8'978 9'102 9'103 9'225 9'286 9'347 0'65 59 9408 9'469 9'529 9'589 9'648 9'708 9'769 9'826 9'885 9'944 0'60 60 280'033 0'061 0'119 0'177 0'234 0'292 0'349 0'406 0'463 0'520 0'58 61 280'577 0'633 0'689 0'745 0'800 0'855 0'910 0'965 1'020 1'075 0'55 62 1'129 1'184 1'238 1'292 1'874 1'926 1'977 2'029 2'080 2'132 0'52 6 | | | | 6.924 | 6.994 | 7.063 | 7.133 | 7.202 | 7.271 | 7.340 | | 11 . | | State Stat | | | | | | 7.748 | 7.815 | 7.882 | 7.948 | 8.014 | S-oSo | | | 58 8·789 8·852 8·915 8·978 9'040 9'102 9'103 9'225 9'237 9'347 59 9·468 9·569 9·589 9·648 9'708 9'767 9'826 9'855 9'944 0ó60 60 28 0·003 0·061 0·119 0·177 0·234 0·292 0'349 0'406 0·463 0·520 61 28 0·577 0·633 0·689 0'745 0·800 0·855 0'910 0'965 1'020 1'075 0'55 62 1·129 1·184 1·238 1·292 1'346 1'400 1'453 1'506 1'559 1'612 0′54 63 1·665 1·718 1'770 1·822 1'874 1'926 1'977 2'229 2'880 2'132 0′52 64 2·183 2·2385 2·336 2·835 2'934 2'983 3'032 3'081 3'130 049 65 2·687 2·737 2·78 | | 2//4// | 81010 | | | 8:405 | 8.471 | | | | 8.726 | 065 | | 58 8.789 8.5652 8.915 8.9469 9.529 9.589 9.648 9.708 9.768 9.826 9.885 9.944 9.660 28.0003 0.061 0.119 0.177 0.234 0.292 0.349 0.406 0.463 0.520 0.58 61 28.0577 0.633 0.689 0.745 0.800 0.855 0.910 0.965 1.020 1.075 0.55 62 1.129 1.184 1.238 1.292 1.346 1.400 1.453 1.506 1.559 1.612 0.54 63 1.665 1.718 1.770 1.822 1.874 1.926 1.977 2.029 2.080 2.132 0.52 64 2.183 2.234 2.285 2.336 2.386 2.437 2.487 2.537 2.557 2.637 0.50 65 2.687 2.737 2.786 2.836 2.885 2.934 2.983 3.032 3.081 3.130 0.49 | 57 | 0.145 | | | | | | | | | 1 - | 062 | | 59 9:408 9:409 9:529 9:539 9:408 0:409 0:406 0:463 0:520 0:58 60 28 0:577 0:633 0:689 0:745 0:800 0:855 0:910 0:965 1:020 1:075 0:55 62 1:129 1:184 1:238 1:292 1:346 1:400 1:453 1:506 1:559 1:612 0:54 63 1:665 1:718 1:770 1:822 1:874 1:926 1:977 2:029 2:080 2:132 0:52 64 2:183 2:234 2:285 2:336 2:835 2:934 2:987 2:587 2:637 0:52 65 2:687 2:737 2:786 2:836 2:885 2:934 2:933 3:032 3:081 3:130 049 66 28 3:178 3:226 3:274 3:322 3:370 3'418 3'466 3'514 3:561 3:69 0:48 67 3:656 <td></td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>.090</td> | | | | 1 | | | | | | | | .090 | | 61 28 0 577 0 633 0 689 0 745 0 800 0 855 0 910 0 965 1 0 1 0 7 0 5 0 5 1 62 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 59 | | | | | | | | | 2 | | | | 62 1·129 1·184 1·238 1·292 1·346 1·453 1·506 1·559 1·612 0·54 63 1·665 1·718 1·770 1·822 1·874 1·926 1·977 2·029 2·080 2·132 0·52 64 2·183 2·234 2·285 2·336 2·386 2·437 2·487 2·537 2·587 2·637 65 2·687 2·737 2·786 2·836 2·885 2·934 2·938 3·032 3·051 3·130 66 28 3·178 3·226 3·274 3·322 3·370 3·418 3·466 3·514 3·561 3·609 67 3·656 3·704 3·751 3·798 3·845 3·892 3·938 3·984 4·030 4·076 68 4·122 4·168 4·213 4·259 4·304 4·349 4·349 4·439 4·459 4·459 68 4·122 4·168 4·213 4·259 4·304 4·349 4·349 4·484 4·498 4·628 4·028 4·028 4·028 4·028 4·028 4·028 68 4·122 4·168 4·213 4·259 4·304 4·349 4·349 4·484 4·498 4·628 4·028 4· | 60 | 28 0.003 | | | | | | 1 | | | _ | 11 - 1 | | 62 I·129 I·184 I·238 I·292 I·340 I·460 I·453 I·309 I·349 I·340 I·460 I·453 I·392 I·340 I·460 I·453 I·392 I·340 I·460 I·453 I·392 I·349 I·460 I·453 I·392 I·349 I·460 I·453 I·392 I·392 I·349 I·492 I·497 2·029 2·080 2·132 052 2·637 2·587 2·637 2·587 2·637 2·637 2·637 2·637 2·637 2·658 2·934 2·983 3·032 3·081 3·130 049 66 28 3·178 3·226 3·274 3·322 3·370 3·418 3·466 3·514 3·561 3·609 048 67 3·656 3·704 3·751 3·798 3·845 3·892 3·938 3·984 4·339 4·484 4·529 045 68 4·122 4·168 4·213 4·259 4·304 4·349 4·349 | 61 | 28 0.577 | 0.633 | 0.689 | | | | | | | | | | 63 1 665 1 718 1 770 1 822 1 874 1 926 1 977 2 029 2 080 2 1637 052 054 052 | 62 | | | 1.238 | 1.292 | 1.346 | | | | 1.259 | | | | 64 2:183 2:234 2:285 2:336 2:437 2:487 2:537 3:130 049 66 28 3:178 3:226 3:274 3:322 3:370 3:418 3:466 3:514 3:561 3:69 048 67 3:656 3:704 3:751 3:798 3:845 3:892 3:938 3:984 4:030 4:076 047 68 4:122 4:168 4:213 4:259 4:304 4:349 4:349 4:439 4:439 4:484 4:028 4:7972 045 | 63 | | | | | 1.874 | 1.926 | 1.977 | | 2.030 | | | | 65 2:687 2:737 2:786 2:836 2:885 2:934 2:983 3:032 3:081 3:136 049
66 28 3:178 3:226 3:274 3:322 3:370 3:418 3:466 3:514 3:561 3:609 048
67 3:656 3:704 3:751 3:798 3:845 3:892 3:938 3:934 4:030 4:076 045
68 4:122 4:168 4:213 4:259 4:304 4:349 4:349 4:439
4:439 | 64 | | | | 2.336 | | 2.437 | | 00. | 2.292 | | | | 66 28 3·178 3·226 3·274 3·322 3·370 3·418 3·466 3·514 3·561 3·609 0·48 67 3·656 3·704 3·751 3·798 3·845 3·892 3·938 3·984 4·030 4·076 0·47 68 4·122 4·168 4·213 4·259 4·304 4·349 4·349 4·439 4·484 4·529 0·45 | 65 | | | | | | 2.934 | 2.083 | 3.035 | 3.021 | | 1 | | 67 3.656 3.704 3.751 3.798 3.845 3.892 3.938 3.984 4.030 4.076 0.047 68 4.122 4.168 4.213 4.259 4.304 4.349 4.349 4.349 4.439 4.484 4.529 0.045 | | 11 | | 1 | - | _ | | 3.466 | 3.214 | 3.261 | 3.609 | 048 | | 67 3.656 3.704 3.751 3.798 3.643 3.643 4.349 4.349 4.439 4.484 4.529 0.45 4.68 4.122 4.168 4.529 4.304 4.349 | | | | | | 3.845 | | | | | | 047 | | 68 4.122 4.168 4.513 4.528 4.344 4.349 4.344 4.354 4.358 4.3628 4.362 3.364 | 67 | | | | | | | 1.304 | | | | | | 69 4.224 4.619 4.603 4.208 4.25 4.20 4.20 4.20 | | | | | | | | 4.840 | | | | '044 | | | 69 | 4'574 | 4.619 | 4.663 | 4.708 | 4/32 | 4 /90 | 4 040 | 1 4 0004 | 7 7-3 | | 1 | XXXII. $\mathfrak{S}_{\mathfrak{b}}$ for Ogival-headed Projectiles (II = 1.206 kil., or $\omega = 527$ grains). | b | 0 | I | 2 | 3 | -1 | 5 | 6 | 7 | 8 | 9 | Diff | |------------|----------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|-------------------------|-------------------------|--------------------------|-------------------------|-------------------| | m. s.
5 | Metres
4 0083
5 3323 | Metres
1516
4524 | Metres
2923
5706 | Metres
4307
6871 | Metres
5666
8018 | Metres
7002
9148 | Metres
8312
*0260 | Metres
9596
*1355 | Metres
*0857
*2432 | Metres
*2101 | +
133;
1130 | | 7 8 | 5 3323
6 4529
7 4226 | 5558 | 6573 | 7575
6899 | 8564
7770 | 9536
8631 | *0499 | *1448
*0328 | *2385
*1159 | *3491
*3312
*1977 | 966 | | 9 | 8 2785
9 0443 | 3586
1169 | 4381
1885 | 5168
2593 | 5946
3292 | 6715
3986 | 7476
4677 | 8228
5358 | 8975
6035 | 9714
6703 | 770 | | 1 I
1 2 | 9 7363
10 3688 | 8022
4291 | 8673
4889 | 9319
5482 | 9961
6071 | *0594
6651 | *1222
7232 | *1847
7808 | *2466
8379 | *3077
8946 | 635 | | 13 | 10 9504 | *0058 | *0612 | *1162 | *1707 | *2243 | *2779 | *3311
8428 | *3843 | *4366 | 540 | | 14 | 11 4889
11 9897 | 5403
*0384 | 5918
*0864 | 6424
*1338 | 6929
*1809 | 7430
*2279 | 7931
*2745 | 8428
*3211 | 8921
*3673 | 9409
*4130 | 502
470 | | 16 | 12 4587 | 5040 | 5488 | 5937 | 638 1
*0689 | 6825
*1102 | 7264 | 7699
*1928 | 8135 | 8565 | 44 | | 17 | 12 8996 | 9423
3550 | 9845
3951 | *0267
4351 | 4746 | 5142 | *1515
5533 | 5924 | *2337
6311 | *2742
6694 | 394 | | 19
20 | 13 7076
14 080S | 7459
1169 | 7837
1529 | S215
1S90 | 8593
2246 | 8966
2602 | 9340
2958 | 9709
3310 | *0079
3657 | *0443
4004 | 37-
35. | | 21 | 14 4351 | 4694 | 5037 | 5380 | 5723 | 6061 | 6396 | 6734 | 7068 | 7398 | 33 | | 22 23 | 14 7728
15 0959 | 8057
1275 | 8383
1592 | 8712
1904 | 9038
2212 | 9358
2524 | 9679
2831 | *0000
3139 | *0321
3442 | *0638
3750 | 32 | | 24
25 | 15 4053
15 7016 | 4357
7306 | 4660
7597 | 4959
7882 | 5254
8168 | 5552
8449 | 5847
8726 | 6142
9003 | 6436
9276 | 6726
9548 | 29
28 | | 26 | 15 9821 | *0089 | *0357 | *0621 | *o88o | *1140 | *1399 | *1654 | *1909 | *2160 | 260 | | 27
28 | 16 2410
16 4819 | 2661
5052 | 2911
5281 | 3156
5509 | 3400
5738 | 3644
5962 | 3886
6184 | 4124
6406 | 4358
6626 | 4591
6846 | 24 | | 29
30 | 16 7066
16 9158 | 728 1
9360 | 7492
9563 | 7707
9760 | 7918
9956 | 8129
*0152 | 8336
*0345 | 8543
*0538 | 8749
*0732 | 8956
*0921 | 196 | | 31 | 17 1110 | 1299 | 1484 | 1664 | 1840 | 2015 | 2187 | 2354 | 2521 | 2679 | 174 | | 32
33 | 17 2833
17 4148 | 2978
4267 | 3123
4384 | 3260
4499 | 3396
4613 | 3528
4725 | 3655
4836 | 3783
4947 | 3906
5057 | 4029
5164 | 13 | | 34
35 | 17 5271
17 6299 | 5377
6399 | 5482
6498 | 5586
6595 | 5690
6693 | 5793
6790 | 5895
6888 | 5996
6984 | 6098
7079 | 6199
7175 | 9 | | 36 | 17 7269
17 8188 | 7363
8277 | 7457
8365 | 7550
8453 | 7642
8540 | 7734
8627 | 7825
8714 | 7916
8800 | 8007
8886 | 8098
8972 | 9: | | 37
38 | 17 9057 | 9141 | 9225 | 9309 | 9392 | 9475 | 9557 | 9639 | 9721 | 1080 | 8 | | 39
40 | 17 9882
18 0666 | 9962
9743 | *0041
0S19 | *0120
0895 | *0200
0971 | *0278
1047 |
*0356
1122 | *0434
1197 | *0512
1271 | *0589
1346 | 79 | | 41
42 | 18 1419
18 2146 | 1493
2217 | 1566
2288 | 1640
2359 | 1713
2429 | 1786
2500 | 1858
2570 | 1931
2640 | 2003
2710 | 2074
2779 | 7: | | 43 | 18 2849 | 2918 | 2987 | 3055 | 3124 | 3192 | 3260 | 3328 | 3396 | 3464 | 6 | | 44
45 | 18 3532
18 4199 | 3599
4265 | 3666
4331 | 3733
4397 | 3800
4463 | 3867
4528 | 3934
4593 | 4658 | 4067 | 4133 | 6 | XXXII. 5 for Ogival-headed Projectiles (continued). | 47
48
49
50
51
52
53
54 | Metres
18 4853
5495
6130
6754
7369
18 7976
8576
9169
9755
19 0332 | Metres
4918
5559
6193
6816
7430
8037
8636
9228
9813
0390 | Metres
4983
5623
6255
6878
7491
8097
8695
9287 | 3
Metres
5048
5687
6318
6940
7552
8157
8755
9346 | Hetres
5112
5751
6380
7001
7613
8217
8814 | 5
Metres
5176
5815
6443
7063
7674
8277 | Metres
5240
5878
6505
7124
7734 | 7 Metres 5304 5941 6568 7185 7795 | 8 Metres 5368 6004 6630 7246 7855 | 9
Metres
5432
6067
6692
7308
7916 | + 64
64
62
62
61 | |--|---|--|--|---|--|---|--|--------------------------------------|-----------------------------------|---|------------------------------| | 46
47
48
49
50
51
52
53
54 | 18 4853
5495
6130
6754
7369
18 7976
8576
9169
9755
19 0332 | 4918
5559
6193
6816
7430
8037
8636
9228
9813 | 4983
5623
6255
6878
7491
8097
8695
9287 | 5048
5687
6318
6940
7552
8157
8755 | 5112
5751
6380
7001
7613 | 5176
5815
6443
7063
7674 | 5240
5878
6505
7124
7734 | 5304
5941
6568
7185
7795 | 5368
6004
6630
7246 | 5432
6067
6692
7308 | 64
64
62
62 | | 46
47
48
49
50
51
52
53
54 | 5495
6130
6754
7369
18 7976
8576
9169
9755
19 0332 | 5559
6193
6816
7430
8037
8636
9228
9813 | 4983
5623
6255
6878
7491
8097
8695
9287 | 5687
6318
6940
7552
8157
8755 | 5751
6380
7001
7613 | 5815
6443
7063
7674 | 5878
6505
7124
7734 | 5941
6568
7185
7795 | 6630
7246 | 6067
6692
7308 | 64
62
62 | | 47
48
49
50
51
52
53
54 | 6130
6754
7369
18 7976
8576
9169
9755
19 0332 | 6193
6816
7430
8037
8636
9228
9813 | 5623
6255
6878
7491
8097
8695
9287 | 6318
6940
7552
8157
8755 | 6380
7001
7613 | 6443
7063
7674 | 6505
7124
7734 | 6568
7185
7795 | 6630
7246 | 6067
6692
7308 | 62
62 | | 48
49
50
51
52
53
54 | 6754
7369
18 7976
8576
9169
9755
19 0332 | 6193
6816
7430
8037
8636
9228
9813 | 8097
8695
9287 | 6318
6940
7552
8157
8755 | 6380
7001
7613 | 7063
7674 | 7124
7734 | 7185
7795 | 7246 | 7308 | 62 | | 49
50
51
52
53
54 | 73 ⁶⁹ 18 7976 8576 9169 9755 19 0332 | 7430
8037
8636
9228
9813 | 8097
8695
9287 | 7552
8157
8755 | 7001
7613
8217 | 7674 | 7734 | 7795 | | | | | 50
51
52
53
54 | 73 ⁶⁹ 18 7976 8576 9169 9755 19 0332 | 8037
8636
9228
9813 | 8097
8695
9287 | 8157
8755 | 8217 | | | '''' | 7855 | 7916 | 61 | | 52
53
54 | 8576
9169
9755
19 0332 | 8636
9228
9813 | 8695
9287 | 8755 | | 8277 | 0000 | | | | | | 53 | 9169
9755
19 0332 | 9228
9813 | 9287 | | 8814 1 | | 8337 | 8397 | 8457 | 8517 | 60 | | 54 | 9755
19 0332 | 9813 | | 0246 | | 8874 | 8933 | 8992 | 9051 | 9110 | 59 | | | 19 0332 | | 9871 | | 9404 | 9463 | 9521 | 9580 | 9638 | 9697 | 59 | | 55 | | 0390 | , | 9929 | 9986 | *0044 | *0102 | *0160 | *0217 | *0275 | 58 | | 1 11 | | | 0447 | 0504 | 0561 | 0618 | 0675 | 0732 | 0789 | 0846 | 57 | | | 19 0903 | 0960 | 1016 | 1073 | 1129 | 1186 | 1242 | 1298 | 1354 | 1410 | 56 | | 57 | 1466 | 1522 | 1578 | 1634 | 1689 | 1745 | 1800 | 1856 | 1911 | 1967 | 56 | | 58 | 2022 | 2077 | 2132 | 2187 | 2242 | 2297 | 2352 | 2407 | 2462 | 2517 | 55 | | 59
60 | 2571 | 2626 | 2680 | 2734 | 2788 | 2843 | 2897 | 2951 | 3005 | 3059 | 54 | | 60 | 3113 | 3167 | 3220 | 3273 | 3326 | 3379 | 3432 | 3485 | 3538 | 3591 | 53 | | | 19 3643 | 3696 | 3748 | 3801 | 3853 | 3905 | 3957 | 4009 | 4061 | 4113 | 52 | | 62 | 4164 | 4216 | 4267 | 4318 | 4369 | 4420 | 4470 | 4521 | 4571 | 4622 | 51 | | 63 | 4672 | 4722 | 4772 | 4822 | 4872 | 4922 | 4971 | 5020 | 5069 | 5118 | 50 | | 64 | 5167 | 5215 | 5264 | 5312 | 5361 | 5409 | 5458 | 5506 | 5554 | 5601 | 48 | | 65 | 5648 | 5696 | 5743 | 5791 | 5838 | .5885 | 5932 | 5979 | 6026 | 6072 | 47 | | 66 | 19 6119 | 6165 | 6211 | 6257 | 6303 | 6349 | 6395 | 6440 | 6486 | 6531 | 46 | | 67 | 6576 | 6622 | 6667 | 6712 | 6757 | 6802 | 6847 | 6892 | 6937 | 6982 | 45 | | 68 | 7026 | 7071 | 7115 | 7160 | 7204 | 7248 | 7292 | 7336 | 7380 | 7424 | 44 | | 69 | 7468 | 7512 | 7555 | 7599 | 7643 | 7687 | 7731 | 7775 | 7819 | 7863 | 44 | | 70 | 7907 | 7951 | 7995 | 8039 | 8082 | 8126 | 8170 | 8214 | 8257 | 8301 | 44 | | 71 | 19 8345 | 8389 | 8432 | 8476 | 8520 | 8564 | 8607 | 8651 | 8695 | 8739 | 44 | | 72 | 8782 | 8826 | 8870 | 8914 | 8958 | 9002 | 9046 | 9090 | 9134 | 9178 | 44 | | 73 | 9222 | 9266 | 9309 | 9353 | 9397 | 9441 | 9485 | 9529 | 9573 | 9617 | 44 | | 74 | 9661 | 9705 | 9749 | 9793 | 9836 | 9880 | 9924 | 9968 | *0012 | *0056 | 44 | | 75 | 20 0100 | 0144 | 0188 | 0232 | 0275 | 0319 | 0363 | 0407 | 0451 | 0495 | 44 | | 76 | 20 0539 | 0583 | 0626 | 0670 | 0713 | 0757 | 0800 | 0844 | 0887 | 0930 | 43 | | 77 | 0973 | 1016 | 1059 | 1102 | 1145 | 1188 | 1230 | 1273 | 1315 | 1358 | 43 | | 78 | 1400 | 1443 | 1485 | 1527 | 1569 | 1611 | 1653 | 1695 | 1737 | 1779 | 42 | | 79 | 1820 | 1862 | 1904 | 1946 | 1987 | 2028 | 2069 | 2110 | 2151 | 2192 | 41 | | 80 | 2233 | 2274 | 2314 | 2355 | 2395 | 2435 | 2475 | 2515 | 2555 | 2595 | 40 | | 81 | 20 2635 | 2675 | 2714 | 2754 | 2793 | 2833 | 2872 | 2911 | 2950 | 2989 | 39 | | 82 | 3028 | 3067 | 3105 | 3144 | 3182 | 3221 | 3259 | 3298 | 3336 | 3374 | 38 | | 83 | 3412 | 3450 | 3487 | 3525 | 3563 | 3601 | 3638 | 3676 | 3713 | 3750 | 38 | | 84 | 3787 | 3824 | 3861 | 3898 | 3935 | 3972 | 4008 | 4045 | 4081 | 4117 | 37 | | 85 | 4153 | 4190 | 4226 | 4262 | 4298 | 4334 | 4369 | 4405 | 4440 | 4476 | 36 | | 86 | 20 4511 | 4546 | 4581 | 4617 | 4652 | 4687 | 4722 | 4757 | 4792 | 4827 | 35 | | 87 | 4861 | 4896 | 4930 | 4965 | 4999 | 5033 | 5007 | 5101 | 5135 | 5169 | 34 | | 88 | 5203 | 5237 | 5270 | 5304 | 5337 | 5370 | 5404 | 5437 | 5470 | 5503 | 33 | XXXIII. $\mathfrak{T}_{\mathfrak{h}}$ for Ogival-headed Projectiles ($\Pi=1.206$ kil. or $\omega=527$ grains). | b | 0 | I | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | Diff. | |-------|----------------|---------|---------|-------|---------|-------|---------|-------|---------|---------|-------| | m. s. | Seconds | Seconds | Seconds | | Seconds | | Seconds | | Seconds | Seconds | + | | 5 | 1074 | 1102 | 1129 | 1156 | 1181 | 1206 | 1230 | 1252 | 1274 | 1296 | 24 | | 6 | 1316 | 1336 | 1355 | 1374 | 1392 | 1409 | 1426 | 1443 | 1459 | 1474 | 18 | | 7 | 1489 | 1504 | 1518 | 1532 | 1545 | 1558 | 1571 | 1584 | 1596 | 1608 | 13 | | 8 | 1619 | 1630 | 1641 | 1652 | 1662 | 1672 | 1682 | 1692 | 1701 | 1711 | 10 | | 9 | 1720 | 1729 | 1737 | 1746 | 1754 | 1762 | 1770 | 1778 | 1786 | 1793 | 8 | | 10 | 1800 | 180Ś | 1815 | 1822 | 1828 | 1835 | 1842 | 1848 | 1854 | 1860 | 7 | | 11 | 1 866.6 | 872.7 | 878.5 | 884.1 | 889.6 | 895.1 | 900.2 | 906∙0 | 911.4 | 916.5 | 5.2 | | 12 | 921.7 | 926.6 | 931.4 | 936.3 | 941.1 | 945.7 | 950.3 | 954.9 | 959.4 | 963.8 | 4.7 | | 13 | 968.1 | 972.4 | 976.7 | 980.8 | 984.8 | 988.8 | 992.8 | 996.7 | *000.5 | *00413 | 4.0 | | 14 | 2 008.1 | 011.7 | 015.3 | 018.0 | 022.4 | 025.9 | 029.3 | 032.7 | 036.1 | 039.4 | 3.2 | | 15 | 042.6 | 045.9 | 049.1 | 052.2 | 055.5 | 05Š·2 | 061.5 | 064.5 | 067.1 | 070.0 | 3.0 | | 16 | 2 072.9 | 075'7 | 078.5 | 081.3 | 084.0 | 086.4 | 089.3 | 001.0 | 094.2 | 097'1 | 2.7 | | 17 | 099.6 | 102.1 | 104.6 | 107.0 | 109.4 | 111.8 | 114.1 | 116.2 | 118.8 | 121.1 | 2.4 | | 18 | 123.4 | 125.6 | 127.8 | 130.0 | 132.1 | 134.5 | 136.3 | 138.4 | 140.2 | 142.6 | 2'I | | 19 | 144.6 | 146.6 | 148.6 | 150.6 | 152.2 | 154.4 | 156.3 | 158.5 | 160.0 | 191.0 | 1'9 | | 20 | 163.4 | 165.2 | 167.3 | 199.1 | 170.8 | 172.6 | 174.3 | 176.0 | 177.7 | 179.4 | 1.7 | | 21 | 2 181.0 | 182.6 | 184.2 | 185.8 | 187.4 | 189.0 | 190.6 | 192.2 | 193.7 | 195.2 | 1.6 | | 22 | 196.7 | 198.2 | 199.6 | 201.1 | 202.2 | 204.0 | 205'4 | 206.8 | 208.2 | 209.6 | 1.4 | | 23 | 211.0 | 212.4 | 213.8 | 215.2 | 216.5 | 217.8 | 219.1 | 220'4 | 221.7 | 223.0 | 1.3 | | 24 | 224.3 | 225.6 | 226.8 | 228.1 | 229.3 | 230.2 | 231.7 | 232.9 | 234.1 | 235.3 | 1.5 | | 25 | 236.4 | 237.6 | 238.7 | 239.8 | 240.9 | 242.0 | 243.1 | 244.5 | 245.5 | 246.3 | 1.1 | | 26 | 22 47:33 | 48.36 | 49.38 | 50.39 | 51.38 | 52.36 | 53'34 | 54.30 | 55.5 | 56.50 | .92 | | 27 | | 58.04 | 58.95 | 59.85 | 60.74 | 61.62 | 62.49 | 63.36 | 64.51 | 65 05 | ·88 | | 28 | 57·13
65·88 | 66.41 | 67.53 | 68.33 | 69.13 | 69.02 | 70.40 | 71.47 | 72.24 | 73.00 | .79 | | 29 | 73.76 | 74.20 | 75.24 | 75.97 | 76.69 |
77.40 | 78.11 | 78.81 | 79.20 | 80.18 | 771 | | 30 | 80.85 | 81.2 | 82.19 | 82.84 | 83.49 | 84.14 | 84.78 | 85.41 | 86.03 | 86.65 | .64 | | 31 | 22 87.26 | 87.86 | 88.45 | 89.04 | 89.61 | 90.16 | 90.69 | 91.55 | 91.73 | 92.22 | .55 | | 32 | 92.71 | 93.18 | 93.63 | 94.07 | 94.20 | 94.90 | 95.59 | 95.67 | 96.04 | 96.42 | *41 | | 33 | 96.79 | 97.15 | 97.50 | 97.85 | 98.19 | 98.22 | 98.85 | 99.18 | 99.20 | 99.81 | 34 | | 34 | 23 00.15 | 00.43 | 00.4 | 01.02 | 01.32 | 01.65 | 01.02 | 02 24 | 02.23 | 02.82 | *30 | | | | | | | | | | | | 05.28 | •27 | | 35 | 03.11 | 03.39 | 03.67 | 03.95 | 04.53 | 04.21 | 0.4.78 | 05.02 | 05.31 | | 21 | | 36 | 2305.84 | 06.10 | 06.36 | 06.62 | 06.87 | 07.13 | 07:38 | 07.63 | 07.87 | 08.13 | .22 | | 37 | 03.36 | 08.60 | 08.84 | 09.08 | 03.31 | 09.24 | 09.77 | 10.00 | 10.53 | 10.46 | .53 | | 38 | 10.68 | 10.00 | 11.15 | 11'34 | 11.26 | 11.78 | 11.99 | 12.50 | 12.41 | 12.62 | '22 | | 39 | 12.83 | 13.03 | 13.53 | 13.43 | 13.63 | 13.83 | 14.03 | 14.53 | 14'42 | 14.62 | *20 | | 40 | 14.81 | 15.00 | 12.19 | 15.38 | 15.21 | 15.75 | 15.94 | 16.13 | 16.30 | 16.49 | .19 | | 41 | 23 16.67 | 16.85 | 17.03 | 17.21 | 17:38 | 17.56 | 17.73 | 17.91 | 18.08 | 18.25 | 81. | | 42 | 18.42 | 18.20 | 18.76 | 18.93 | 19.09 | 19.26 | 19.42 | 19.29 | 19.75 | 19.92 | .12 | | 43 | 20.08 | 20.52 | 20'41 | 20.24 | 20.72 | 20.87 | 21.02 | 21.18 | 21.33 | 21.49 | .16 | | 44 | 21.64 | 21.80 | 21.95 | 22.10 | 22.25 | 22.40 | 22.22 | 22.70 | 22.85 | 23.00 | .12 | | 45 | 23.14 | 23.29 | 23.43 | 23.28 | 23.72 | 23.87 | 24.01 | 24.16 | 24.30 | 24.44 | '14 | XXXIII. T_b for Ogival-headed Projectiles (continued). | υ | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | Diff. | |----------------------------|---|---|---|---|---|---|---|---|---|--|------------------------------| | m. s. | Seconds + '14 '13 '13 '13 '13 '12 | | 46 | 23 24·58 | 24.72 | 24.86 | 25.00 | 25.14 | 25.28 | 25.42 | 25.56 | 25.69 | 25.83 | | | 47 | 25·96 | 26.10 | 26.23 | 26.37 | 26.50 | 26.64 | 26.77 | 26.90 | 27.03 | 27.17 | | | 48 | 27·30 | 27.43 | 27.56 | 27.69 | 27.82 | 27.95 | 28.07 | 28.20 | 28.33 | 28.46 | | | 49 | 28·58 | 28.71 | 28.84 | 28.97 | 29.09 | 29.22 | 29.34 | 29.46 | 29.58 | 29.71 | | | 50 | 29·83 | 29.95 | 30.07 | 30.19 | 30.31 | 30.43 | 30.55 | 30.67 | 30.79 | 30.91 | | | 51 | 23 31.03 | 31.12 | 31·27 | 31·39 | 31·50 | 31.62 | 31.74 | 31.86 | 31.97 | 32.09 | 12 | | 52 | 32.20 | 32.31 | 32·42 | 32·54 | 32·65 | 32.77 | 32.88 | 32.99 | 33.10 | 33.21 | 11 | | 53 | 33.32 | 33.44 | 33·55 | 33·66 | 33·77 | 33.88 | 33.99 | 34.10 | 34.20 | 34.31 | 11 | | 54 | 34.42 | 34.23 | 34·63 | 34·74 | 34·85 | 34.95 | 35.06 | 35.16 | 35.27 | 35.37 | 11 | | 55 | 35.48 | 35.28 | 35·69 | 35·79 | 35·89 | 36.00 | 36.10 | 36.20 | 36.30 | 36.41 | 11 | | 56 | 233 6·508 | 6.609 | 6·709 | 6·8o9 | 6·909 | 7.009 | 7·109 | 7·208 | 7·307 | 7.405 | '100 | | 57 | 7·503 | 7.601 | 7·698 | 7·796 | 7·893 | 7.990 | 8·086 | 8·182 | 8·277 | 8.373 | '097 | | 58 | 8·468 | 8.564 | 8·659 | 8·754 | 8·849 | 8.943 | 9·036 | 9·129 | 9·222 | 9.315 | '094 | | 59 | 9·408 | 9.501 | 9·593 | 9·685 | 9·776 | 9.867 | 9·958 | *0·048 | *0·138 | *0.228 | '091 | | 60 | 234 0·317 | 0.407 | 0·496 | 0·585 | o·673 | 0.761 | 0·849 | 0·937 | 1·024 | 1.110 | '088 | | 61 | 234 1·195 | 1.282 | 1.368 | 1.454 | 1.539 | 1.624 | 1.708 | 1.792 | 1.876 | 1.959 | ·085 | | 62 | 2·042 | 2.125 | 2.207 | 2.289 | 2.371 | 2.453 | 2.534 | 2.615 | 2.695 | 2.775 | ·081 | | 63 | 2·855 | 2.935 | 3.014 | 3.093 | 3.171 | 3.249 | 3.327 | 3.405 | 3.482 | 3.559 | ·078 | | 64 | 3·635 | 3.711 | 3.786 | 3.862 | 3.937 | 4.012 | 4.086 | 4.161 | 4.235 | 4.309 | ·075 | | 65 | 4·382 | 4.455 | 4.528 | 4.601 | 4.673 | 4.745 | 4.816 | 4.887 | 4.958 | 5.028 | ·072 | | 66
67
68
69
70 | 234 5.098
5.788
6.454
7.098
7.730 | 5·168
5·856
6·519
7·162
7·793 | 5·238
5·923
6·584
7·225
7·855 | 5·308
5·990
6·649
7·289
7·917 | 5:377
6:057
6:713
7:352
7:979 | 5·446
6·124
6·778
7·416
8·041 | 5.515
6.190
6.842
7.479
8.103 | 5.584
6.256
6.906
7.542
8.165 | 5.652
6.322
6.970
7.605
8.227 | 5.720
6.388
7.034
7.668
8.289 | .069
.067
.063
.063 | | 71
72
73
74
75 | 234 8·351
8·965
9·570
235 0·167
0·756 | 8.413
9.026
9.630
0.227
0.815 | 8·474
9·086
9·690
0·286
0·873 | 8·536
9·147
9·750
0·345
0·932 | 8·598
9·207
9·810
0·404
0·990 | 8·660
9·268
9·870
0·463
1·048 | 8·721
9·328
9·929
0·522
1·106 | 8·782
9·389
9·989
0·581
1·164 | \$.843
9.449
*0.048
0.639
1.222 | 8.904
9.510
*0.108
0.698
1.280 | .062
.060
.059
.058 | | 76 | 235 1·337 | 1.394 | 1.451 | 1.508 | 1.565 | 1.622 | 1.679 | 1.736 | 1.792 | 1.849 | *057 | | 77 | 1·905 | 1.961 | 2.016 | 2.072 | 2.127 | 2.182 | 2.237 | 2.292 | 2.347 | 2.402 | *055 | | 78 | 2·456 | 2.510 | 2.564 | 2.618 | 2.672 | 2.726 | 2.779 | 2.832 | 2.885 | 2.938 | *054 | | 79 | 2·991 | 3.044 | 3.096 | 3.148 | 3.200 | 3.252 | 3.304 | 3.356 | 3.408 | 3.459 | *052 | | 80 | 3·510 | 3.561 | 3.612 | 3.662 | 3.712 | 3.762 | 3.812 | 3.862 | 3.911 | 3.960 | *050 | | 81 | 235 4.009 | 4.058 | 4.1c7 | 4.156 | 4.204 | 4.253 | 4.301 | 4°349 | 4·397 | 4'444 | *048 | | 82 | 4.491 | 4.539 | 4.586 | 4.633 | 4.680 | 4.727 | 4.773 | 4°820 | 4·866 | 4'912 | *047 | | 83 | 4.958 | 5.004 | 5.049 | 5.094 | 5.139 | 5.184 | 5.229 | 5°274 | 5·318 | 5'363 | *045 | | 84 | 5.407 | 5.451 | 5.495 | 5.539 | 5.582 | 5.625 | 5.668 | 5°711 | 5·754 | 5'797 | *043 | | 85 | 5.839 | 5.882 | 5.924 | 5.966 | 6.008 | 6.050 | 6.092 | 6°134 | 6·176 | 6'218 | *042 | | 86 | 235 6·259 | 6·300 | 6·341 | 6·382 | 6.422 | 6·463 | 6·503 | 6·544 | 6·584 | 6·624 | '041 | | 87 | 6·663 | 6·703 | 6·742 | 6·782 | 6.821 | 6·860 | 6·899 | 6·938 | 6·976 | 7·015 | '030 | | 88 | 7·053 | 7·091 | 7·129 | 7·167 | 7.205 | 7·243 | 7·281 | 7·319 | 7·356 | 7·393 | '038 | #### CAMBRIDGE PRINTED BY C. J. CLAY M.A. AND SONS AT THE UNIVERSITY PRESS ## CAMBRIDGE UNIVERSITY PRESS. - MATHEMATICAL AND PHYSICAL PAPERS. By Sir W. THOMSON, LL.D., D.C.L., F.R.S., Professor of Natural Philosophy in the University of Glasgow. Collected from different Scientific Periodicals from May, 1841, to the present time. Vol. I. Demy 8vo. 18s. Vol. II. 15s. [Vol. III. In the Press. - MATHEMATICAL AND PHYSICAL PAPERS, by Sir G. G. STOKES, Sc.D., LL.D., F.R.S., Lucasian Professor of Mathematics in the University of Cambridge. Reprinted from the Original Journals and Transactions, with Additional Notes by the Author. Vol. I. Demy 8vo. 15s. Vol. II. 15s. [Vol. III. In the Press.] - CATALOGUE OF SCIENTIFIC PAPERS COMPILED BY THE ROYAL SOCIETY OF LONDON: Vols. 1—6 for the years 1800—1863, Royal 4to. cloth (vol. 1 in half morocco) £4 (net); half morocco £5. 5s. (net). Vols. 7—8 for the years 1864—1873, cloth £1. 11s. 6d. (net); half morocco £2. 5s. (net). Single volumes cloth 20s. or half-morocco 28s. (net). New series for the years 1874—1883 in the press. - THE COLLECTED MATHEMATICAL PAPERS OF ARTHUR CAYLEY, Sc.D., F.R.S., Sadlerian Professor of Pure Mathematics in the University of Cambridge. Demy 4to. 10 vols. Vol. I. 25s. Vol. II. 25s. [Vol. III. Nearly ready.] - THE SCIENTIFIC PAPERS OF THE LATE PROF. J. CLERK MAXWELL. Edited by W. D. NIVEN, M.A., formerly Fellow of Trinity College. In 2 vols. Royal 4to. £3. 3s. (net). - A HISTORY OF THE STUDY OF MATHEMATICS AT CAMBRIDGE. By W. W. ROUSE BALL, M.A., Fellow and Lecturer on Mathematics of Trinity College, Cambridge. Crown 8vo. 6s. - THE THEORY OF DIFFERENTIAL EQUATIONS. Part I. Exact Equations and Pfaff's Problem. By A. R. FORSYTH, M.A., F.R.S., Fellow of Trinity College, Cambridge. [In the Press. - A HISTORY OF THE THEORY OF ELASTICITY AND OF THE STRENGTH OF MATERIALS, from Galilei to the present time. Vol. I. Galilei to Saint-Venant, 1639—1850. By the late I. TODHUNTER, Sc.D., F.R.S., edited and completed by Professor Karl Pearson, M.A. Demy 8vo. 25s. Vol. II. By the same Editor. In the Press. THE ELASTICAL RESEARCHES OF BARRE DE SAINT-VENANT (Extract from Vol. II. of TODHUNTER'S History of the Theory of Elasticity), edited by Professor Karl Pearson, M.A. Demy 8vo. 9s. See over #### CAMBRIDGE UNIVERSITY PRESS. - THE ELECTRICAL RESEARCHES OF THE Hon. II. CAVENDISH, F.R.S. Written between 1771 and 1781. Edited from the original MSS. in the possession of the Duke of Devonshire, K.G., by the late J. CLERK MAXWELL, F.R.S. Demy 8vo. 18s. - A TREATISE ON GEOMETRICAL OPTICS. By R. S. HEATH, M.A., Professor of Mathematics in Mason Science College, Birmingham. Demy 8vo. 12s. 6d. - AN ELEMENTARY TREATISE ON GEOMETRICAL OPTICS. By R. S. HEATH, M.A. Crown 8vo. 5s. - A TREATISE ON ELEMENTARY DYNAMICS. By S. L. LONEY, M.A., Fellow of Sidney Sussex College. Crown 8vo. 7s. 6d. - A TREATISE ON NATURAL PHILOSOPHY. By Sir W. THOMSON, LL.D., D.C.L., F.R.S., and P. G. TAIT, M.A., Professor of Natural Philosophy in the University of Edinburgh. Part I. Demy 8vo. 16s. Part II. Demy 8vo. 18s. - ELEMENTS OF NATURAL PHILOSOPHY. By Professors Sir W. THOMSON and P. G. TAIT. Demy 8vo. 9s. - AN ELEMENTARY TREATISE ON QUATERNIONS. By P. G. Tait, M.A. 3rd Edition. Enlarged. Demy 8vo. 18s. - AN ATTEMPT TO TEST THE THEORIES OF CAPILLARY ACTION, by Francis Bashforth, B.D., and J. C. Adams, M.A., F.R.S. Demy 4to. £1. 1s. - A TREATISE ON THE THEORY OF DETERMINANTS and their applications in Analysis and Geometry, by R. F. Scott, M.A., Fellow of St John's College. Demy 8vo. 12s. - IIYDRODYNAMICS, a Treatise on the Mathematical Theory of the Motion of Fluids,
by H. LAMB, M.A. Demy 8vo. 12s. - THE ANALYTICAL THEORY OF HEAT, by JOSEPH FOURIER. Translated, with Notes, by A. FREEMAN, M.A., formerly Fellow of St John's College, Cambridge. Demy 8vo. 12s. - A TREATISE ON THE GENERAL PRINCIPLES OF CHEMISTRY, by M. M. PATTISON MUIR, M.A. Second Edition. Demy 8vo. 15s - COUNTERPOINT. A Practical Course of Study, by the late Professor Sir G. A. MACFARREN, M.A., Mus. Doc. New Edition, revised. Crown 4to. 7s. 6d. **London:** C. J. CLAY AND SONS, CAMERIDGE UNIVERSITY PRESS WAREHOUSE, AVE MARIA LANE.